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ABSTRACT
The Darwin's theory of natural evolution is being used in the last one decade for optimization of many
engineering systems in the name of genetic algorithms. In the present paper, genetic algorithms are used for
the optimization of the gas turbine cycles. Based on thermodynamic consideration of a gas turbine plant, the
pressure ratio is optimized with genetic algorithms for maximum efficiency or maximum net power density.
In addition to the pressure ratio, component efficiencies and maximum cycle temperature are treated as
independent (decision) variables. The effects of the independent variables on the pressure ratio are also
determined. Economics are combined with thermodynamics to formulate a thermoeconomic optimization
problem. The results obtained by genetic algorithms are compared with the numerical results to demonstrate
the capability of genetic algorithms in carrying out an optimization of thermodynamic cycles for gas
turbines. .

Keywords: gas turbine cycles; genetic algorithms; thermodynamic optimization; thermoeconomic
optimization

NOMENCLATURE

be specific fuel consumption: rB combustor pressure ratio:

be=mflW rB =P31P2

cf price of fuel rc compressor pressure ratio:

cp specific heat capacity rc =P21P j

Crl cost parameters rT turbine pressure ratio: rr= P31P4

Ef exergy flow rate of fuel: Ef =mfef
t time of operation per year
T temperature

Hf energy flow rate of fuel: w non dimensional net power density
ilf =mfHu x vector of decision variable

Hu lower heating value of fuel
W net power output

j total irreversibility rate Z total annual cost of owning and
k as defined by equation (l) operating the system
m mass flow rate
P pressure

Greek letters
y specific heat ratio: y= clcv

8f specific exergy of fuel
t; second-law (exergetic) efficiency

ofthe system
1] isentropic efficiency
1]00 polytropic efficiency

1]th thermal efficiency of the system
'ri non dimensional temperature:

'tj = T;lTj
cp 8JHu



Subscripts
a air
e exit
f fuel
C connpressor
B connbustor
T turbine

1.0 INTRODUCTION

Superscripts
optinnunn value

Overmark
per unit tinne

In the vast variety of engineering systenns nowadays, there is a need to ensure that a given

systenn is performing at the optinnal level. This is necessary in nnany engineering

applications since efficiency nneans cost saved and perfornnance nnaxinnized. This is the

preferred operating condition for any systenn and also an innportant criterion to be

considered at the design level of any engineering system nowadays.

Much work has been done in optinnization of engineering systenns and most of the

optinnizations are carried out through nunnerical nnethods such as non-linear progrannnning

method and calculus-based nnethod. One of the disadvantages of optimizing an

engineering system by these methods is that it is very lengthy and complicated, and thus

takes up a substantial amount of computing time, with considerable inaccuracies for

certain cases. Inaccuracies are in the sense that, most of these methods use the principle of

hill climbing by deternnination of gradients, and therefore if the given function has nnore

than one local maximum, optimization with these nnethods nnay produce the answer of the

local nnaxinnum instead of the global nnaxinnunn [1]. This is where genetic algorithms

(GAs) conne into picture. GA is a robust search tool based on natural evolution of genetics.

Optimization with GA will always produce the global nnaximunn of a given function. This

present work will introduce GA as another alternative tool that can be utilized to carry out

optimization process of a given engineering system. Azid et. al. [2,3] have applied GA for

solving a number of truss problems with only support and load positions specified in ternns
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of topology and geometric optimization. Jeevan et. al. [4] has solved a PCB component

placement problem using GA.

Many power generating plant in the energy sector still depend on system based on

gas turbines. Among these are plants such as combined cycle cogeneration plants and the

nuclear high temperature gas-cooled reactor. In many instances) attempts are always made

to optimize the design and performance of these plants through dynamic modeling and

simulation [5,6]. Frangopoulos has in his work, carried out thermodynamic and

thermoeconomic optimization of a simple gas turbine plant using non-linear programming

method. In addition, a sensitivity analysis of the optimal solution has also been carried out

[7]. Based on Frangopoulos' work, GA will be applied to a simple gas turbine plant and

optimization will be carried out based on objective functions derived purely on optimal

thermodynamic design consideration. The analysis will involve the determination of

decision variables and how these variables affect the objective function. The second part

of this paper will deal with thermoeconomic optimization where economic considerations

are combined with thermodynamic considerations.

2.0 GENETIC ALGORITHMS (GAs)

Prof. John Holland first invented Genetic Algorithm (GA) at the University of Michigan in

e 1975. Subsequently it has been made widely popular by Prof. David Goldberg at the

University of Illinois. The original GA and its many variants, collectively known as

genetic algorithms, are computational procedures that mimic the natural process of

evolution. GAs are adaptive search methods based on Darwinian principles of natural

selection, survival of the fittest and natural genetics. They combine survival of the fittest

among string structures with a structured yet randomized information exchange to form a

search algorithm with some of the innovative flair of human search. As in human genetics,

GAs exploits the fittest traits of old individuals to create a new generation of artificial



creatures (strings). With each generation, a better population of individuals is created to

replace the old population. Based on these principles, genetic algorithms are developed as

a search tool that efficiently exploits historical information to speculate on new search

points with expected improved performance.

All genetic algorithms work on a population of individuals. Each individual in the

population is called a string or chromosome, each representing a possible solution to a

given problem. These individuals are then subjected to a series of evolution processes

before they are evaluated and given a fitness score. The evolution processes involved in

genetic algorithms are the selection process and the recombination process. Highly fit

individuals are selected from the population for reproduction. Crossover is the main

operator used for reproduction. It combines portions of two parents to create two new

individuals, called offspring, which inherit a combination of the features of the parents.

Mutation is occasionally introduced to individuals, where a single allele in a chromosome

is changed randomly. The crossover process and the mutation process of two 8-bit

genomes are shown in Fig. 1 and Fig. 2 respectively.

"Take in Figure 1"

e "Take in Figure 2"

These two processes produce new individuals that will become a new population of

solutions for the next generation. Members of the population with a low fitness scor~ will

be discarded and are unlikely to be selected for the next evolution process. The entire

process of evaluation and reproduction then continues until either the population

converges to an optimal solution for the problem or the genetic algorithm has run for a

specific number of generations.
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When GA is implemented, it is usually done in a manner that involves the

following cycle:

Step 1 Generate a population randomly.

Step 2 Evaluate the fitness of all of the individuals in the population.

Step 3 Select the individuals with the best fitness score.

Step 4 Is stopping criteria fulfilled?

No, proceed to Step S.

Yes, display the results.

Step 5 Crossover and mutation operations are conducted on the selected

individuals to produce new population of individuals.

Step 6 Discard the old population and proceed to Step 2 using the new population.

One cycle of this loop is referred to as a generation. We do not see this punctuated

behavior of a population in nature as a whole, but it is a convenient implementation model.

The first generation (generation 0) of this process operates on a randomly generated

population of individuals or parents. From there on, the genetic algorithm operates to

improve the fitness of the population.

3.0 THERMODYNAMIC DESIGN OPTIMIZATION

A study in thermodynamic design optimization of a simple gas turbine plant has been done

by Frangopoulos [7] using non-linear programming method. A simple gas turbine cycle is

shown in Fig. 3.

"Take in Figure 3"



It is assumed that the system operates at steady state, the power output, W, is known, and

there are no thermal and mechanical losses. It is also sufficiently accurate to assume that

the working medium is an ideal gas with the following fixed values of cp and Yfor the

compression and expansion process respectively:

air: cpa = 1.005 kJ/kg.K,

combustion gases: cpg = 1.148 kJ/kg.K,

For convenience, ka and kg is introduced as:

Ya=1.40

Yg = 1.333

k = Ya -1
a ,

Ya

3.1 Objective Functions

Y -1k =-g-
g Y

g

(1)

With reference to the work done by Frangopoulos, the same objective functions are used

for optimization with GA. The following objective functions are examined under pure

thermodynamic consideration:

(a) maximization of the cycle thermal efficiency, 77th;

(b) minimization of the fuel consumption, iIf;

(c) maximization of the net power density (also called specific power), W/ rna;

(d) minimization of the total irreversibility rate of the system, j;

(e) maximization of the second-law efficiency ofthe system, t; .

The thermal efficiency of the cycle is



(2)

Because of the assumption of constant W, the objectives (a) and (b) are equivalent. The

second-law (or exergetic) efficiency of the cycle is

W Ws=-· =-.-.
Ef W+I

For constant W, objectives (d) and (e) are equivalent. It can be written as

(3)

(4)

where qJ is constant for each specific fuel [8]. Hence, objectives (a) and (e) are equivalent.

In conclusion, the five thermodynamic objectives mentioned above, reduces to only two

different optimization problems, which will be studied in the following.

3.2 Maximization of the Cycle Efficiency

Maximizing the cycle efficiency is equivalent to minimizing the fuel consumption,

minimizing the total irreversibility rate and maximizing the second-law efficiency of the

system. With the definition of equation (2), the objective function can be shown as



The equality in equation (13) applies for r e = r e, max, which gives

(13)

(14)

For every set of values for the decision variables and parameters, equation (14) is solved

numerically for re,max. In practice, the value of r e is much lower than the limit posed by

equation (13). The value of 'f3,max is determined by the temperature which the materials can

withstand. Theoretically, it is

rB,max =1]",c,max =1]",T,max =1 (15)

However, according to equation (5), 1]th increases continuously with 'f3, 1]ca:;, rB, and 1]ooT.

Therefore, the optimum values are set equal to the maximum values the current practice

allows, although the theoretical limit of equation (15) cannot be achieved.

3.3 Maximization of the Net Power Density

A non-dimensional form of the net power density is used:

w=--­
maC paT)

and the objective function is written as

(16)



(17)

3.4 GA Results

Fig. 4 and Fig. 5 are results of optimization using genetic algorithms. Both of the

optimization problems in sections 3.1 and 3.2 have been solved by Frangopoulos [7] for

several values of 'l), TJoce, TJroT and the resulting optimum values of pres!iure ratio for

maximum cycle efficiency (rch, and for maximum net power density, (rc)w, are presented

in Fig. 4 and Fig. 5 respectively as marked points on the figures. The results obtained

correspond well with the results obtained using GA. The results have been obtained with

Hu = 42500 kJ/kg, TI =298 K, 'X'o = 1, rB = 0.98

In addition to that, GA is also used to find additional data outside the range

specified by the numerical results as shown in Fig. 4 and Fig 5. The numerical results

show the data for non-dimensional temperature, 'X'3 in the range of 4 to 5 while GA is used

to find the additional results for 'X'3 in the range of 3 to 6. The numerical results also show

the data of the turbine polytropic efficiency, TJroT from 0.82 to 0.90 while GA is used to

find the same data for the range of 0.80 to 0.92. In the same way, GA is used to find

additional values of the compressor polytropic efficiency, TJoce in the range of 0.80 to 0.96

while the numerical results only show the values of TJoce in the range of 0.84 to 0.92.

Results in Fig. 4 and Fig. 5 clearly demonstrate that GA is capable of producing

results comparable to the numerical results.

4.0 THERMOECONOMIC DESIGN OPTIMIZATION



The same system studied in the first part will now be optimized with a thermoeconomic

objective. Assumptions made in section 3.0 of the paper are applicable here too.

4.1 Objective Functions

Using the same relations as studied in [7], the objective functions will be optimized with

GA and the results obtained with GA will be compared with the numerical results obtained

by Frangopoulos.

The annual cost of owning and operating the system is selected as the objective

function.

(18)

which consists of the annualized capital cost of equipment (including fixed charges and

maintenance) andthe cost of fuel. Other expenses (e.g. cost of lubricants, cost of

electricity for the auxiliary equipment, etc.) are not included here, for simplicity.

The set ofdecision variables is the same as in the first part:

(19)

The annualized capital cost of compressor, combustor and turbine (the subcripts 1,2,3 are

used instead of C,B,T respectively) is determined by equations obtained from EI-Sayed

and Tribus [9]:

(20)



(21)

(22)

In order to determine the consumption, Hj; as well as dependent variables (e.g. ma, rT )

appearing in equations (20)-(22), an analysis of the system is performed, which gives the

following equations:

T - T r ka /17a>C
2 - 1 C (23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)



The problem is optimized with the following constraints:

1 < rc ::; rCmax (32)

'r2 < 'r3 ::; 'r3,max (33)

0< 17",e < 1 (34)

0< 17",r < 1 (35)

0< 17e < CI2 (36)

0< rB < C22 (37)

0< 17T < Cn (38)

The upper limits CI2 , C22 ,cn are imposed by the fact that values of 2/, 22, and 23 must be

nonnegative finite numbers. The parameters Cl2, C22, Cn and Cr3 (r = 2,3) are related

directly to one decision variable, 17°oc, rB, 17ooT, and rc respectively. Changes in these

parameters with respect to changes in their related decision variables are given by

Frangopoulos [7]. Equations (18), and (20)-(31) are then modeled in a C++ program and

optimized with the specified constraints using GA. The nominal set of parameter values

used is shown in Table 1. In ad4ition to that, a sensitivity analysis is also carried out to

find out how the optimum design would be affected by changes in parameter values.

Table 1. Nominal set of parameter values

w=2.500kW CII = 4.59 C23 = 0.018 K J C33 = 0.036 K 1

($/yr)/(kg/s)
To= TI = 298 K CI2 = 0.90 C24 = 26.4 C34 = 54.4

Hu = 42500 kJ/kg C21 = 3.09 C31 =31.0
($/yr)/(kg/s) ($/yr)/(kg/s)

Cf= 4 x 10-6 $/kJ C22 = 0.995 Cn = 0.92



4.2 Results

Table 2 shows a comparison of results for the optimum values of decision variables based

on parameter values shown in Table 1. The steps involved are by fixing one of the

decision variables (e.g. re) as the unknown variable and fixing the other four decision

variable with their respective optimum values from Frangopoulos as shown in Table 2.

That way the minimum cost function, equation (18) is then optimized for the first

unknown decision variable, re. Using rB = 0.985, '[3 = 4.957, 'f]cxe = 0.901 and 'f]ooT = 0.860,

GA gives the value of re as 21.89. Similarly, using re = 19.59, i 3 = 4.957, 'f]cxe = 0.901

and 'f]roT = 0.860, GA gives the values of rB = 0.986. The values obtained this way are for

fuel price cf= 4x 10-6 $/ld and are shown next to Frangopoulos' results in Table 2.

The results for the sensitivity analysis are shown in Figures 6-10. The figures show

the comparison of results by superimposing results obtained using GA with the original

results given by Frangopoulos [7]. The smooth continuous lines represent the GA results

while the dotted lines represent Frangopoulos's results.

Table 2. Optimum values of the decision variables

Variable
MinZ

MinZ(GA)
(Frangopoulos)

re 19.59 21.89
rB 0.985 0.986
'Z) 4.957 4.843

'f]cxe 0.901 0.886

'f]ooT 0.860 0.882

5.0 DISCUSSION

Before GA is used as an optimizing tool, the problem above has to be modeled in C++

language and a program is written to represent the objective function of the problem

together with all other governing equations. Once this is done, it is a matter of applying

the program with GA to begin the optimization.



GA can work in many ways depending on how the objective function is defined in

the program. In the first part of the gas turbine plant, the two objective functions are

defined by equations (8) and (17) respectively. Having defined the objective functions, all

other decision variables are fixed with their respective values with the exception of the

compressor pressure ratio, re. Therefore, the objective function is dependent on the value

of rc alone. By optimizing the problem, the value of rc that maximizes the objective

function can be determined.

In the second part of the gas turbine plant, equation (18) is the objective function

and equation (18) together with equations (20)-(31) are modeled in c++ and optimized

with GA. The sensitivity analysis is also done with equation (18) as the objective function.

Comparing the numerical results with the GA results in Figures 6-10, there are some

differences in the results obtained. This is due to the reason that a lower limit for the total

operation cost of the plant has not been given. The values produced by GA will give a

minimum cost of zero, which is not a practical operating cost. Other than that, other

uncertainties such as the operational time of the plant per year and the exact values for the

principal parameters are also not provided. However the results obtained by GA are

showing similar trends with the numerical results. Given the correct values of all the

parameters used, it is possible for GA to obtain results comparable to the numerical

results.

Not only is GA able to optimize a single variable function, GA is also capable of

optimizing multi-variable function by giving the possible combination of values of the

variables involved that maximizes the objective function. In the case of the gas turbine

plant, with adequate constraints given, it is possible to let GA find a combination of the

optimal values of 7JocC, 7JooT and 'r3 that maximizes system efficiency. In the same way the

optimum set of decision variables that minimizes cost can be obtained. GA can even
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generate the data for a given system with only the objective function and the governing

equations alone. This is especially useful when there is a need to find additional data

outside the range of the data obtained through experimental analysis or through numerical

computation.

6.0 GA PARAMETERS

The optimization of the gas turbine plant with GA is done with the following GA

parameters:

• Bit size: 30

• Population size: 100

• Number of generation: 10000

7.0 CONCLUSIONS

• Mutation rate: 0.044

• Crossover rate: 0.8867

Operating a gas turbine plant seems easy enough but ensuring that the operation is at an

optimum level is rather complicated. There are too many factors to be considered and a

wrong decision might increase the cost of operation. With so many decision variables that

can be taken into consideration, typical optimization process by numerical method often

requires lengthy computation. Furthermore, any change in the formulation requires a

repetition of calculation.

It has been demonstrated that GA can be successfully implemented as an

optimization tool for a simple gas turbine plant. The flexibility of GA enables it to perform

various assessments for a given problem, and optimize the problem according to the

formulation of the objective function. Other than used as an optimization tool, GA can

also serve as a powerful search tool. With the increasing need for optimization in countless



application of engineering systems, it is timely that GA be introduced as the preferred tool

for search and optimization process.
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( : is the cro ssover point)

Chromosome 1 11011:00100110110
Chromosome 2 11011:11000011110

Offspring 1 11011:11000011110
Offspring 2 11011:00100110110

Figure 1. Crossover process

Original offspring 1 11011:11000011110
Mutated offspring 1 11011:11001011110
Original offspring 2 11011:00100110110
Mutated offsprin.e: 2 11011:00100110010

Figure 2. Mutation process

c

Figure 3. Simple Gas Turbine Plant
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Figure 4. Effect of 'l7<d.:, 'l7a:;T and '(3 on the compressor pressure ratio for maximum efficiency.
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Figure 10. Effect of fuel price and capital cost principal parameter on the optimum values of temperature at the turbine inlet.
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