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KAJIAN PRESTASI PENAPIS KASAR BATU KAPOR UNTUK 
PENYINGKIRAN KEKERUHAN, PEPEJAL TERAMPAI, KEPERLUAN 

OKSIGEN BIOKIMIA DAN ORGANISMA KOLIFOM DARIPADA TAKAT 
MASUK AIR SISA DOMESTIK KOLAM PENGOKSIDAAN 

 
ABSTRAK 

 

 Penurasan kasar pada hakikatnya adalah bertujuan untuk melindungi penapis 

pasir perlahan dengan cara mengurangkan kekeruhan influen dan pepejal terampai 

pada tahap yang mana ianya boleh beroperasi dengan berkesan. Penurasan kasar 

menyediakan suatu kaedah yang bertujuan untuk memperbaiki kualiti air kumbahan 

tanpa menggunakan sebarang jenis bahan kimia. Selain daripada melindungi penapis 

pasir perlahan, kaedah ini juga boleh memastikan olahan air kumbahan sebelum ianya 

dibuang sebagai air luahan dan dapat diguna semula. 

 

 Kajian ini bertujuan untuk mengkaji kebolehan penuras kasar batu kapur 

(limestone) untuk mengurangkan tahap kekeruhan, pepejal terampai, keperluan 

oksigen biologi (BOD) dan organisma “coliform” (bakteria) yang terkandung dalam air 

sisa atau air kumbahan. Kajian ini melibatkan empat peringkat. Setiap peringkat 

melibatkan medium penuras batu kapur (limestone) yang berlainan saiz iaitu, media 

penuras bersaiz kecil (1.91 mm), bersaiz sederhana (4.9 mm), bersaiz besar (16.28 

mm), dan gabungan daripada kesemua saiz tersebut. Air kumbahan daripada loji 

olahan kumbahan telah digunakan sebagai sampel air tercemar yang mana ianya telah 

dikaji melalui media penuras kasar dengan enam jenis kadaralir yang berbeza. 

Kesemua sampel telah diuji di Makmal Persekitaran Universiti Sains Malaysia. 

 

 Keputusan daripada eksperimen tersebut, didapati bahawa penuras kasar batu 

kapur yang telah digunakan berupaya mengurangkan tahap kekeruhan antara 74.63% 

hingga 92.07%, pepejal terampai dikurangkan antara 79.25% hingga 88.2%, 

organisma kolifom dikurangkan sebanyak 67.44% hingga 96.09%, manakala BOD 

berkurangan antara 51.28% hingga 67.19%. 

 

 Kecekapan penuras kasar batu kapur bergantung kepada saiz medium dan 

kadar alir yang digunakan. Saiz medium yang lebih besar menghasilkan kecekapan 

penurasan yang kecil dan sebaliknya, manakala kadar alir yang lebih perlahan akan 

menghasilkan kecekapan penurasan yang tinggi dan sebaliknya. Kecekapan 

penurasan juga dapat ditingkatkan dengan menambah lapisan kotor yang menutupi 

medium penuras seperti “biofilm”. 
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 Secara amnya, penuras kasar adalah suatu kaedah teknologi olahan yang 

murah dan mampu menghasilkan air yang selamat untuk bekalan air yang mana ianya 

dapat mengurangkan tahap kekeruhan dan pepejal terampai daripada air sisa atau 

kumbahan dari suatu kawasan tertentu. Selain daripada itu, penuras kasar juga adalah 

suatu kaedah yang sesuai untuk olahan air sisa kerana ianya mampu mengurangkan 

organisma kolifom dan pepejal organik sebelum diguna semula. 
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A STUDY ON THE PERFORMANCE OF LIMESTONE ROUGHING FILTER 
FOR THE REMOVAL OF TURBIDITY, SUSPENDED SOLIDS, BIOCHEMICAL 
OXYGEN DEMAND AND COLIFORM ORGANISMS USING WASTEWATER 

FROM THE INLET OF DOMESTIC WASTEWATER OXIDATION POND 
 

ABSTRACT 
 
 

The original purpose of roughing filtration is to protect slow sand filters by 

reducing influent turbidity and suspended solids to a level that is effective for operation.  

Roughing filtration presents a promising method for improving raw water quality without 

using any chemicals. Roughing filter is not only used to protect slow sand filters but 

also for the treatment of wastewater before it is discharged to the environment or 

reused. 

 

 The aim of this research is to study the capabilities of limestone roughing filter 

for the removal of turbidity, suspended solids, biochemical oxygen demand and 

coliform organisms. This study involved four different batches of experiments. Each 

experiment used different sizes of limestone filter media, such as small size (1.91 mm), 

medium size (4.9 mm), large size (16.28 mm) and a combination of those filter media 

respectively. Wastewater from the influent of oxidation pond was used as water 

samples in this experiment and it was passed through the roughing filter at six different 

flow rates. Both unfiltered and filtered water samples were collected and tested at the 

Environmental Engineering Laboratory of Universiti Sains Malaysia. 

 

The experimental results indicate that roughing filter has an average turbidity 

removal of 74.6% to 92.1%, suspended solids removal of 79.3% to 88.2%, coliform 

organisms removal of 67.4% to 96.1% and BOD removal of 51.3% to 67.2%. 

 

The removal efficiency of limestone roughing filter depends on the size of filter 

media and applied filtration rates. The bigger size filter media gave the lower removal 



 xxvi

efficiency than smaller filter media. At lower flow rate, the removal efficiency was higher 

than at higher flow rate. Removal efficiency increased when the filter media was 

covered with dirty layer called biofilm. 

 

Overall, roughing filtration is an appropriate technology for the treatment of 

wastewater because it could reduce coliform organisms and organic solids from 

wastewater, before it is reused or discharged. 
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CHAPTER 1 
INTRODUCTION 

  

1.0 The Need for Treating Water and Wastewater 

Through out history, water has played an important role because of its use for 

drinking, bathing, washing dishes, laundry, cooking, watering the plants and so on. 

Therefore, water supply has become essential for the development of human 

civilization. Generally, water supply systems can be divided into two categories 

depending on the sources, namely surface and ground water supplies. The majority of 

sources for water supply are surface water. For example in Malaysia, rivers, streams 

and lakes provide more than 90% of the current Malaysian water needs (Sastry et al., 

1996). Wherever possible, a water source that provide good quality water should be 

one which does not require treatment. However, surface water and ground water are 

subjected to contamination from many sources, which could cause risk to human 

health. Therefore, treatment of water is required to remove those contaminants.  

 

As rainfall runs over the surface of structures and grounds, it may pick up 

various contaminants including soil particles, organic compounds and animal wastes 

and so on. Sometimes, it is required to receive some level of treatment before being 

discharged to the environment. Especially household wastewater or sewage includes 

disease-causing bacteria, infectious viruses, and household chemicals. If too much 

untreated sewage is released to the environment, dissolved oxygen level may drop and 

some species of fishes and other aquatic life may die. Therefore, wastewater also 

needs to be treated before it is discharged to the environment (Barnes et al., 1986). 

 

1.1 Roughing Filtration  

Filtration is one of the oldest and simplest methods of removing those 

contaminants. Generally, filtration methods include slow sand and rapid sand filtration. 
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The slow sand filters constructed in rural communities show that many of these filters 

have short filter run and produce turbidity in the excess of the WHO guideline values 

for drinking water (Ali, 1998). Reliable operation for sand filtration is possible when the 

raw water has low turbidity and low suspended solids (Graham, 1988). For this reason, 

when surface waters are highly turbid, ordinary sand filters could not be used 

effectively. Therefore, the roughing filters are used as pretreatment systems prior to 

sand filtration (Jayalath and Padmasiri, 1996). Furthermore, roughing filters could 

reduce organic matters from wastewater. Therefore, roughing filters can be used to 

polish wastewater before it is discharged to the environment. 

 

Although roughing filtration technology is used as pretreatment to remove 

turbidity and followed by slow sand filtration, it may be used without slow sand filtration 

if raw water originates from well protected catchment and if it is free from 

bacteriological contamination (Wegelin, 1996). Roughing filters make natural 

purification processes and no chemicals are necessary. Besides these filters could be 

built from local materials and manpower. These filters will work a long time without 

maintenance (Wegelin, 1986). Therefore, roughing filters are appropriate and 

economical for rural water supply schemes.  

 

1.2 Research Objectives 

The main objective of this research is to study and evaluate the removal of 

turbidity, suspended solids, biochemical oxygen demand and coliform organisms from 

wastewater using limestone roughing filter. This study also tried to relate between flow 

rate and removal efficiencies. Furthermore, this research also studies on the 

improvement ability of the filter due to ripening. 
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1.3 Thesis Summary 

The thesis is organized as follows: 

a) Chapter 1 provides an introduction of the thesis 

b)  Chapter 2 presents the literature review consisting of removal 

capabilities of     roughing filter, roughing filter theory and characteristics 

of water parameters. 

c)  Chapter 3 presents the procedures and methods of the research. 

d)  Chapter 4 describes the results and discussion of the experiments. 

e)  Chapter 5 is the conclusions and recommendations of the research. 

f)   The list of references is given at the end of this research and 

g)  Appendices. 
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CHAPTER 2 
LITERATURE REVIEW  

 

2.0  Importance of Water Treatment 

Water is never found pure in nature. Even rain water which is the nearest form 

of pure water may contain small amount of dusts and dissolved gases, such as oxygen 

and carbon dioxide taken from the air. Therefore, whatever may be the source water 

will have impurities. Thus, water needs to be treated. Water with standard quality is 

used for drinking, washing, industrial and agricultural activities and others. Water 

quality varies from source to source and quality requirement varies according to its 

usage (Sastry et al., 1996). In earlier times, man used water from natural sources. In 

order to get more or better quality of water, man moved to other sources. Man's earliest 

standards on water quality were such as free from mud, bad taste and odor. However, 

an increase in man-made water pollution, the development of technical and public 

health science, as well as the consumers' greater need for clean water contributed to 

the development of the water purification technology (Wegelin, 1996). 

 

Since 1990, the number of people without access to safe water source has 

remained constant at approximately 1.1 billion of whom approximately 2.2 million die 

due to water borne diseases each year. In developing countries, providing safe water 

for all is necessary (Mintz et al., 2001). The techniques, the quality of purified water 

and the composition and design of treatment works depend in each particular case on 

the quality of raw water and the desired standards of treated or product water. When 

several methods of water treatment are available, the best method or sequence of 

methods is chosen based on technical as well as economical analyses. Cost and local 

factors such as availability of construction materials also have influence on the 

selection and design of treatment units (Sastry et al., 1996). 
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2.1 Brief History of Water Treatment 

The old Hebrew, Sanskrit, and Greek writings revealed that impure water 

should be treated by boiling or by filtering through crude sand or charcoal. By 2000 

B.C., people in India have been known to have filtered water through charcoal and 

stored it in copper pots for later use. Figure 2.1 is the picture of earliest known 

clarifying apparatus, excavated from the walls of Egyptian tombs of 15th and 13th 

century. The Egyptian operators allowed impurities to settle out of the liquid, siphoned 

off the clarified fluid using wick siphons and, finally, stored it in pots for later use 

(Jesperson, 2005). 

 

 

Figure 2.1: Ancient Egyptian Clarifying Device (Source: Jesperson, 2005) 

 

Filtration is one of the methods for the treatment of water and it is one of the 

oldest, simplest and widely used methods. Simplicity of filtration makes the process 

attractive for use in small communities and developing nations. It is the process of 

removing suspended solids from raw water by passing the water through a permeable 

fabric or porous bed materials. For large quantity of water, sand is generally used as 

the filter medium, because it is inexpensive and effective (Weber-Shirk and Dick, 1994; 

Sastry et al., 1996).  
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Water treatment plants have successfully used sand filtration for many years. In 

general there are two types of filters which are known as slow sand filters and rapid 

sand filters. Slow sand filters consist of a layer of sand bed of 0.6-0.9 m depth (0.15 to 

1 mm diameter) supported on the bed of gravel 0.3-0.45m thick, (through which water 

is filtered at low flow rates (Graham, 1988; Sastry et al., 1996). Filtration rates are as 

much as fifty times slower than those of rapid sand filters; consequently slow sand 

filters require significantly more surface area in order to filter comparable volumes of 

water (Clark, 1997). Rapid sand filters consist of a layer of coarse sand 0.6 to 0.75 m 

thick (0.5 to 2 mm diameter) laid on the top, with a layer of graded gravel of 0.45 m 

thick below (Graham, 1988; Sastry et al., 1996). 

  

Slow Sand Filtration (SSF) is commonly used as an appropriate water treatment 

process and more suitable for developing countries. This method could significantly 

improve the physical and bacteriological qualities of water without the use of any 

chemicals. However, the filters are frequently blocked due to the accumulation of 

suspended solids and had caused unacceptable short filter runs. For SSF, 

pretreatment of the raw water is almost a necessity if the raw water has a turbidity of 

more than 50 NTU for period longer than a few weeks. Roughing filters are often used 

for pretreatment because of their effectiveness in removing suspended solids (Burch 

and Thomas, 1998).  

 

  Other types of filters have been used to meet raw water qualities at a 

pretreatment stage. Intake and dynamic filters are often applied as pretreatment before 

slow sand filters. These filters are usually cleaned hydraulically by fast filter drainage. 

Sequences of different prefiltration stages are frequently the most cost-effective option 

by applying the multi-barrier concept and, hence, providing an efficient way of 

improving the microbiological water quality (Wegelin, 1996). 
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2.2  Background on Roughing Filtration 

Filtration is a process for separating suspended impurities from water by 

passing through porous media. Particle removal is one of the main objectives of 

filtration (Sastry et al., 1996; Clasen, 1998). Water supply treatment plants generally 

use sand filters to produce clear water. Most sand filters have maintenance and 

operation problems due to lack of pre-treatment system for the reduction of turbidity 

and suspended solids. Gravel filtration has been used in water treatment since the 

early 1800s, when it was first used in Scotland to pre-treat water prior to sand filtration. 

Gravel filtration soon disappeared due to the advent of chemical and mechanical water 

treatment. However, gravel filtration reemerged in the 1970’s and 1980’s mainly in 

developing countries, because those roughing filters do not require sophisticated 

mechanical equipment or the use of chemicals (Cleary, 2005). Roughing filters are the 

most common type of pre-treatment system, which are used before slow sand filters in 

order to reduce the raw water turbidity and suspended solids (Wegelin, 1986; Jayalath 

and Padmasiri, 1996; Ali, 1998; Ingallinella et al., 1998). 

 

Therefore, roughing filtration technology is used as pretreatment to polish the 

raw water quality for the improvement of performance of slow sand filtration. But it may 

be used without slow sand filtration if raw water originates from well protected 

catchment area and having minor bacteriological contamination (Wegelin, 1996). 

Therefore in rural water supply systems roughing filtration becomes an appropriate 

technology. Besides that roughing filter can be maintained easily, does not need any 

chemicals, has long operational time and can be operated and maintained by trained 

local caretakers (Wegelin, 1986; Reed and Kapranis, 1998). 

  

Wastewater also needs to be treated because it contains bacteria and viruses, 

some of which can cause diseases to human. Besides, it also contains BOD sources 
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that can deplete oxygen in receiving water resulting in aquatic organisms becoming 

stressed, suffocate and die (Spellman and Drinan, 2000). Moreover, it contains high 

levels of nutrients that are toxic to fish and invertebrates and creates nuisance 

conditions in the receiving environment. To protect the environment, such kinds of 

materials have to be removed prior to the water being discharged back to the 

environment (Wikipedia, 2005). 

 

Roughing filters can improve the quality of wastewater after treatment. 

Roughing filters are intended to treat particularly strong or variable organic load. The 

design of the roughing filter allows high hydraulic loading and high flow rate. The 

resultant effluent is usually within the normal range for conventional treatment 

processes (Wikipedia, 2005) 

 

2.3 Classification of Filter 

The two criteria for filter classification are size of filter media and rate of 

filtration. Rapid sand filter and slow sand filter are different from intake filter and 

roughing filter according to their filter media size. The coarse filter media and the low 

flow rates applied to roughing filtration. Table 2.1 elucidates the differences of filter 

material sizes and flow rates of each filter. 

 

Table 2.1   Classification of Filters (Source: Graham, 1988) 

Characteristics intake 
filtration 

roughing 
filtration 

rapid sand 
filtration 

Slow sand 
filtration 

filter material 
size (mm) 

6 - 40 4 - 25 0.5 - 2 0.15 - 1 

filtration  
rate (m/h) 

2 - 5 0.3 - 1.5 5 - 15 0.1 - 0.2 
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2.4  Types of Roughing Filters 

There are various types of roughing filters such as downflow roughing filters 

(DRF), horizontal flow roughing filters (HRF) and upflow roughing filters (URF). The 

layouts of different roughing filters are shown in Figure 2.2. The selection criteria for 

types of roughing filtration are based upon raw water quality such as turbidity, 

suspended solids, color, iron and fecal coliform levels (Wegelin, 1996; Wolter and 

Mwiinga, 1997). 

 

 

Figure 2.2: Types of Roughing Filters (Source: Wegelin, 1996) 

 

 Downflow roughing filter consists of 3 or 4 individual filter boxes, each box is 

filled with filter media, with the coarsest media in the first compartment and the finest 

media in the last compartment. Water flows downward through each media 

compartment. 

 

  Horizontal flow roughing filtration consists of coarse gravel filter media arranged 

in series from coarse to fine sizes in the direction of flow. It allows the treatment of 

water with considerable contamination higher than the levels of slow sand filter. For this 

reason roughing filters are often used before slow sand filters. Roughing filters have 

turbidity removals ranging from 60 to 90%. Additionally it could achieve similar 
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reductions of coliform organisms without using any chemicals (Wegelin, 1986; WHO, 

2004). The advantage of horizontal flow roughing filter is its extended bed lengths and 

solid storage capacity, resulting less cleaning frequency. The disadvantage includes 

large space requirement. 

 

 Upflow roughing filter can generally be divided into two types, upflow roughing 

filter in series and upflow roughing filter in layers. An upflow roughing filter in series is 

similar to the downflow roughing filter. The difference is that water will flow upward 

through each media compartment. Although upflow and downflow roughing filters 

perform similarly, upflow roughing filters are recommended for ease of cleaning 

(Wegelin, 1996). 

 

 Upflow roughing filter in layer consist of one filter box, with multiple layers of 

filter media, ranging from coarse media at the bottom to fine at the top and water flows 

in upward direction. The advantage of this filter is that it has much lower space and 

cost requirement than other types of roughing filters. 

 

 In general, optimal treatment in roughing filters can be achieved by using more 

individual compartments. That means, a 3 stage roughing filter is expected to perform 

better than a 2 stage roughing filter. Upflow roughing filters are more efficient in solid 

removal than other types of roughing filters (Cleary, 2005). However, since vertical flow 

(upflow or downflow) roughing filters have a smaller filter depth compared to horizontal 

flow roughing filters, it is recommended that vertical flow filters should be limited to 

treating raw water with turbidities less than 150 NTU (Wegelin,1996).  

 

2.5 Filter Materials 

Graham (1988) described that filter material originally used in the roughing filter 

was gravel, later it was replaced by any inert, clean, insoluble and mechanically 
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resistant material. Wegelin (1996) described that the filter material should have a large 

specific surface to enhance the sedimentation process in the roughing filter, and high 

porosity to allow the accumulation of the separated solids. According to Wegelin 

(1996), neither the roughness nor the shape or structure of the filter material have a 

great influence on the filter efficiency. Graham (1988) suggested that on the practical 

side, economic considerations besides availability of appropriate material are important 

factors in the selection of the filter media.  

 

As filter media, gravel from a river bed or from the ground, broken stones or 

rocks from a quarry, broken burnt clay bricks, plastic material either as chips or 

modules, burnt charcoal and  coconut fibre were used (Wegelin, 1996).  In horizontal 

flow roughing filtration project implemented in Java, Indonesia, the coarse gravel 

fraction has been replaced by “injuk”, a local palm fibre. Apparently, this fibre does not 

release taste or odour to the water. This interesting fibre might be a potential filter 

material due to its large specific surface area and high porosity (90-92%) which 

considerably increase retention time of the water in the filter and enhance filter 

efficiency (Graham, 1988). 

 

2.6  Cleaning of Roughing Filter 

 Roughing filters need to be cleaned for the purpose of removing accumulated 

particulate matter and replenishing the solid storage capacity of the filter. Cleaning can 

recover initial head loss (Cleary, 2005). Pacini et al. (2005) found that the cleaning of 

roughing filter with a final headloss of 22 cm could be recovered to 15 cm. The 

frequency of cleaning is dependent on the loading of particulate matters and biological 

activity in the filter (Wegelin, 1996). 
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2.7  Roughing Filter for Wastewater Reuse 

The wastewater produced from Mexico City was transported to the valley of 

Mezquital, where it was used, to irrigate approximately 90,000 ha of agricultural lands. 

Even though the reuse of wastewater had increased the productivity of maize, oaths, 

alfalfa, sorghum and wheat between 71% and 150%, on the other side a corresponding 

increased in gastro-intestinal illness by helminthes infection, had been reported. 

Children from 0-4 years of age had been shown to suffer up to 16 times the normal rate 

of such infection. Therefore, to protect the health of agricultural workers, and their 

families the WHO has adopted the regulation that all types of agricultural irrigation 

water should contain less than 1000 fecal coliforms (MPN)/100ml (Jimenez et al., 

2000). To meet that requirement, Mexican National Water Commission opted to use 

primary treatment by filtration. In their research, the model of roughing filter was used. 

According to results presented, the roughing filtration system was able to consistently 

produce effluents with fecal coliform less than 1000 (MPN)/100ml with 68% removal 

(Jimenez et al., 2000). 

 

 Application of treated wastewater for irrigation has become a common practice 

worldwide and a centre of attention to scientists and technologists in developing 

countries (Hamoda et al., 2004; Lubello et al., 2004).  One of the treatment techniques 

which have been intensely scrutinized is the wastewater stabilization pond systems. 

However that technique has been found costly to construct and expensive to operate 

and maintain. Roughing filtration was the option for low cost and appropriate 

technology to treat wastewater. Combination of roughing filter and constructed wetland 

could remove total suspended solid of 89.35%, BOD5 of 84.47% and fecal coliform of 

99.99 % (Kimwaga et al., 2004).  
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2.8 Roughing Filter Theory 

Roughing filtration is more of an art than a science. Numerous researchers 

have tried to describe the filtration mechanisms in mathematical models applying either 

the phenomenological or the trajectory approach. In the first approach important 

variables, such as filtration rate, filter size, depth and porosity are used to describe filter 

efficiency. In the second approach it focuses more on transport mechanism of the 

particles (Wegelin, 1996). 

 

While the contaminated water passes through the filter, microbes and other 

particles are removed. Although the removal mechanisms are not well understood, they 

are believed to be a combination of biological, physical and chemical mechanisms. 

Specific mechanisms may include biological action, attachment of microbes to filter 

media by electrochemical force and physical straining (WHO, 2004). 

 

2.8.1 Flow Rate and Head Loss Control 

Flow rate is an important factor affecting removal in roughing filter. In particular, 

sedimentation and biological mechanisms depend on the filtration rates (Cleary, 2005). 

Lower filtration rates allow less turbulent conditions in the filter media interstices and 

facilitate gravitational sedimentation, reduces fluid shear on the deposited particles, 

and increase the hydraulic retention time in biologically active regions of the filter. 

 

The main objective of roughing filter is to reduce the amount of solid matter 

from the raw water. Filters are usually operated at the filtration rate of up to 1.5 m3/m2/h 

and size of filter material ranged between 4 mm and 20 mm. Head loss in a roughing 

filter is usually small. Head loss can be recorded as water level difference between the 
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inlet and outlet water level (Wegelin, 1996).  The head loss in a filter can be calculated 

as; 

4

2
D

gdf
VCL07.1h

ψ
=                                                                                                       (2.1) 

 

Where  h    = head loss (m) 

 L = filter depth (m)  

CD  = (24/Re) + (3/√Re) + 0.34 (the drag coefficient) 

Re   = Vd/μ  (dimensionless Reynolds Number) 

μ   = kinematics viscosity of fluid (m2/s) 

d   = particle diameter (m) 

Ψ   = dimensionless shape or sphericity factor (<1) 

g = gravitational constant (m2/s) 

V   = flow rate (m3/m2/h) 

f     = porosity the ratio of (volume voids)/(total bed volume) 

 

The head loss is important in determining the filter efficiency. The filters should 

be cleaned when the filter units reach an unacceptably high head loss (Gray and 

Osborne, 1995). Although conventionally slow sand filters need to be frequently 

cleaned by complicated mechanical equipments, a well designed roughing filter will 

work for several months between two subsequent cleanings (Wegelin, 1986). The 

development of head loss in the filter is small during the initial period of operation, it 

later increases with most of the head loss occurring on the top dirty surface of the filter 

media, known as ripening (Farooq and Al-Yousef, 1993). 

 

2.8.2 Removal Mechanisms of Roughing Filter 

Water entering roughing filter may include small suspended materials such as 

leaves, small stones and even debris of wastes. Screening process could remove 
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suspended particles which are larger than the pore size of filter media. Figure 2.3 

illustrates the screening mechanisms in roughing filter. The smallest pore size is 

roughly taken as one sixth of gravel size. Thus, it is feasible that a 2 mm diameter 

media could strain out particles larger than 330 μm in size. Since most suspended 

particles travelling in water are not larger than pore size of the media, it could not be 

removed by screening mechanisms. However, the pore sizes of the media 

progressively decrease due to particle deposition and biofilm growth. Thus the 

enhanced screening has been attributed to previously removed particles in roughing 

filters. Therefore, screening becomes more effective as the pore size of medium 

decreases and thus more effective in capturing particles that are even smaller in size 

than the initial pore size (Weber-Shirk and Dick, 1994; Wegelin, 1996). 

 

 

Figure 2.3: Screening of Particle on Filter Media (Source: Wegelin, 1996) 

 

Sedimentation is the main solid separation process in roughing filters. 

Sedimentation occurs when the mass density of particle is greater than that of water 

and its settling velocity causes the particle to deviate from the flow path and settle onto 

the media surface. Thus, sedimentation is probably more important for suspended 

particulates removal. Figure 2.4 illustrates the principles of sedimentations on the filter 

media. To achieve adequate solid removal efficiencies, roughing filters need to be 

operated under laminar flow conditions (Wegelin, 1996). 
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Figure 2.4: Sedimentations on Filter Media (Source: Wegelin, 1996) 

The roughing filter can be considered as a sedimentation basin, where the filter 

media provides a large surface area and short settling distances for particle settling 

(Wegelin, 1996). In conventional sedimentation basins, particles have to reach a 

settling distance of 1 to 3 meters, whereas in roughing filters, the settling distance to 

the gravel surface is only a few millimeters. Therefore, solid particles flowing through 

the filter touch and deposit on media surface within a few millimeters. Therefore 

roughing filtration is more effective process for particle removal than plain 

sedimentation. Particles deposit onto media grains in dome-like formations (Wegelin, 

1986). The most particle accumulation occurs in the bottom of the filter (Cleary, 2005). 

 

Sedimentation of particles in the voids of filter media is part of the treatment 

processes for the removal of suspended particles in roughing filter. The process is 

known as settling or clarification. The efficiency of this process is measured by turbidity 

removal. It depends on size of particle and settling rate. Sedimentation is a treatment 

process in which the velocity of the water is lowered below the suspension velocity and 

the suspended particles settle out of the water due to gravity. The settling velocity is 

influenced by mass density, size and shape of particle, as well as by viscosity and 

hydraulic conditions of water. There is basic formula to calculate settlement velocity for 

a spherical particle by using Stoke’s law and it is given as: 
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Where: 

v  = settling velocity in (cm/s) 

g  = acceleration due to gravity in (cm/s2) 

d  = diameter of particle in (cm) 

ρρ = particle density in (g/cm3) 

ρw = fluid density in (g/cm3) and 

μ   = fluid viscosity in (g/cm/s) 

 

Stoke’s Law gives the relationship between the settling rate, particle size and 

density. From the equation, for all other parameters being constant, dense particles 

settle faster, larger particles settle faster, and more viscous water causes particles to 

settle slower. 

 

Interception is the process which enhances particle removal in the filter. 

Interception occurs when deposited particles accumulate on the filter media that 

gradually reduce the pore size. Figure 2.5 elucidates the principle of accumulation of 

particles due to interception effects. Suspended particles travelling in roughing filter are 

obstructed to continue forward due to reduction of pore size. Therefore particles will 

collide with each others and are packed like sardines and lose energy to go forward. 

Finally they will deposit on filter medium. Thus, removal efficiency becomes higher 

(Wegelin, 1996). 
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Figure 2.5: Interception on Filter Media (Source: Wegelin, 1996) 

 

The combination of mass attraction and electrostatic forces generally enable 

the particles to keep in contact with other solids particles and the filter materials. These 

two forces could settle particles in a short distance on the grain surface. For these 

reasons these two forces are important in roughing filters (Wegelin, 1996). 

 

Biological activity also develops in the filter when particles of organic origins are 

deposited on the filter material. Bacteria and other microorganisms will form a sticky 

layer around the gravel. Particles travelling in water readily adhere to this organic 

material and are finally retained in the filter (Wegelin, 1996). The bacteria and 

microorganisms covered on the filter media use the pollutions in the waste water as 

their food source and convert it to carbon dioxide (Moye, 2004). The development of a 

bacterial biofilm on the filter media improves the removal ability of the filter. This 

increased removal efficiency occurs for all particle sizes initially, but eventually only 

continues for small sizes and possibly becoming negative for larger particles. Captured 

particles assist in the collection of subsequent particles by partially blocking and 

restricting passage through the pores. When more time elapses between collisions of 

particles on the media surface and those in solution, the first collected particle may 

migrate to the bottom of the grain and greatly reduce the opportunity for interaction with 

the next incoming particle. Thus, the removal efficiency is greater and ripening is 
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quicker when the influent concentration is greater (Clark et al., 1992; Cole, 1998; 

Mwiinga et al., 2004b).  

 

2.8.3 Transformation Mechanisms in Roughing Filter 

With the passage of time, the new particles settle on the top of previously 

settled particles and turn it into a firm structure of accumulated material. Therefore it is 

no longer exposed with fresh water. Then biochemical oxidation starts to convert 

organic matter into small aggregates, carbon dioxide and inorganic salts. Turbidity and 

color also undergo changes, while iron and manganese traces are removed (Wegelin, 

1996). 

 

Microbiological activity also plays an important role in roughing filters. 

Microorganisms such as fecal coliforms travel together with suspended particles before 

entering a roughing filter. When they entered the roughing filter they also remained 

together as particles settled on the filter material. As the time passes by, fecal coliforms 

start to starve, are attacked by other microorganisms and finally die (Wegelin, 1996; 

Sastry et al., 1996; Pacini, 2003). 

 

2.9  Factors Affecting Removal in Roughing Filters 

The major parameters that affected suspended solids removal by roughing 

filters were filter media size, filtration rate and bed depth. Generally, removal efficiency 

increases with decreasing filter media size, decreasing filtration rate and increasing 

filter bed depth (Cleary, 2005).  

 

The filter media size is an important variable. An increased efficiency in the 

treatment has been observed with decreasing filter media size, which indicates the 

importance of straining (Wegelin, 1996). Higher removals can be obtained due to 
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smaller interstices between smaller media, as well as the larger surface area available, 

which allow more adsorption. A smaller size of filter media will have a larger total 

surface area available for biofilms to grow on, and therefore more biofilm can be 

exposed to raw water. Therefore, removal efficiency increases. 

 

 The empty space or pore size within a filter medium is important for 

determining the right filter size and efficiency. Pore size is a measure of how much of 

the medium consists of empty space. The filter efficiency depends on the ratio of filter 

media surface area to its volume, which means total specific surface area (SSA) per 

cubic metre. Despite this enormous SSA, sand would make a poor filter medium 

because the small particle size would soon lead to blockages. Because of the dense 

packing, any flow through the sand would be very slow. Therefore despite its massive 

surface area, the volume of water that could be treated per hour would actually be quite 

small (FishDoc, 2004). For a medium such as gravel, it is larger in size and less in SSA 

that would make it less prone to blocking. Special media such as filter matting, plastic 

or sintered glass, have both a large SSA and a generous void space. In fact, many of 

them are more than 90% void or empty space. This makes blockage almost impossible 

(FishDoc, 2004). 

  

Filtration rate also has a significant influence on the particle removal. Many 

reports described that good removals in the roughing filters were achieved at low 

filtration rates. It is attributable that low filtration rates give support to retain particles 

that are gravitationally deposited to the upper side of filter media. It is important to have 

laminar flow conditions. In Figure 2.6, Wegelin (1996) revealed that filtration rate 

greatly influence the filter efficiency. Flow conditions are described by Reynolds 

number. At Reynolds number less than 10, laminar flow can be expected. Removal 

efficiency increases with decreasing Reynolds Number (Re). According to Figure 2.6, 

turbidity removal was 40% at a Re of 8, whereas removal was greater than 80% at Re 
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of less than 3. Wegelin (1986) described that at increased filtration rates, coarse 

particles penetrated deeper into the bed, clogged the finer gravel media, and re-

suspended pre-deposited particles resulting in decrease in filter efficiency.  

 

 

Figure. 2.6: Roughing Filter Efficiency in Correlation to flow conditions (Source: 

Wegelin, 1996) 

 

Filter bed depth also affects efficiency of roughing filters. While particles 

deposits on the filter bed, pore spaces becomes smaller. As suspended particles, 

accumulate on a filter bed, the pressure drop through the filter will be increased 

(Culligan, 2005). Operating with high-pressure drop may increase the chance of 

detachment and penetration of detached solids will move deeper into the filter bed. 

Therefore, increasing filter bed’s depth will improve overall performance and coliform 

removal. On the contrary, Reed and Kapranis (1998) described that there was no 

significant difference between two bed depths of 0.75 and 1.0 m. Although they did not 
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discuss in detail, the reason might be that they used large size filter media in the 

experiment. 

 

 Lin et al., (2006) indicated that improved cumulative removal efficiencies are 

typically correlated to longer filter lengths at the expense of pressure drop. Without 

affecting the removal efficiency, the filter length and thus the pressure drop can be 

reduced with the use of multiple media sizes, as illustrated in Figure 2.7. The larger 

solids particles are removed by coarse media, medium size filter media can polish and 

the finest media could remove the remaining traces of solid matters (Wegelin, 1996). 

 

 

Figure 2. 7 : Significance of Turbidity Reduction along Roughing Filter Length (Source : 

Wegelin, 1996) 

 

Removal of particulate matters in roughing filter is also dependent on raw water 

characteristics. Thus, it is important to study the characteristics of the given source of 
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water in designing a roughing filter. Wegelin (1996) revealed that roughing filters were 

good for removal of major solid particles and for highly turbid waters. Clark (1997) 

described filtration performance depends on the source of water quality (types and 

concentration of natural organic matter and suspended particles) and viscosity changes 

in raw water would affect filter’s performance. 

 

Beside, the particle sizes and nature (organic and inorganic) also have a 

significant influence on its removal in roughing filter (Wegelin, 1996). Figure 2.8 

(Wegener, 2003) strongly supported that suspended solid removal was less than 50% 

at the particle size of 5-10 μm and almost 100 % at particle size of 50-100 μm in the 

trickling filter using low density plastic filter media. 

 

 

Figure 2.8: Percentage Removal Versus Particle Size (Source : Wegener, 2003)  

 

 In summary, performance of roughing filter depends on influent solids 

concentration, particle size, filter media size, bed depth and filtration rate. Roughing 

filter design becomes more of an art than science when attempting to determine the 

optimal combination of media size and bed depth for particular source of water (Clark 

et al., 1997; Wegelin, 1996).  
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2.10 Removal Capabilities of Roughing Filter 

 In the following section, removal capabilities of roughing filtration studies are 

presented. The major parameters discussed in this section are removal of turbidity, 

suspended solids, total coliform and biochemical oxygen demand. The following 

section is a performance comparison of previous researches. 

 

2.10.1 Turbidity Removal in Roughing Filter 

Roughing filters could achieve peak turbidity removal ranging from 60% to 90%. 

Generally, the more turbid the water, the greater in reduction could be achieved (WHO, 

2004). Roughing filters could remove clay particles more effectively when the filter was 

ripen with algae cells (WHO, 2004). Rooklidge et al. (2004) found that turbidity removal 

using limestone filter media with average porosity of 0.46 was 79%.  

  

 Mahvi et al. (2004) revealed that the performance of horizontal flow roughing 

filter could improve by applying coagulant prior to filtration. They have shown that a 

horizontal flow roughing filter using three different size of 12-18 mm, 8-12 mm and 4-8 

mm filter media with flow rate of 2 m/h, has produced good effluent quality, less than 2 

NTU from raw water quality of 200-400 NTU. Culligan (2005) described that chemical 

pretreatment could increase filtered water clarity, measured in NTU in the range of 

93%-95% removal. WHO (2004) also supported that addition of alum before treatment 

with a horizontal roughing filter could improve the filter’s performance for turbidity, 

color, organic carbon, head loss and filter run time. Mwiinga et al. (2004a) also 

supported that adding lower coagulation dose by gravity could treat higher turbidity raw 

water and enhanced turbidity removal in upflow gravel roughing filters. However, none 

of them describes the effect of the variation in dosage amount of coagulant on the filter 

performance. 
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