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Abstract— A new group explicit method, the Explicit
Decoupled Group (EDG) method, derived from the rotated
finite discretisation formula [8], was formulated in solving
a coupled system of elliptic equations which represents the
two-dimensional steady state Navier-Stokes equations. The
method was found te be more efficient compared to the
iterative schemes based on the centred five-point difference
formulae and the Alternating Group Explicit scheme due
to Sahimi and Evans ( [2], [4], [5], [12] ). However, the new
scheme gets to be divergent for very large Reynold numbers
due to the difficulty with the traditional
SuccessiveOverRelaxation (SOR)-type iterative procedure.
In this work, we apply the muitigrid technique to this new
group iterative scheme in solving the steady-state Navier-
Stokes equation as a way to further improve the
performance of this method. Several experimental work
comparing its performance with other schemes based on
the common centred difference formula will be reported.

Index terms—Explicit Decoupled Group method, multigrid,
Navier-Stokes equations

I. INTRODUCTION

Consider the following coupled system of partial
differential equations:

Vi =-0 1)
Vo +Re(y, @, -yyo,)=-C )
where x,ycQ = (0,L)x(0,L) with a set of conditions for
v and @ prescribed at the boundary. Here, ¢ and Re
(the Reynolds number) are non-negative constants and
52 0—,2
Vi=——+
ax® By
that if Re # 0, then the coupled system represents the
two dimensional steady state Navier-Stokes equations
which describe the basic viscous, incompressible flow
problems. yw and @ are known respectively as the
stream and vorticity functions. Suppose we impose the

;- is the usual Laplacian operator. Note

¥ The authors are staff of School of Mathematical
Sciences, Universiti Sains Malaysia, 11800 Penang,
Malaysia.

2941

52‘/

2

boundary conditions y = 0 and =@, where n is the
normal to the boundary & of Q, then our problem
amounts to solving (1) and (2) successively with y = 0
and @ = 0 respectively along &2. The aim of this paper
is to investigate the versatility of the four-point EDG
method by incoorporating the multigrid technique into
the scheme, in solving this fundamental problem in fluid
dynamics. A brief discussion of the finite difference
approximations for (1)-(2) with the specified boundary
conditions will be given in Section II. In Section III, the
development of the EDG scheme for the wvorticity
equation (2) will be presented. The derivation of the
algorithm for the stream solutions will then readily
follow. Section IV describes the multigrid algorithm for
solving the coupled system (1)-(2) by incorporating the
four-point EDG in its iteration scheme, followed by the
numerical experiments Section V, and the concluding
remarks is presented in Section VI. :

II. FINITE DIFFERENCE APPROXIMATIONS

Let us assume that a rectangular grid in the (xy)-plane
with grid spacing h = L/n in both directions and
xi=ih,y; = jh,i,j = 0,1,..,n are used. QCbserve that
if @ is known, then (1) is a linear elliptic equation in y/,
and if y is known, then (2) is a linear elliptic equation
in @. Suppose y® and @ are the initial guesses, we
can use the @ in (1) to produce ™. Use this ' in
(2) to produce . Then use this » in (1) to produce
w®, and this y® to produce »® and so on. This
indicates that at the grid point (x;,y i) the following
aiternating sequences of outer iterates can be generated
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Fig. 1 : Generation of outer iterates’



The finite difference approximations of equations (1) and
(2) using the centred difference formula at the point
(x;,y;) will result in the following:
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Jo-of e - sl -1 ol - s = e,

here o= Re/4 and ij =1.2,..n-1. Another type of
approximation that can represent the differential
equations (1) and (2) is the cross orientation [6] which
can be obtained by rotating the i-plane axis and the j-
plane axis clockwise by 45°. With this displacement,
equations (3) and {4) become (5) and (6) respectively:

k+1 k+1 k+1 ®+1) ) _ A2 (K
—yih = v+ 4 - D - Wl = 2%
(5)
1= ol - Sl — [+ otwlii - w208 + o™
1= otpdiih - w0 R - 1+ o(wS ) - v )kl =207
6)

Clearly it can be seen that the application of (5)-(6) will
result in a large and sparse system with the coefficient
matrix being a block matrix depending on the ordering
of points taken.

III. THE FOUR POINT EDG FORMULATION

Similar to the single elliptic case [1], we assume that the
solution at any group of four points on the solution
domain is solved using the rofated equation (6). This
will result in a (4x4) system of eguations
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which leads to a decoupled system of (2x2) egquations
whose explicit forms are given by

By ] o, 1 :
[a'l.m 16 - [(1- 6(Winio1 = Yirr, j1 X1 + G(Wigea = Wiz j))]

r 4 1'5('1’1'-1'.,'41 - 'Vm,j.l)“: l'hsx,' ]
X{l + O’(Vfi,,’o: - 'l/uzj) 4 l'hsm.,u
............ )
and
[aﬂ'j] L. 1
5'.)*" 16-[(1 - o(Wipr - Wis o)X + G(Wary + Wl*\..[ﬂ))]
){ 4 1-o(¥ 1 - m+;,.1)lrbi.n,,] i
1+ oYy = Wi gez) 4 rhs e .
............. (8)

The computational molecule of Eq. (7) and (8) are given
in Figs. 2 and Fig. 3 respectively:
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Fig. 2 : Computational molecule of Eq. (7)
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Fig. 3 : Computational molecule of Eq. (8)
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Note that for both equations, iterative evaluation of
points from each group requires contribution of points
only from the same group. This means the iteration of
points for the vorticity solutions from Eq. (7) can be
carried out by only involving points of type © only, while
the iterations arised from Eq. (8) can be implemented by
involving points of type B only. Due to this
independency, the iterations can be carried out on either
one of the two type of points, which means we can expect
the execution time to be reduced by nearly half since
iterations are done on only about ialf of the total nodal
points.

In summary, the four-point EDG scheme corresponds to
iterating the solutions at approximately salf of the points
in the solution domgin using either (7) or (8) until

4 : : k+1 )
convergence is achieved, i.e., when }m‘j B —a:lﬁ.“ ’ <e:



here ¢ is thie convergence criterion used. If convergence
is achieved, evaluate the solutions at the rest of the nodal
points (points of opposite type) using the centred
difference formula (4). Otherwise, repeat the iteration
cycle. In the case of n even, the EDGR scheme is
adopted, i.e., we assume the uncoupled points are ‘on the
right most and top most grid lines. Suppose Eq. (7) is
chosen to be used in the iterative evaluation of points,
these uncoupled points must be calculated- after the
iterations on the points © have converged. The
uncoupled points of the same type are calculated using
the rotated formula of Eq. (6). Only after these points
have been calculated, the remaining points of the
uncoupled group (of the opposite type) are evaluated
using the centred difference formula (4).

With boundary conditions specified as before, an
algorithm can now be formulated to solve the coupled
system (1) and (2): <

Step I Choose h and construct the number of
nodal points as usual for an elliptic problem. Set
¥’ = o =0 = outer_y” = outer_a” as initial
approximations for the outer iteration.

Step 2 Generate sequences w**™ and %'V
on Q by the alternating procedure described before for k
=0,1,2,...
Solve the stream-function equation (5) by
performing the four-point EDG iterative
procedure for a prescribed tolerance €. ( Use
the same Eq. (6) but replace @ with y, ¢ i with
@;,and c=0.)
Solve the vorticity equation (6) by performing
the four-point EDG iterative procedure for a
prescribed tolerance &. (Here, use the
converged stream-function just obtained
previously in the place of v, and o = Re/4.)

Store the converged values in outer_ ™

i
in outer_ o™

and
respectively.

Step 3 Check the convergence of the outer
iteration process over the whole mesh points for a
prescribed convergence criterion &, i.e., check whether
the following condition is achieved,

maX{Iouler_ w;gmﬂ) — outer_ y/;?")l, ‘outer_ ™D -outer_a;r,gm)l} £ 8.

If convergence is achieved, the numerical solution of the

given problem is given by the generated outer_y™"

and ouier_a{™". Otherwise, go back to Step 2.

IV. 'MULTIGRID IMPLEMENTATION
A. Mult;'gria' EDG Smoother On Elliptic Equation

Since the work of Hackbusch [10], multigrid methods
have been widely applied to the numerical solution of
partial differential equations. The application of
multigrid EDG technique on Poisson problem was
introduced by Mohamed and Abdullah [11]. All the

mesh points in solution domain Q" are labeled in red O
and black [ points as in Fig. 4(a) and (b) respectively.
For the case when n is even (for example n = 8), the red
points group next to the boundaries are further divided
into two groups i.e. red points labeled © and O.
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Fig. 4a The circled (red) points
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Fig. 4b The square (black) points

The red points (points ® and O) are iterated until they
converge, based on a certain convergence criteria. The
paired red points of type O will be iterated using the
stencil (7) whilst the red points of type @ (the red points
next to the boundaries) will be iterated using the rofated
difference stencil (6). After convergence is achieved, the
solutions at the black points ( 0 ) will be evaluated
directly using the centred difference stencil (4).

This means that in using the multigrid EDG method,
only the circled mesh points (points @ and O) will
undergo the process of iterative evaluation using either
the Equation (7) or (6). One observation is that the

. iterative evaluation on the circled points will require

points of the same type. The same goes to points of type



[ (black points). Therefore the iteration over the domain

Q" can be carried out on either type of points only
(either O or O only). The iterative process consists of
different levels of grids; a process that goes from the
finest grid down to the coarsest grid and back from the
coarsest grid up to the finest.

The EDG multigrid algorithm will involve the basic -

element of grid transfer and the iterative method for
smoothing the errors or residuals. The residual in the

domain Q" is defined to be
rh = Abyh b : ©)

The residuals evaluated on the red points at each levels
are transferred into the respective red points at the
coarser grid using the restricting operator R, : Q" -
Q™ defined as .

; 1 01
R = 3 0 40 (10)
1 01
At the coarser grid, the new residual is defined as
™=/, (11)

At the coarser grid, a new linear system is established.
For example,
At = 2

™ is the error value found by using the Gauss-Seidel
method as the error smoother, in order to get a better
error estimation. It is very important that the residuals
are well smoothed before being transferred to the coarser
grids. This process will be continued until the coarsest
grid is reached. The error estimation value is acquired
by solving the resulted equation at the coarsest grid.

On the other hand, the linear prolongation is used to
transfer the red points from the coarser grids to the red
points at the finer grids using the following prolongation
operator Py : O™ —» O defined as

V;i.zj' = szf (12)
for all 4, j both even or odd.
While the bilinear interpolation is applied to interpolate
the red points on the fine grid as follows,

A ey 2h )
Vai-2,4; —5("41'—2,41«2 tVai2aj42/ » (13)

1
h 24 2h
Vigg1 = E( i Vi ) , (14)
forallij=12,. N-l,
1
h 2h 2h 2h 2h
andv;; = 2 (V FVia TVl a T Vi ga )

1,7 i-1,j-1
for all ij odd. (15)

At the finest grid, we may use the correction V' «v" +
Paiv? to improve the rate of convergence. The blocks of
circled points at each level would be applied with the
EDG smoothing scheme where the points will be iterated
till they converged. After, convergence is achieved, the
solutions at the rest of the points (the square points) will
be evaluated directly once using the centred difference
stencil (4). '

Smaoth
T e

A 3 Smooth
— L8 oy ]
H £ o i
Al
Get the improved
Smooth " = AM.f 4
[Z] restrictr® = R¥’ o
Smooth A%e™ = r** pr o2
P
) ( H [ ; ATePer™
T 42021 B ; : using
_____ o N S B improved
values of
84‘
Get the improved
@ 5 | error value
v C
Find residual eue®s e
rP=pZe® ®
restrict
0y
=z Sania
ATeay

Fig. 5. The structure of halfsweep EDG multigrid
method with V-cycle on the circled points

The general algorithm for the EDG multigrid method for
an elliptic problem may be described as follows:

BLACK(A" V")

{

/* Evaluate only once on the black points */

Smooth A" = f* using Gauss-Seidel scheme on the
centred difference stencil (4).

}
MULTIGRID(G,A" v" %)
{ /* Tterate on the red points until converge */

IF (i = 0) coarsest grid, solve A"¢" = 1" directly
ELSE
5
k8
Smooth v, times on A™V" = * applying Gauss Seidel at the
finest domain using stencil (6) (or (5)).
Compute residuals I < £ - AV
Set €™ « 0 and restrict I <~ R,2' 1,
Get ¢ < MULTIGRID (i -1,A™ % ™).
Coire;:t errors and transfer to finer grid v" « V' +
ch ez
Smooth v times on A™" = £ applying Gauss Seide! on
a using the stencil (6) (or (5)). } } -~



HALFSWEEP_EDG_MULTIGRID Algorithm()
{

Flag=0

WHILE (Flag != 1) DO

{

Flag=1

MULTIGRID(, A" V" £)

IF [v,"" —v{® |>¢ on the red points, set Flag = 0
- Iterate ++ :

Swap v; © < v; © for all red points

3

BLACK(A" V" £ :

Return v* as an approximate solution

}

B. Multigrid EDG Smoother On Navier-Stokes

An inner-outer iteration procedure for the EDG
multigrid solver may be described as the following;

Step1 Choose h and set
¥ = @® =0 = outer_ ¥ = outer_a® as initial
approximations for the outer iteration.

Step2 Fork=0,1,2,...
Solve the stream-function equation (5) by
performing one multigrid four-point EDG
V(1,1)-cycle iterative procedure for a prescribed
tolerance €. ( Use the same Eq. (6) but replace
@ with y, c; With @;, and o =0 .)

lj’
Solve the vorticity equation (6) by performing
one multigrid four-point EDG V(1,1)-cycle
iterative procedure for a prescribed tolerance &
[(Here, use the converged stream-function just
obtained previously in the place of v, and
o =Re/4)

Store the converged stream-function values
y ™ in outer_y{™, and vorticity-function

values &V in outer_a™ .

Step 3 Check the convergence, if both differences of
the current and previous values of the converged stream-
function and vorticity are less than a prescribed
tolerance, then stop and the solutions are stored as

outer_ ™" and outer_ ™. Otherwise, go back to

Step 2.

V. NUMERICAL EXPERIMENT AND RESULTS

Numerical experiments have been carried out using the
multigrid algorithm described previously to solve the
following Navier-Stokes equations ( [2], [4], [5], [12]),

Viy=-w (16)
Ve + Re(y/xwy = l//y(ox)= -1 - (17

with boundary conditions

pE0) =y =ox0) =ox1)=0, 0
0.9 =¢(L.Y =0y =0l,y)=0, 0
. S (18)

The problem was solved for various values of Reynolds
number Re > 1. Throughout the experiment, the
algorithm was executed using C++ programming
language on different size grids of Q" Q™. Q!%h
The methods were terminated when the mesh points at
the finest grid achieve convergence with tolerance &

=£=1.0x10"" for both the outer and inner iterations,

TABLES 1 and 2 list the iteration counts and timings for
the EDG method, with and without multigrid, for
selected Re = 1 and 1000 respectively. The final
computed values of y and @ when grid size is h = 1/8
for selected values of x and y for Re = 1 and 1000 are
shown in TABLES 3 and 4 respectively. The numerical
solutions of the problem for Re = 1 and 1000 are
displayed for x = 01250.125)0.875, y =
0.125(0.125)0.875.

TABLE 1. The experimental results for the EDG
iterative schemes (Re=1)

Half&weep Four Poixt EDG Four Peint EDG Scheme Without
Mubtigrid Mefhod Multigrid M (hod
Gudsze | Time | Number | Number | Numbes | Time | Number | Numbe: | Number
(secs) | of outer | ofinner | ofinner | (secs) | ofouter | ofinner | ofinner
iterstion | itergtion | ieration iteretion | iterstion | iteration
for v forw for form
8 3.46 1 1 7 274 1 1 49
2 6 5 2 2 i
3 4 3 3 12 3
4 1 1 4 | 1
16 401 1 1 3 34 1 1 171
2 6 5 2 142 45
3 3 2 3 17 3
4 1 1 4 1 1
k7] 412 1 1 g 495 1 1 M6
2 6 5 2 40 64
3 3 1 3 2 1
4 1 1 4 | 1
64 813 1 1 g 1038 1 1 253
2 6 4 2 1589 92
3 2 1 3 10 1
4 1 1 4 ! 1
128 6.75 1 1 7 116.44 1 1 6906
2 6 3 2 049 7
3 1 1 3 3 {
4 1 1




TABLE 2. The experimental results for the EDG
iterative schemes (Re=1000)

Eekpveq Four Prd KBG Idtiari2 Nefod Four Bzt EOG Schane¥ifue Miferia Noflod
55 | Fabe o | Fabad |j Tae | Naee | Faed | o d |
(ses) e s e (sess) [ ing ima
ot | femtinfr | femtiorfor oty | mdinfr | daticifx
v Q {4 @
3 £¥] T T 7 1% T T B
2 6 9 2 &2 38
3 6 8 3 35 32
4 5 7 4 20 2
5 4 6 5 10 a1
6 3 5 6 15 16
7 3 4 7 9 10
8 2 3 8 3 5
9 1 1 9 1 2
10 1 1
b 38 T T ] 3 T T 7T
2 6 9 2 12 126
3 6 7 3 95 87
4 5 [ 4 54 35
5 4 5 5 b rel
6 2 3 6 5 8
7 1 2 7 1 3
8 1 1 8 1 3
9 1 1
32 3% T T T (3] T T % |
2 6 7 2 49 3
3 5 6 3 191 130
4 4 4 4 46 28
5 2 2 5 6 7
6 1 1 6 1 1
S [¥) T T ] 05— T T puk
2 § 6 2 1 9%
3 4 4 3 1% 95
4 2 2 4 9 9
5 1 1 5 1 3
6 1 1
IX LES T T 7 1507 T T [ .
2 6 6 2 509 7
3 4 3 3 197 38
4 1 1 4 1 3
5 1 1

TABLE 3. Numerical solutions of the Navier-Stokes
equations for Re = 1 (in the form a(b)=ax10")
(EDG with Multigrid)

) 06EN2)
nmmx 2

T 03614447 | OICAAY T 0TIIED T Omiay
0317656(2) | OMN4D) | 0BG  OMTAKD |
L Q2N6UD) . DDA

0357142 0 . 0ssBRY
0342003(1) ; 0559837¢1)  O6T0-1) © OMAVE(-1) | O 05580201~ 034204-1)
L OBOIBY | 0481091) | 0STETIC) . Dsmsten) | nssmonscl) 0.457425(-1)  0290174-1) .
DSBS | DI900821)  034I908C1) T DASIBECD | 03BN - DBO1ILD) " 0.192981(-1)

TABLE 4. Numerical solutions of the Navier-Stokes
equations for Re = 1000 (in the form a(b)=ax10°)
(EDG with Multigrid)

0.164902(2) 01!64)5( D0

04707 (1) DAIBSCD) | 0351919

0257904 (- 0530798(1) 0536_6[9(_1) unm(;) 3
0239713 (-1 : A4327(-1) - 0.50678 Ch) 1 ostese) -
- 0164363 (1) 0202474(-1) | 028M11(-) 0301991 (1) 0316’825(!) 0177301(1) : 0.19013¢-1)

For comparison purposes, the numerical solutions
obtained by the conventipnal centred difference scheme
as the benchmark solutions are also given in TABLES 5
and 6. In Step 2 of the numerical algorithm presented in
Section IV B, we replaced the EDG ipner iterative
process with the centred difference inner iterative
scheme. Since there is no exact solutions available, the
symnetry of the solutions obtained in these experiments
suggest that they are good approximations to the exact
ones.

TABLE 5. Numerical solutions of the Navier-Stokes
equations for Re = 1 (in the form a(b)=ax 10")
(Centred Difference with Multigrid)

( 2} 2
213567 0350832(3) M‘IJW(:} T 0350679() 0273352 C651578(2)
3622 - 0704347 | 0.0506(2) 03TIMAS (D) L OFITD, 0I62693(2)

TIU2H  OBO71( | 0TI | DINTI(D 023G 015127 (2)

Pty

Nliﬁl(l) 0213435(-D)  0.2713341(-2) | 0.3T6CD | 0.2T3H6(-]) 0213444(2)]1!!6“(2)
06163703 DB (D) 01S1271D) | DIGIETHD DISINECD 01863862 0662691.3)
mewhtmwu y

0I64LY) . OIIHLED 0TI
COIITOLLD | 0MIBTED 02774 ()
0GB 053768600
). 0366406(1) . ¢
i) | 0652265(1) - DES2BICY) | 0I622(N) 03018C)
0377395 (1) : D.446566(-) ° ummm‘um(-n_.ujmm-n 0H663(1) | 0.ITTAST ()
LUTTACY  020TASLY) | OAI3SCY | UMSTL) - 0RDISALY)  DITA6LY : 049791 L)

s !
ST CL)

TABLE 6. Numerical solutions of the Navier-Stokes
equations for Re = 1000 (in the form a(b)=ax10%)
(Centred Difference with Multigrid)

) | 0B | 0sdE
02136062 . 012616(2) -

S OBDOCY | 03u4CL | 0I0DGAC) | 0IOCY | OB | 0ImRLY | 0IRIL) -
L oman) | omu) OSETIACY) | OSTRLCY) | OS4SE () | 04mISs(l) | 02THACY)
S 03958 | 0SS | 03EIeAL) | 0 .
OIS

030575 () 030 T 0B | 00SH (D)  G1seh

023001 (-1)

TABLES 1 and 2 show that the halfsweep EDG
multigrid method with V(1,1)-cycle becomes much faster
than the original EDG method as the grid size gets
relatively large, with gains in timings over the latter
method between 1% to 93% for the case when Re =
1000. It is obvious that as the grid size increases, the
iteration count needed for convergence becomes lesser
and lesser for the multigrid scheme.



Execution Time Versus Grid Size(Re=1600} 3 .

TABLE 8. Iteration numbers for different grid size

" : : . (original EDG without multigrid)
204 | —e—EDG Multigrid | N : ; :
100 4 Mg 2 0 . Four Point EDG Without Multigrid
- X ' (for maximum iteration = 150)
s A
T 5 = i ’
g B0 ok DE/IDI? Y_'.va't?ﬂout:’ W . v Grid Re Number of | Numberof | Number of
8 uitigl e = size outer inner inner
g 60 2 iteration iteration iteration
= . : for for o
40 - ” 8 1 1 1 49
. s 2 42 . 2]
2 | i 3 12 3
3 4 1 1
0| EB——8——=8 45"""‘" 10 1 1 49
8 16 32 64 128 g ?g 287
Grid Size 4 4 1
; ’ 5 1 1
Fig. 6 Execution times of both EDG schemes 0 : pd -
3 25 16
4 8 1
5 4 3
6 1 1
1000 1 1 49
2 42 33
TABLE 7. The largest Reynolds number for different p . o
grid size and its number of outer iterations 5 19 21
(EDG with multigrid) ~6, 19-" 18
8 3 5
9 1 2
Halfsweep Four Point EDG Multigrid 10 1 1
(for maximum iteration = 150) 3800 1 1 49
2 42 103
Grid size The largest Number of outer 3 2.9, gé
Reynolds number iteration 5 35 2%
for convergence 6 33 24
3 3700 23 7 20 23
16 6500 16 8 28 2
32 12200 11 190 gj fg
64 23800 8 i 5 .
128 47000 6 12 15 6
256 92900 5 13 17 15
512 182400 5 14 15 13
15 13 12
16 10 11
4 8 9
) TABLE 7 shows the listing of outer iteration numbers for :g ]‘ ;
different grid size together with the largest Reynolds 20 1 4
number which results in convergence in each case for the ;; } ‘1"
EDG multigrid algorithm. TABLE 8 shows the iteration 3800 o convergancs
count for convergence for the original EDG scheme 16 >0 No convergence
§ P g H § 32 >0 No convergence
vu:nthout applying the multigrid techmqufe for several grid = = T e
sizes. For all the cases tested, the maximum number of 128 >0 No convergence
iterations is set at 150 for both the inner and outer 236 20 No convergence
512 >0 No convergence

iterative processes.  Note that the application of
multigrid technique to the EDG method results in the
acceleration of convergence in the iteration process such
that the method converges for large Reynolds numbers
which was not possible previously for the original
scheme.



VL. CONCLUSION

Second order group iterative method derived from
rotated discretisation formulas have been used in
conjunction with the multigrid technique to develop an
efficient ~multigrid solver to the steady-state
incompressible  Navier-Stokes  equations. Our ~
preliminary results indicated that the multigrid scheme
can accelerate the original group iteration process quite
significantly. =~ We .have aiso shown that the group
multigrid method do give high accuracy numerical
solution for the model test problem. The computed
results compare well with the solutions obtained from the
common existing finite discretisation formula. It would
be worthwhile to investigate the parallel implementation
of this multigrid method on a parallel or distributed
" system and the results will be reported soon.
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