Proceed
by INSP
2~4 Apru sus.

Multigrid Application on A New Coupled Elliptic Solver:
A Preliminary Study

'Lim Lay Ngor, 2Norhashidah Hj. Mohd. Ali,
Pusat Pengajian Sains Matematik, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang
E-mail: 'llngor@yahoo.com, *shidah@cs.usm.my

ABSTRACT. A new multigrid scheme using halfsweep four-point explicit fiecoupled group (EDG) method in
solving the steady-state incompressible Navier-Stokes equation is presented. The concept of halfsweep
multigrid was initiated by Othman and Abdullah (1997) where promising results was established and
confirmed. In this paper, we apply the multigrid V-cycle algorithm on the four point explicit decoupled group
(EDG). In Ali and A bdullah [5], a new group iterative scheme, the Explicit Decoupled Group scheme, was
developed as a mare efficient Navier-Stokes solver on rotated grids compared to the fterative schemes based on
the standard five-poin! formulae and the Alternating Group Explicit scheme due to Sahimi and Evans [10]. Our
aim in this work is to investigate the possibility of combining multigrid technique with this second order group
iterative scheme to solve the steady-state incompressible Navier-Stokes equation as a way to further improve
the convergence of the method. The multigrid formula will be constructed to accelerate the convergence of the
iterative process for large Reynolds qumbers previously claimed not possible for the original iterative scheme.

The preliminary study of the experimental work performed will be reported.

1. INTRODUCTION. Consider the governing equations for flow fields which describe the two dimensional

steady-state Navier-Stokes equations with continuity equation,
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where #,v are velocities of the flow in x,y directions, p is the pressure and Re # 0 denotes the non-dimensional
2 2 '

Reynolds number. Here, V* = P + P is the usual Laplacian operator. We can now use the stream-vorticity
X y

function approach, i.e., use the stream function { and vorticity function @ as dependent variables by defining

u= yandv = -y @)

The vorticity @ is then defined by @ = -(u,-v,) = (¥, +¥,) = - V. (%)
Equations (1) and (2) may then be differentiated and combined to give

Vo + Re(prwy ~ ypyax) = 0. ©)
Equation for p may be obtained from (1) and (2) in a similar way to get

V2p=2( Wxnyy—(ny)z)‘ (7)
In short, to solve (1) —~ (3), we need to solve the coupled system of equations

Vig =-w0 )

Vzw +R6(Wxa)y"//ymx)='c (9)
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for ¢ and @. Once the stream function i is known, the velocities u,v and pressure p can be obtained via (4) and

~

(7). Here, x,y€Q = (9,L)x(0,L) with a set of conditions for i and @ prescrived at the boundary while ¢ and Re
(the Reynolds number) are non-negative constants. Note that if Re 2 0, then the coupled system represents the
two dimensional steady state Navier-Stokes equations which describe the basic viscous, incompressible flow

problems. i and @ are known respectively as the stream and vorticity functions. Suppose we impose the

é’zvl

2

boundary conditions = 0 and = (, where » is the normal to the boundary &) of Q, then our problem

amounts to solving the Poisson problem (8) and convection-diffusion problem (9) successively with ¥ =0 and @
= 0 respectively along X2
The finite difference approximations of equations (8) and (9) using the centred difference formula at the point

(x;,y;) will result the following:

(k+D) (k+) (k+D (k+1) &+l) 2 (k)
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here o= Re/4 and 1,j =1,2,...,n-1.
On the other hand, in discretising (8) a}nd {9} we use the rotated difference formula at the point (x,,y j) which will
result in the following:
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here o= Re/4 and i,j =1,2,...,n-1. Observe that if @ is known, then (8) is a linear elliptic equation in y, and if v
is known, then (9) is a linear elliptic equation in @. Suppose p'? and @ are the initial guesses, we can use the
@? in (8) to produce . Use this %™ in (9) to produce ®®. Then use this @ in (8) to produce ¥'?, and
this ® to produce @™ and so on. This indicates that at the grid point (x,,y ;) an alternating sequence of outer

iterates may be generated.

2. THE FOUR POINT EXPLICIT BECOUPLED GROUP OUTER-INNER ITERATIVE METHOD. To
construct the explicit decoupled group iterative method, we must obtain the following equation from equation
(13): ’

k+1 1 %
of ™ = li-o & v el
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+ k+l k
i-1,j+1 + (1 + G(V/g ,jzl - Wl(‘*l-tr)l ))0) 1(.1:,2

(14)

Assume that the sclution at any group of four points on the solution domain is solved using the rotated equation

(14). This will result in a (4x4) system of equations (AIf and Abdullah 1996},
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This system leads to a decoupled system of (2x2) equations, which can be made explicit as follows:

@y ]__ 1 .
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The computational molecule for equations (16) and (17) are given in Figures 1(a) and 1(b) respectively:

1

(@ &
Figure 1. Computational molecule of Equations: {a) (16) and (b) (17).

Note that from both equations and their corresponding computational molecule (Figure 1), iteration of points for

the vorticity solutions from equation (16) can be carried out by only involving points of type ® only; while the

iterations arise from equation (17) can be implemented by involving points of type O only. This means the
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iterative evaiuation of points from each group requires contribution of points. only from the same group.
Therefore, the iterations can be carried out on either one of the two types of points, which means we can expect
the execution time to be reduced by nearly /alf since iterations are done on only about Aalf of the nodal points.
Hence, the four-point Explicit Decoupled Group (EDG) iterative scheme corresponds to the -generation of
iterations on one type of points (say, the poi;lts of type O) until a certain convergence criteria is met. After
convergence is achieved, evaluate the solutions at the remaining nodal points (points of type @) using the centred

difference formula (11). Otherwise, repeat the iteration cycle.

3. MULTIGRID METHOD. From the research, it was observed that the multigrid method is frequently used in
the area of computationa! fluid dynamics and structural mechanics. Thus it is very suitable to use for the steady
state Navier-Stokes equation. Multigrid method actually is a smocthing tool for an iterative method, which
involves solving the problem on the coarse grids and interpolates the solution back to the fine grids. This means
that a series of problems to be solved on a hierarchy of errors with differing mesh sizes is necessary for the use of
multigrid method.

In this paper, we will choose the multigrid V-cycle to apply on the equation. Basically, a V-cycle multigrid
method consists of smoothing the error using a relaxation scheme (e.g. Gauss-Seidel or Jacobi iterative scheme),
solving an approximation to the smooth error equation on a coarse grid, interpolating the error correction to the
fine grid, and finally adding the error correction into the approximation. In summary, a multigrid method with the
V(v va)-cycle is the process that goes from the finest grid down to the coarsest grid and back from the coarsest
grid up to the finest Here, v, is the number of relaxation scheme at each leve! before projecting the residual to the
coarse grid (pre-smoothing), and v, is the number of relaxation after interpolating the solution back to the fine grid
(post-smoothing). That’s why the multigrid method very efficient cn correcting the convergence rate of a

relaxation method.

4. THE FOUR POINT EDG MULTIGRID ALGORITHM,

Fundamentally, the concept used in designing this scheme is analogous to the halfsweep rotated five-point

multigrid method [9]. All the mesh points in solution domain Q" are labeled in red O and black O points as in
Figure 2. The red points group is further divided into two groups i.e. red points labeled ® and O (Figure 3(a)).
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Figure 2. The position of grid points involved in updating u,
Referring to Figure 2, you will notice that the red points at the last row and colurf () could not possibly form
the computational molecule because the computational molecule needs a pair of points, but there are no suitable
points to pair with each red point. Therefore, to evaluate the red points the rotated difference stencil (13) is used

besides using EDG.

0 1 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8
(2) (b)

Figure 3. The posiﬁon of red points (a) and the position of black points (b).

The red points (points @ and O) are iterated until they converge, based on certain convergence criterta. The red
points of type O will be iterated using the (16) stencil whilst the red points of type @ (the red points next to the
boundaries) will be iterated using the rotated difference stencil (13). Only then, can the black points be evaluated
directly using the centred difference stencil (11). Figure 4 shows the structure of the halfsweep EDG multigrid
method with V-cycle on the red points.

In using the halfsweep multigrid method, only the red mesh points (points ® and O} will undergo the process of
iterative evaluation using either the (16) or the (13) stencil. The points of type O are evaluated iteratively using

points of the same type. The same goes to points of type O (black points). Therefore the iteration over the domain

Q" can be carried out on either type of points only (either O or O only). The iterative process consists of different
levels of grids; a process that goes from the finest grid down to the coarsest grid and back from the coarsest grid

up to the finest.
The halfsweep multigrid algorithm consists of the basic element of grid transfer and the iterative method for

smoothing the errors or residuals. The residual in the domain Q" is defined to be
=AM - fh (18)

The residuals evaluated on the red points at each levels are transferred into the respective red points at the coarser

grid using the restricting operator R,2" : Q" — O™ defined as

1
9‘{2}':_
g

— DD e

0 1
4 0 (19)
0 1

154



At the coarser grid, the new residual is defined as

rzh = gg‘nzhrh

(20}

1 with initial value V"
@ use the stencil (13)
O use the stencil (16)

Smocth AMV"=f"
8 | with improved
values V!

Tt

__l__; ‘ 4;__ Smooth A"V =f' —é ' é

Smooth " = A"WRf

2 | restrict P =R%S 7

Smooth A¥e? =20

Get the improved
values V' via
Vh = V" + P";..e“'

6

Smooth

A=
using improved
values of e®

Figure 4. The structure of halfsweep EDG multigrid method with ‘V-cycle.

At the coarser grid, a new linear system is established. For example,

A% =2 * e? is the error vaiue
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¢® is found using the Gauss-Seidel method as the error smoother, in order to get a better error estimation.

It is very important that the residuals are Well smoothed before being transferred to the coarser grids. This procéss
will be continued until we reach the coarsest grid. The error estimation value is acquires by solving the resulted
equation at the coarsest grid. 7
On the other hand, the linear prolongation is used to transfer the red points from the coarser grids to the red points
at the finer grids using the following prolongation operator Py" : Q™ — Q" defined as

Vh, =vEh for all i, j both even or odd. @1)

While the bilinear interpolation is applied to interpolate the red points on the fine grid as follows,

] 1 2k 24
Vii2.4) = E("u-z.4 j-2 T Va2 _,°+z) ) (22)
l .
Vi = 3 (v,’j. + v,%j!_,) , for alt ij = 1,2,...,N-1. @23)
h 1 2h h 2h 2h .
and =g (2 v VP vE) forall ijodd, 4)

In this paper, the Gauss-Seidel smoothing scheme was used to smooth the errors or residuals to ensure the
convergence of the method. The Gauss-Seide! iteration scheme is the most popular smoothing method and it’s a
more effective smoother than Jacobi’s scheme. These due to the fact that the new updated values for each iteration
are used to calculate the next value. At the finest grid, we may use the correction V' <~V + P2,"v?* to improve the
rate of convergence. The red points at each level would be applied with the smoothing scheme where the points
will be iterated till they converged. Then obtain the solutions once at the rest of the points (the black points) using
the centred difference stencil (11). The general algorithm for the explicit decoupled group multigrid method may
be described as follows:

BLACK(A" V", 1)

{* Evaluate only once on the black points */

Smooth A"" = f* using Gauss-Seidel scheme on the centred difference stencil (11). }

MULTIGRIDG, A" v" )

{/* Iterate on the red points until converge */

IF (i = 0) coarsest grid, solve A¢"=1" directly

ELSE

{Smooth v, times on A™" = f* applying Gauss Seidel at the finest domain using stencil (16) or (13).

Compute residuals r* < f* ~ A""
Set e < 0 and restrict 1" «~ R, 1.

Get €™ « MULTIGRID (i -1,A™ e 1),

Correct errors and transfer to finer grid v <« v + Py, e?
Smooth v, times on AM! = ! applying Gauss Seidel on Q" using the stencil (16) or (13).}

YHALFSWEEP_EDG_MULTIGRID Algorithm()

{Flag=0
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WHILE (Flag !=1) DO{

Flag= 1

MULTIGRID(,A",v",£")

IF v J"‘”) —vij(k) |> & on the red points, set Flag =0
Iterate -H-

Swap v;; @ « v;; & for all red points}
BLACK(A" V',

Return v" as an approximate solution}

5. NUMERICAL EXPERIMENTATION AND RESULTS. Numerical experiment has been carried out using

the halfsweep explicit decoupled group multigrid algorithm described previously to solve the following Navier-

Stokes problem [10]:
Vi =-w
2W (25)
Vio +Re(y o, ~Yy@y) = -1
with the boundary conditions
w(x,0) = w(x) =o(x0) =o(xl) =0, 0sx<1, 26)
w0, =w(,y) =0(0y) =a(,y) =0, C=sy<l,

The grid spacing used was h=0.1 and the problem were solved for various values of Reynolds number Re 2 1. For
each case, the experimental optimum relaxation parameter Y was chosen to within +0.01 which gives the most
rapid convergence. Throughout the experiment, the algorithm is run using C++ programming language on

different size grids of ot oL, Q" with ¥(1,1) cycle. Both methods were terminated when the mesh peints

at the finest grid achieve convergence with tolerance & =& =1.0x1 0" for both the outer and inner iterations.
The results of the numerical experiment are shown in Table 1, Table 2 and Table 3 respectively. The execution

time-versus mesh size were plotted and shown in Figures 5.

TABLE 1. Numerical Solutions Obtained for ywhen x=0.25 and 0.625 (Re = 1).

v=0.125 v=0.25 y=0.375 v=0.5 y=0.625 v=0.75 y=0.875
(=D (=2) (i=3) (=4 (j=5) (i=6) (=7
x=0.25(i=2)
EDG 0.00117223 | 0.00231682 | 0.00273185 | 0.00317656 | 0.00273174 | 0.00231663 | 0.00117215
EDG Multigrid | 0.00117223 | 0.00231682 { 0.00273185 | 0.00317656 | 0.00273174 | 0.00231663 | 0.00117215
x=0.625 (i=5) :
EDG 0.00164036 | 0.0027315 0.00379296 | 0.C0378655 | 0.00379307 | 0.0027316" | 0.60164044
EDG Muitigrid | 0.00164036 | 0.0027313 0.00379296 | 0.00378655 | 0.00379307 | 0.0027316 | 0.00164044
TABLE 2. Numerical Solutions Obtained for @ when x=0.25 and 0.625 (Re = 1).
v=0.125 v=0.25 v=0.375 y=0.5 y=0.625 ¥=0.75 y=0.875
(i=1) (i=2) (=3 (=9 (=5 (=6) (=7 _
x=0.25( =2 )
EDG 0.0290234 0.0467565 0.0558194 0.0588306 0.0558067 0.0467449 | 0.0290183
EDG Multigrid | 0.0290234 | 0.0467565 0.0558194 0.0588306 0.0558067 | 0.0467449 0.0290183
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x=0.625 (i=3)

EDG

0.0342003

0.0557937

0.067807

0.0714236

0.0678157

0.0558027

0.034204

EDG Multigrid

0.0342003

00557937

0.067807

0.0714236

0.0678157

0.0558027

0.034204

TABLE 3. The experimental results for the EDG outer-inner iterative methods with and without Multigrid

‘Method (Re=1),

Iteration numbers for the Navier-Stokes problem using Iteration numbers for the Navier-Stokes problem using
Halfsweep Four Point EDG Multigrid Method Four Point EDG Scheme Without Multigrid Method
Grid size Time Number | Number [ Number | Grid size Time Number | Number | Number
(secs) of outer | ofinner | of inner (secs) of outer | ofinner | ofinner
iteration | iteration | iteration iteration | iteration | iteration
for v for ® for for
8 3.46 1 1 7 8 2.74 i 1 49
2 6 5 2 42 21
3 4 3 3 12 3
4 1 1 4 1 1
16 4.01 1 1 8 16 3.4 1 1 171
2 6 5 2 142 45
3 3 2 3 17 3
4 1 1 4 1 1
32 4.12 1 1 8 32 495 1 1 596
2 6 5 2 480 64
3 3 1 3 22 1
4 1 1 4 1 1
64 8.13 1 1 8 64 10.38 1 1 2053
2 6 4 2 1589 92
3 2 1 3 10 1
4 1 1 4 1 1
128 6.75 1 1 7 128 116.44 1 1 6906
2 6 3 2 5049 71
3 1 1 3 3 1
4 1 1
Execution Time versus Grid Size
140 - —eo— Halfsweep EDG
Multigrid Method
120 - 9
100 - —m—EDG Scheme
5 80 - Without Multigrid
S Method
2 60 -
E
= 404
20 -
0 ul T L T L T _e =
8 16 32 64 128
Grid Size

Figure 5. Execution time versus grid size
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6. SUMMARY. In this report, we present a new Navier-Stokes solver using the halfsweep Explicit Decoupled
Group multigrid algorithm. From the results obtained, we can observe that the Explicit Decoupled Group
algorithm with the halfsweep multigrid method is faster than the Explicit Decoupled Group algorithm without any
multigrid method, especially when the gird size is increased (Figufe 5). In conclusion, the newly developed

multigrid method proveé to be a viable alternative Navier-Stokes solver.
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