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ABSTRACT. .A new multigrid scheme using halfsweep four-point explicit .decoupled group (EDG) method in

solving the steady-state incompressible Navier-Stokes equation is presented. The concept of hallsweep

multigrid was initiated by Othman and Abdullah (J997) where promising results was established and

confirmed. In this paper. we apply the multigrid V.cycfe algorithm on the four point explicit decoupled group

(EDG). In A Ii and Abdullah [5]. a new group iterative scheme. the Explicit Decoupled Group scheme, was

developed as a more efficient Navier-Stokes solver on rotated grids compared to the iterative schemes based on

the standardfi.ve-pointformulae and the Alternaiing Group Explicit scheme due to Sahimi and Evans {10J. Our

aim in this work is to investigate the possibility ofcombining multigrid technique with this second order group

iterative scheme to solve the steady-state incompressible Navier-Stokes equation as a way to further improve

the convergence ofthe method, The mu/tign'dformula will be constructed to accelerate the convergence ofthe

iterative process for large Reynolds numbers previously claimed not possible for the original iterative scheme.

The preliminary study ofthe experimental work performed will be reported.

1. INTRODUCTION. Consider the governing equations for flow fields which describe the two dimensional

steady-state Navier-Stokes equations with continuity equation,

uu x + vu y

uv x + vv Y

I 2=-p +-'\1 u
x Re

I 2=-p +-'\1 v
Y Re

(1)

(2)

(3)

where u.v are velocities of the flow in x,y directions, p is the pressure and Re :;z!: 0 denotes the non-dimensional

8 2 0 2

Reynolds number. Here, V 2 =--2+--2 is the usual Laplacian operator. We can now use the stream-vorticity
ox oy

function approach, Le., use the stream function f{I and vorticity function (j) as dependent variables by defining

U = l/fyand v = - '1111

The vorticity OJ is then defined by OJ = -CUy - v,.) = • (If/yy + lfIxx )

Equations (1) and (2) may then be differentiated and combined to give

yr2li) + Re( l.f/x{))y - l.f/yOJx ) = O.

Equation for p may be obtained from (1) and (2) in a similar way to get

V'2 p =2 ( VI."x fIIY'1- (lfIXy)2).

In short, to solve (1) - (3), we need to solve the coupled system ofequ3tions

V 2 /f/=-OJ

"V 2 OJ + Re( /f/ x OJ y • I{/ YOJ x ) = - c
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(4)

(5)

(6)

(7)

(8)

(9)



for If/ and OJ. Once the stream function lfI is known, the velocities li,V and pressure p can be obtained via (4) and

(7). Here, xsE'n = (O,L)x(O,L) with a set of conditions for /If and CO prescribed at tne boundary while c and Re

(the Reynolds number) are non-negative constants. Note that if Re ~ 0, then the coupled system represents the

t'NO dimensional steady st~te Navier-Stokes equations which describe the basic viscous, inco~pressible flow

problems. I/f and (j) are known respectively as the stream and vorticity functions. Suppose we impose the

iJ2
boundary conditions '1/ == 0 and --f == 0, where 1] is the normal to the boundary c:n of n, then our problem

iJt7

amounts to solving the Poisson problem (8) and convection-diffusion problem (9) successively with 'II = 0 and Q)

= 0 respectively along en.
The finite difference approximations of equations (8) and (9) using the centred difference formula at the point

(xi' Yj) will result the following:

_ I/I~k-+:l) _ rp~~+I) + 4rp~.k+l) -If/~~+t) _ "/~k+~) == h 2m~k)
'f" I-I,J I,J-I IJ loj+l 'f" l+l,J IJ

-[l-O'(/II~~+t) _11I~+I»]m~k+.l) -[l+a(l/f~+.l) _'l/~k+~»]aJ~~+t) +4a>~k+t)
'f" 1,)-1 'f" l,j+J I-I,J J-I,} I+l,} 1,,J-I IJ

(k+l) (k+l) , (HI) «k+l) (HI) (k+I) _ 2 (k)
-[l-O'('I'i_t,j -'I'i+l,j )]a>i,j+l -[1+0" 'l'i,j-t -rpi,j+l )]mj+t,j -h c ij •

(10)

(11)

here a= Re/4 and ij =1~2,...,n-1.

On the other hand, in discretising (8) ~nd (9) we use the rotated difference formula at the point (Xl' Yj) which will

result in the following:

(k+1) (k+l) 4 (k+1) (k+I) (k+l) _ 2h2 (k)
-lfIj-I,j+1 - V'i-l,j-I + V/ij - V'i+l,i+1 - V'i+t,j-I - aJij (12)

here 0'= Re/4 and ij =1,2,... ,n-1. Observe that if OJ is known, then (8) is a linear elliptic equation in '1/, and.if rp

is known, then (9) is a linear elliptic equation in aJ. Suppose '1'(0) and OJ (0) are the initial guesses, we can use the

m(O) in (8) to produce 1f/(1). Use this If/(l) in (9) to produce m(l). Then use this aP> in (8) to produce rp(2), and

this 1f/(2) to produce m(Z) and so on. This indicates that at the grid point (xi' Yj) an alternating sequence of outer

iterates may be generated.

2. THE FOUR POINT EXPLICIT DECOUPLED GROUP OUTER-INNER ITERATIVE METHOD. To

construct the explicit decoupled group iterative method, we must obtain the following equation from equation

(13):

(k+l) _ 1[(1- «k+I) (k+I») (lc+I) (1 {(k+I) (k+l) (k+t)
£vij -"4' (j 'fIi-l,j-1 -lfIi+l,j+l {Oi_l,j+1 + +0" lfIi.I,j+l -lfi+I,}I»aJi_I,j_1

(1 «k+1) (k+I») (HI) (1 «k+l) (k+l) (k+l) 2 (k)+ - 0' ,'I'i-I,j+1 -If/i+l,j-I Q)i+I,j+l + + 0' If/i-I,j-I - Vti+l,j+1 »m i -+.1•j _1 + 2h Cij ].

(14)

Assume that the solution at any group of four points on the solution domain is solved using the rotated equation

(14). This will result in a (4x4) system of equations (Ali and Abdullah 1996),
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This system leads to a decoupled system of (2x2) equations, which can be made explicit as follows:

(16)

(IS)

-[I-er(lfIi_l,i+l -If/i+l,j.\)]

4

o
o

4

-[I+.a(lfIi,j+2 - lfI i+2,i)]

o
o

~ . . ~ [Ill:'~j+I]
4 -[l-a(lf/i.i_l ~ If/i+2,i+l)l tiJi+l,j

(1+0"(111 /If )]. 4 lUi,j+l
- 't' i-l,j - 't' iH,j+2

[1- o-(lf/i-t,j_l - V'i+I,j+l )]tiJi_l,j+1 +[1 +a(IIIi-l,j+1 -If/i+l,j-l ))CV i-1:i-1+[1 + a(lf/i_1,j_l -lfIi+l,j+l )]aJi+1,j-l + 2h 2Cij

[1- a(lfIi,j -"'i+2,j+2 )]CO i,j+2 + [1- a(1fI i,j+2' - IIIi+2,)]a>i+2,j+2 +[1 + O"('IIi,j - 'Pi+2,j+2 )1COi+2,j + 2h 2Ci+1,j+1

[1- a(lf/i,j+1 -If/j+2,j-1 )]O)i+2,j+1 +[1 +a(lf/i,j+1 - IIIi+2,j-1 )]CVi,j_1 +[1 +a(lf/i,j_t -1fIi+2,j+1 )]aJi+2,j-t + 2h 2Ci+1,i

[1- a(lfIi-t,jof:2 -If/i+l)]CO i+t,j+2 +[1 + a(1fI i-l,j+2 -Ifl i+t.i )]mi-t,i + [1 + a(1fI i-t,j -lfIi+l,j+2 )]CV i-1,j+2 +2h 2Ci,j+1

[

rhs.. ]
= rhSi+:~j+1

rhsi+1,j

rhsi,i+1

•
and

(17)

The computational molecule for equations (16) and (17) are given in Figures l(a) and t(b) respectively:

• 1.i+2 i+2,i+2

i-1.i+1 i+1.1+

i.] i+2,J
~

i-1,j-1 U+1,i-1

1-1,j+2 i+1,j+2

, ij+l i+2,i+1

i-lJ i+1,j

i,j-1 i+2,j~1

(a) (b)

Figure 1. Computational molecule of Equations: (a) (16) and (b) (17).

Note that from both equations and their corresponding computational molecule (Figure 1), iteration of points for

the vorticity solutions ITom equation (16) can be carried out by only involving points of type. only; while the

iterations arise from equation (17) can be implemented by involving poJn.ts of type 0 only. This means the
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iterative evaluation of points from each group requires contribution of points' only from the same group.

Therefore, the iterations can be carried out on either one of the two types of points, which means we can expect

the execution time to be reduced by nearly half since iterations are done on only about halfof the nodal points.

Hence, the four-point ExpHcit Decoupled Group (EDG) iterative scheme corresponds to the 'generation of

iterations on one type of points (say, the points of type 0) until a certain convergence criteria is met. After

convergence is achieved, evaluate the solutions at the remaining nodal points (points of type 0) using the centred

difference formula (11). Otherwise, repeat the iteration cycle.

3. MULTIGRID METHOD. From the research, it was observed that the multigrid method is frequently used in

the area of computational fluid dynamics and structural mechanics. Thus it is very suitable to use for the steady

state Navier-Stokes equation. Multigrid method actually is a smoothing tool for an iterative method, which

involves solving the problem on the coarse grids and interpolates the solution back to the fine grids. This means

that a series of problems to be solved on a hierarchy of errors with differing mesh sizes is necessary for the use of

multigrid method.

In this paper, we will choose the multigrid V-cycle to apply on the equation. Basically, a V-cycle multigrid

method consists of smoothing the error using a rela"{ation scheme (e.g. Gauss-Seidel or Jacobi iterative scheme),

solving an approximation to the smooth error equation on a coarse grid, interpolating the error correction to the

fine grid, and finally adding the error correction into the approximation. In summary, a multigrid method with the

V(vJ,v,2)-cycle is the process that goes from the finest grid down to the coarsest grid and back from the coarsest

grid up to the finest Here, VJ is the number of relaxation scheme at each level before projecting the residual to the

coarse grid (pre-smoothing), and V,2 is the number of relaxation after interpolating the solution back to the fine grid

(post-smoothing). That's why the multigrid method very efficient on correcting the convergence rate of a

relaxation method.

4. THE FOUR POINT EDG MULTIGRID ALGORI7HM.

Fundamentally, the concept used in designing this scheme is analogous to the halfsweep rotated five~point

multigrid method [9]. All the mesh points in solution domain nh
are labeled in red 0 and black 0 points as in

Figure 2. The red points group is further divided into two groups Le. red points labeled. and 0 (Figure 3(a).
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Figure 2. The position of grid points involved in updating ulJ

·Referring to Figure 2, you will notice that the red points at the last row and colunitl ( ). could not possibly form

the computational molecule because the computational molecule needs a pair of points, but there are no su~table

points to pair with each red' point. Therefore, to evaluate the' red points the rotated difference stencil (13) is used

beside$ using EDG.

o 2 3 4 5
(a)

7 8 2 3 4 5
(b)

7 8

Figure 3. The position afred points (a) and the position of black points (b).

The red points (points. and 0) are iterated until they converge, based on certain convergence criteria. The red

points of type 0 will be iterated using the (16) stencil whilst the red points of type. (the red points next to the

boundaries) will be iterated using the rotated difference stencil (13). Only then, can the black points be evaluated

directly using the centred difference stencil (I 1). Figure 4 shows the structure of the halfsweep EDG multigrid

method with V-cycle on the red points.

In using the halfsweep multigrid method, only the red mesh points (points. and 0) will undergo the process of

iterative evaluation using either the (16) or the (13) stencil. The points of type 0 are evaluated iteratively using

points of the same type., The same goes to points of type 0 (black points). Therefore the iteration over the domain

n h can be carried out on either type of points only (either 0 or 0 only). The iterative process consists of different

levels of grids; a process that goes from the finest grid down to the coarsest grid and back from the coarsest grid

up to the finest.

The halfsweep multigrid algorithm consists of the basic element of grid transfer and the iterative method for

smoothing the errors or residuals. The residual in the domain n h is defined to be

(I 8)

The residuals evaluated on the red points at each levels are transferred into the respective red points at the coarser

grid using the restricting operator 9th2h : !i ~ o.2h defined as

[
1 0 1]

91h
2h =i 0 4 0

101
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At the coarser grid, the new residual is defined as

r2h = ~n2hrh

Smooth AhV!l:f'
with initial value Vii
• use the stencil (13)
o use the stencil (16)

Smooth AhVh=f
with improved
values Vh

Smooth rh = AhVh_f

restrict r h =R2hJl
Smooth A2he2b = ~h

(20)

r--+---t(\;---"""-"",,,,-.1)- f-(.,>---r----!
I

t---f--{~~~~

Ii 'frr
Get the improved
values Vb via
Vh = Vh + ph2he2h

..
W'II'"

"'I. 1".... Smooth
A2he~

using improved
values ofe2h

t ....
11 \',1 "li

Find residualrh=A2l1e2h·rh

restrict

r4h
= Ri~ r2h

Get the improved error value
e2h=e2h+p1: e4h

(Pf: is a linear prolongation)

Figure 4. The structure ofhalfs:veep EDG ~ultigrid method with 'V-cycle.

At the coarser grid, a new linear system is established. For example,

A2he2h = r2h • e2h is the error vaiue

155



e2h is found using the Gauss-Seidel method as the error smoother, in order to get a better error estimation.

It is very ~mportant that the residuals are well smoothed before being transferred to the coar~er grids. This process

will be continued until we reach the coarsest grid. The e~or estimation value is acquires by solving the resulted

~quation at the coarsest grid.

On the other hand, the linear prolongation is used to transfer the red points from the coarser grids to the red points

at the finer grids' using the following prolongation operator P2hh : n2h ~ nh defined as

h 2h
V 21•2j = Vi.} for all i, j both even or odd. (21)

(22)

While the bilinear interpolation is applied to .interpolate the red points on the fine grid as follows,

h II 2h 2h)
V4l-2.4j =2"\V4i-2.4J-2 + V41-2.4j+2 t

h I (2h • 2h )
V1,2j_1 = '2 Vi,j + v1,i-1 t for all ij = 1,2,...,N-1. (23)

and h 1 l 2h 2h 2h 2h)
VI,} :::: "'4\Vj- l•i - 1 + vi+l.i-1 + Vj-t,j+l + Vi+1,j+l for all ij odd. (24)

In this paper, the Gauss-Seidel smoothing scheme was used to smooth the errors or residuals to ensure the

convergence of the method. The Gauss-Seidel iteration scheme is the most popular smoothing method and it's a

more effective smoother than Jacobi's scheme. These due to the fact that the new updated values for each iteration

are used to calculate the next value. At the finest grid, we may use the correction Vb of-Vb + P2hby2b to improve the

rate of convergence. The red points at each level would be appl ied with the smoothing scheme where the points

will be iterated till they converged. Then obtain the solutions once at the rest of the points (the black points) using

the centred difference stencil (11). The general algorithm for the explicit decoupled group multigrid method may

be described as follows:

BLACK(Aht Y',f)
{/* Evaluate only once on the black points */

Smooth AhVh = f using Gauss-Seidel scheme on the centred difference stencil (11). }

MULTIGRID(i,Ah
,vh,F)

{/* Iterate on the red points until converge */

IF (i = 0) coarsest grid, solve Aheh= (! directly

ELSE

{Smooth VI times on Ahvh=f applying Gauss Seidel at the finest domain using stencil (16) or (13).

Compute residuals rh+- f't - Ahvh

Set e2h +- 0 and restrict r2h ~ Rn2h rho

Get e2h +- MULTIGRID (i _1,A2h,e2,\r2h).

Correct errors and transfer to finer grid vh +- vh + P2hhe2h

Smooth V2 times on Ahvh = f applying Gauss Seidel on nh using the stencil (16) or (13).}

}HALFSWEEP_EDG_MULTIGRID AlgorithmO

{Flag = 0
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(25)

WHILE (Flag != 1) DO{

Flag = 1

MULTIGRlD(i,Ah,vh,f')

IF 'Ivd~+I) -Vij(k) I> E on the red points, set Flag";' 0

Iterate ++

Swap Vij (k) -(- vij (k+l) for all red points}

BLACK(A\v\f)

Return vh as an approximate solution}

5. NUMERICAL EXPERIMENTATION AND RESULTS. Numerical experiment has been carried out using

the halfsweep explicit decoupled group multigrid algorithm described previously to solve the following Navier­

Stokes problem [10]:

V2W =-OJ

'1 2m + Re(lIfxQ)y -lfly(J)x) = -1

with the boundary conditions

lp(x,O) = rp(x,l) =OJ{x,O) =OJ(x,l) =0,

lI/(O,y)=rp(l,y) =OJ(O,y) =m(1,y) =0,
(26)

The grid spacing used was h=O.l and the problem were solved for various values of Reynolds number Re ~ 1. For

each case~ the experimental optimum relaxation parameter y was chosen to within ±{J.Ol which gives the most

rapid convergence. Throughout the experiment, the algorithm is run using c++ programming language on

different size grids of nh, 0 2
\ •••• , n t28h with V(l,l) cycle. Both methods were tenninated when the mesh points

at the finest grid achieve convergence with tolerance 0 = 8 = I.Ox10-11 for both the outer and inner iterations.

The results of the numerical experiment are shown in Table 1, Table 2 and Table 3 respectively. The execution

time~versusmesh size were plotted and shown in Figures 5.

TABLE 1. Numerical Solutions Obtained for V/when x=O.25 and 0.625 (Re = I).

y=O.125 y=O.25 y=O.375 y=O.5 y=O.625 y=0.75 y=O.875
( i=1) (j=2) (j=3) (i=4) (j=5) (j=6) ( i=7)

x=0.25( i=2 )
EDG 0.00117223 0.00231632 0.00273185 0.00317656 0.00273174 0.00231663 0.00117215
EDG Multi2rid 0.00117223 0.00231682 0.00273185 0.00317656 0.00273174 0.00231663 0.00117215

x=0.625 ( i=5)
EDG 0.00164036 0.0027315 0.00379296 0.00378655 0.00379307 0.0027316' 0.00164044
EDG Multigrid 0.00164036 0.0027315 0.00379296 0.00378655 0.00379307 0.0027316 0.00164044

TABLE 2. Numerical Solutions Obtained for Q) when x=O.25 and 0.625 (Re = 1).

y=O.125 y=0.25 y=0.375 y=0.5 y=0.625 y=0.75 y=O.875
( j=I) (j=2) ( i=3) ( i=4) (j=5) ( j=6) ( i=7)

x:::0.25( i=2 )
EDG 0.0290234 0.0467565 0.0558194 0.0588306 0.0558067 0.0467449 0.0290183
EDG Multigrid 0.0290234 0.0467565 0.0558194 0.0588306 0.0558067 0.0467449 0.0290183
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x=0.625 ( i=5)
EDG 0.0342003 0.0557937 0.067807- 0.0714236 0.0678157 0.055$027 0.034204
EOG Muttigrid 0.0342003 0..0557937 0.067807 0.0714236 0.0678157 0.0558027 0.034204
TABLE 3. The expenmental results for the EDG outer-mner IteratIve !l1ethods With and wIthout Multlgnd
'Method (Re=I).

Iteration numbers for the Navier-Stokes problem using Iteration numbers for the Navier-Stok~s problem using
Halfsweep Four Point EDG Multigrid Method Four Point EDG Scheme Without Multigrid Method

Grid size Time Number Number Number Grid size Time Number Number Number
(sees) of outer of inner of inner (s~cs) of outer of inner of inner

iteration iteration iteration iteration iteration iteration
for lJ/ form for 1/1 for 0)

8 3.46 1 1 7 8 2.74 1 1 49
2 6 5 2 42 21
3 4 3 3 12 3
4 1 1 4 1 1

16 4.01 1 1 8 16 3.4 1 1 171
2 6 5 2 142 45
3 3 2 3 17 3
4 1 1 4 1 1

32 4.12 1 1 8 32 4.95 1 1 596
2 6 5 2 480 64
3 3 I 3 22 1
4 1 1 4 1 1

64 8.13 1 1 8 64 10.38 I 1 2053
2 6 4 2 1589 92
3 2 1 3 10 1
4 1 1 4 1 1

128 6.75 1 1 7 128 116.44 1 1 6906
2 6 3 2 5049 71
3 1 1 3 3 1

4 1 I

Execution Time versus Grud Ssze

140

120

Cii" 100"0
C
0 80·u
CI)
U)

60-Q
E 40i=

20

0

-+- Halfsweep EDG
Multigrid Method

-II- EDG Scheme
Without Multigrid
Method

8 16 32

Grid Size

64 128

Figure 5. Execution time versus grid size
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6. SUMMARY. In this report; we present a new Navier~Stokes solver using the halfsweep Explicit Decoupled

Group multigrid algorithm. From the results obtained, we can observe that the Explicit Decoupled Group

algorithm with the halfsweep multigrid method is faster than the Explicit Decoupied Group algorithm without ai1Y

multigrid method; especially when the gird size is increased (Figure 5). in conclusion, the J;1ewly developed

multigrid method proves to be a viable alternative Navier~Stokes solver.
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