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Abstriu:t- A new group e1:plidt metho~ the E~plidt

Decoupled Group (EDG) method, derived from the rotated
finite discretisation formula [8], 'Was formulated in solving
a coupled system of elliptic equations which represents the
two-dimensional steady state Navier-Stolres equations. The
method was found to be more efficient compared to the
iterative schemes based on the centred five-point difference
formulae and the Alternating Group ExpHcit scheme due
to Sahimi and Evans ( [2], [4], [5J, [12J). However, the new
scheme gets to be divergent for very large Reynold numbers
due to the difficulty with the traditional
SuccessiveOverRelaxation (SOR)-type iter'~dive procedure.
In this work, we apply the multigrid technique to this new
group iterative scheme in solving the steady-state Navier­
Stokes equation as a way to further improve the
performance of this me¢hod. Severn) e1:perimental work
comparing its performance with other schemes based on
the com.mon centred difference formuAa wUl be reported

Index terms-El:pUcit Decoupled Group method, mul£igrid,
Navier-Stokes equations

1. INTRODUCTION

Consider the following coupled system of partial
differential equations:

'12
'11 = - OJ (1)

'12
OJ +Re('IIxaJy -'IIyaJx) = - c (2)

where x,yEQ = (O,L)x(O,L) with a set of conditions for
'II and OJ prescribed at the boundary. Here, c and Re
(the Reynolds number) are non-negative constants and
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V 2 =--2+--2 is the usual Laplacian operator. Note
ax By

that if Re * 0, then the coupled system represents the
two dimensional steady state Navier-Stokes equations
which describe the basic viscous, incompressible flow
problems. fJ/ and OJ are known respectively as the
stream and vorticity functions. Suppose we impose the
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boundary conditions lIf == 0 and () : = 0, where 1] is the
iJTT

normal to the boundaiy in of Q, then our problem
amounts to solving (1) and (2) successively with If = 0
and (j) = 0 respectively along in. The aim of this paper
is to investigate the versatility pf the four-point EDG
method by incoorporating the multigrid technique into
the scheme, in solving this fundamental problem in fluid
dynamics. A brief discussion of the finite difference
approximations for (1)-(2) with the specified boundary
conditions will be given in Section II. In Section ill, the
development of the EDG scheme for the vorticity
equation (2) will be presented. The derivation of the
algorithm for the stream solutions will then readily
follow. Section IV describes the multigrid algorithm for
solving the coupled system (l)-(2) by incorporating the
four-point EDG in its iteration scheme, followed by the
numerical eh1Jerirnents Section V, and the concluding
remarks is presented in Section VI.

II. FINITE DIFFERENCE APPROXItv'iATIONS

Let us assume that a rectangular grid in the (x,y)-plane
with grid spacing h = Lin in both directions and
Xi = ill, Yj = jh, i,j = O;l,... ,n are used. Observe that
if m is knovvn, then (1) is a linear elliptic equation in lIf,
and if lj/ is know~ then (2) is a linear elliptic equation
in m. Suppose !fI(O) and m(O) are the initial guesses, we
can use the 0)(0) in (1) to produce fJ/(I). Use this V1(1) in

(2) to produce 0)(1). Then use this ail) in (1) to produce
lj/(2), and this '11(2) to produce 0)(2) and so on. This

indicates that at the grid point (Xi' Yj) the foHowing

alternating sequences of outer iterates can be generated
[9]:

Fig. 1 : Generation of outer iterates·



The finite difference approximatioris of equations (1) and
(2) using the centred difference formula at the poi)}t
(Xi) Yj) will result in the follmvillg:
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The computational molecule of Eq. (7) and (8) are given
in Figs. 2 and Fig. 3 respectively:
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here u= Re/4 and ij =1~2)... ,n-1. AnoLher type of
approximation Llat can represent the differential
equations (1) and (2) is the cross orientation [6] which
can be obtained by rotating' the i-plane axis and the j­
plane axis clockwise by 45°. With this displacement,
equations (3) and (4) become (5) and (6) respectively:

Clearly it can be seen that the application of (5)-(6) will
result in a large and sparse system with the coefficient
matrix being a block matrix depending on the ordering
of points taken.

Ill. TIm FOUR POINT EDG FORMULATION

Similar to the single elliptic case [1], we assume that the
solution at any group of four points on the solution
domain is solved using the rotated equation (6). This
will result in a (4x4) system of equations

Fig. 2 : Computational molecule ofEq. (7)
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Fig. 3 : Computational molecule ofEq. (8)
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Note that for both equations, iterative evaluation of
points from each group requires contribution of points
only from the same group. TIus means the iteration of
points for the vorticity solutions from Eq. (7) can be
carried out by only involving points of type • only, while
the iterations arised from Eq. (8) can be implemented by
involving points of type II only. Due to this
independency) the iterations can be carried out on either
one of the two type ofpoints, which means we can e~-pect

the execution time to be reduced by nearly half since
iterations are done on only about half of the total nodal
points.

which leads to a decoupled system of (2}."2) equations
\\'hose explicit forms are given by

In summary, the four·point EDG scheme corresponds to
iterating the solutions at approximately halfof the points
in the solution domain using 'either (7) or (8) until

. I (k+J) _ ,,(k)Iconvergence is achieved., i.e., when cqj lqj::; G ;



here G is tlie convergence criterion used. If convergence
is achieved, evaluate the solutions at the rest of the nodal
points (points of opposite tYpe) using the centred
difference fonnula (4). Otherwise, re!Y'"....at the iteration
cycle. In the case of n even, the EDGR scheme is
adopted, i.e., we aSSlll11e the uncoupled points are ·on the
right most and top most grid iines. Suppose Eq. (7) is
chosen to be used in the iterative evaluation of points?
these uncotlpled points must be calculated· after the
iterations on the points • have converged. The
uncoupled points of the same type are calculated using
the rotated formula of Eq. (6). Only after these points
have been calculated, the remaining points of the
uncol;lpled group (of the opposite type) are evaluated
using the centred difference formula (4).

With boundaIy conditions specified as before, an
algorithm can now be fonnulated to solve the coupled
system (1) and (2):

Step 1 Choose 11 and construct the number of
nodal points as usual for an elliptic problem. Set
,,/0) = (jJ.~O) = 0 = outer ,,/0) = outer OJ.~O) as initial
r 1J 1J - r IJ - 1J

approximations for the outer iteration.

Step 2 Generate sequences If/(k+l) and m(k+I)

on n by the alternating procedure described before for k
= 0,1,2,...

Solve the stream-function equation (5) by
performing the four-point EDG iterative
procedure for a prescribed tolerance e. (Use
the same Eq. (6) but replace (j) with If!, c ij with

~j' and u= 0 .)

Solve the vorticity equation (6) by perfonning
the four-point EDG iterative procedure for a
prescribed tolerance 8 . (Here, use the
converged stream-function just obtained
previously in the place of If!, and ·u = Re / 4.)

Store the converged values in outer ,tim) and
- riJ

• (m) • 1m outer_lt1j respectIve y.

Step 3 Check the convergence of the outer
iteration process over the whole mesh points for a
prescribed convergence criterion 0 , i.e., checl( whether
the following condition is achieved,

1£ convergence is achieved, the numerical solution of the
given problem is given by the generated outer_ V/ijm+l)

and outer_ m;,jm+l). Otherwise, go back to Step 2.

IV.. MOLTIGRID IMPLEMENTATION

A. Multigrid EDG Smoother On Elliptic Equation

Since the work of tIackbusch [10], multigrid methods
have been widely applied to tIle fluqIerical solution of
plli-tial differential equations. The application of
multigrid BDG technique on Poisson problem was
introduced by Mohamed and Abdullah [11]. All the

mesh points in solution dolnain n h are labeled in red 0
and biack 0 points as in Fig. 4(a) and (b) resuectivelv.
For the ca'se when n is even (for example n = 8~), the ~d
poin~ group ne~1: to the boundaries are further divided
into two groups i.e. red points labeled • and O.

Fig. 4a The circled (red) points

Fig. 4b The square (black) points

The red points (points. and 0) are iterated until tbey
converge, based on a certain convergence criteria. The
paired red points of type 0 will be iterated using the
stencil (7) whilst the red points of type (the red points
next to the boundaries) will be iterated using the rotated
difference stencil (6). After convergence is achieved, the
solutions at the black points ( 0 ) will be evaluated
directly using the centred difference stencil (4).

This means that in using the multigrid EDG method,
only the circled mesh points (points and 0) will
undergo the process of iterative evaluation using either
the Equation (7) or (6). One observation is that the
iterative evaluation on the circled points will require
points of the same type. The Salne goes to points of type












