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Abstract. Fit/inK a curve throuKh a set of planar data which represents a po.ritive quantiry requires that rhe curve
stays above the horizonwi axis, The more general problem of desiKning parametric and non-parametric curves
which do nol cross the Kiven constraint boundaries is considered. Several methods will be presented,

1 Introduction

There are a multitude of techniques for producing interpolating curves to a given set of planar data. One is
often concerned with certain properties inherent in the data or qualitative mathematical properties. For example,
the shape properties like monotonicity, convexity, positivity, and some degree of parametric or geometric
smoothness like the continuous variation of tangent lines or curvatures are among the list of concern.

The need of positivity preserving interpolation could arise. When the data represent a non-negative quantity
like the probability density or material concentration, negative values of an interpolant to these data would be
physically meaningless, and so a non-negative interpolant is required. The problem of positivity preserving
interpolation or more generally range restricted interpolation, where the movement of the interpolant is
restricted by constraint boundaries, has been investigated in a number of papers. We shall consider the different
techniques and approaches to this problem. In principle, two different approaches have been used to address
this problem, the direct approach and the variational approach. In the direct approach, a suitable class of
functions depending on a finite number of parameters is chosen. Conditions on these parameters are derived so
that the preservation of positivity is ensured. Then an interpolant which satisfies these conditions for positivity
is computed from the class of functions. In the second approach, the interpolant is determined as the solution of
a convex constrained minimization problem with respect to a subset of an infinite dimensional function space.

Let {(x;, Yi): 0 ~ i ~ n} be given data points, where Xo < XI < ... < x n and the ordinates are nonnegative,

i.e. y; ~ 0, 0 ~ i ~ n. Are there smooth interpolants I which are nonnegative on [xo,xn ] with I(x;) = Y;,

o~ i ~ n ? In the more general context, given data points lying on one side of given constraint curves, we are
interested in exploring several constructions of a smooth parametric or non-parametric interpolating curve which
lies on the same side of the constraint curves as the data, where the constraints may be straight lines or quadratic
curves.

2 Variational methods

(Schmidt & Hess, 1988) considered the space of cubic C l splin'es and proved that these splines make the
problem of positivity preserving interpolation always solvable. In fact there exists an infinite number of
feasible spline interpolants. They derived a necessary and sufficient criterion for the positivity of a cubic
polynomial on a given interval as described in the theorem below.

Theorem 1. Suppose that Xo < XI < ... < XII and Yi ~ 0, 0 ~ i ~ II. Let f(x) be the cubic C l spline oli

[xo, x n ] with I (Xi) = y;. 0 ~ i ~ fl. Suppose also that !'(Xi) = Ill;, 0 ~ i ~ II. Then the polynomial f is

nonnegative on [xo, XII] if and only if
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{
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h; =X;+I -X; and 11. = Y;+I-Y;
I hi

Theorem I gives rise to simpler sufficient conditions for positivity. One of which is described in the following
corollary.

Corollary 1. With the cubic function ! as described in Theorem I, then ! is nonnegative on [xo, x n ] if

(m;,m;+I)E Si' 0::;; i::;; n-I,

{
3Yi 3Y;+I}where S; = (a;, b;):a; ~---, b; ::;;--
h; h;

As there are an infinite number of nonnegative cubic C l spline interpolants, for selecting one of them the
II-I x

curvature ¢(f) = I (V; r-1
r(x)2 dx is minimized, where the weights (V; may be I or 1/ (I +11/)3. This

;=0 I

leads to a programming problem
II-I

mIOIlTIlZe IF; (m;, lIl i+1)
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subject to (mi. l1Ii+1 ) E V;

4(V; { 2 2}where F; (m;, m;+I) =-- (m; -l1 i ) +(m i -11; )(m;+1 -11; )+(m;+1 -11;) . Two cases of Vi have been
h;

considered, i.e. V; =S; and Vi =W;. This optimization problem which is solved numerically via dualization.

(Opfer & Oberle, 1988) investigated interpolating splines which are restricted in their movements by the
presence of obstacles. It is well known that the interpolating cubic splines defined on the grid

a=to <t l <···<t/l =b

minimize the convex functional
h

If/(f)= JrU)2 dt

"
uniquely in the set of interpolating C 2 splines on [a, b]. Opfer and Oberle derived this well known result for a

larger set,

wi = If Eel [a. b]: f' absolutely continuous, r E L2 [a, b] }.

Given data values Yj > 0. i = 0, I, "',11. a minimizer of the above functional is sought in the set where the

second derivative is not necessarily continuous,

M=lfEW2
2 :!(lj)=Yj. i=O,I,"',n, !U)~O, 'lttE[a.b]}.

Theorem 2 The minimizer g of the functional /If satisfies the following properties:

(i) g.is a natural cubic spline on a grid

a ='I <'2 < ... < 'N =b, N ~ n

where the ,'s consist of all the given t's and possibly some new knots which are the isolated zeros

of g.

(ii) Between two neighboring t 's, there are at most two additional knots. If there are precisely two
additional knots, then g vanishes between these knots.

(iii) If , is an additional knot (i.e. not one of the given t's) then

g"(,+)- g~(r-) ~ 0.

Based on the above necessary conditions developed, the spline interpolation problem with obstacles is
formulated as an optimal control problem with an inequality constraint. An algorithm is constructed for the
computation of cubic splines which are restricted by constant upper and lower bounds. This method is
illustrated with an example. Figure I shows the cubic interpolant without restrictions while Figure 2 shows the



optimal cubic interpolant g with the restriction -0.1 ~ g(t) ~ 1.1. 1 E [-1.1]. The given data points are

marked by ..... and the additional points inserted by the algorithm are marked by .. 0 ..

Figure I. The unrestricted interpolating cubic spline

Figure 2. The restricted interpolating cubic spline -0.1 ~ g{t) ~ 1.1

Exponential splines with tension parameters are used in [Wever. 1988] instead of cubic splines. The
exponential spline is the solution of a minimal bending energy functional

~..
aCyl = f(i'(X) 2 + l\(x)2 y'(x)2)2 dx (2.1 )

(2.2)

with y(xj)=y;, i=O,I.···.Il, I\(X)=Aj for x;~x~x;+J' i=O.I,"·,/I-1. The C 2 property of the

exponential spline gives it the following representation in each interval

d;+J {SinhP;f } d; {sinhP;(I-t) }
E(X)=Y;+l f +y;(I-r)+-2-' 1 +-2' (1-1) • i=0.1... ·./I-1

A; smh Pi A; smh P;

x-x·
with x; ~ x ~ X;+I' h; = Xi+1 - Xi' t = --'. P; = A;h;. y; = E(x;) and the unknown second order

h;

derivative d; = E"(x;). The continuity of the first order derivative leads to a symmetric. positive definite

tridiagonal systell1 for the second order derivatives d;. To get the optimal solution for the positivity preserving

interpolation problem to the data {(x;, y;) : 0 ~ i ~ fl} with y; ~ O. the following problem must be solved:

minimize the functional (2.1)

over the set of C 2 functions on [xo, x" ] of the form (2.2) with A; E JR, i = 0, I, ... ,11-1

subject to .v(x) ~ 0 on [xu' x" ] .



This variational problem can be transformed into an optimization problem for the tension parameters Aj • The

resulting constrained non-linear optimization problem is solved by a Sequential Quadratic Program.

3. Direct methods

3)',
(Butt & Brodlie, 1993) observed that the condition at an end point in Corollary I, for example, nll;::--

hi
could be satisfied by reducing the value of hI and this motivates the idea of inserting an additional knot,

sufficiently close to the end point to satisfy the condition. They applied this corollary to give a simple algorithm

for generating a C l piecewise cubic Hermite interpolating spline curve which preserves positivity. Each piece
of the Hermite interpolant is tested if the sufficient condition is satisfied. If not, one or two knots are inserted so
that the resulting cubic spline preserves positivity. This gives an algorithm which is local in nature and it does
not require the modification of the slope data. The algorithm is extended to cover the more general constraint
that the constraint being a linear function of the independent variable instead of the zero function.

The methods described so far generates non-parametric curves. In (Goodman et ai., 1991) the problem of

constructing a 0 2 parametric interpolating rational spline curve which lies on the same side of a given set of
constraint lines as the data has been considered. The initial interpolating curve is generated by constructing a

rational cubic between each pair of adjacent data points by using the 0 2 shape preserving interpolation scheme
of [Goodman, 1989]. The interpolating curve is shape preserving in the sense that it has the minimal number of
inflections consistent with the data. Each segment of the interpolating curve is a rational cubic of the form

a(l-t)3 A +3t(l-t)2 B + 3t 2 (I-tyc + f3 t 3D
r(t)= , tE [0, I] (3.1)

a(l- t)3 + 3t(l-t)2 +3t 2(I-t)+ f3 t 3

where the weights a, f3 > 0 .and A, B, C, D E JR 2. The weights a and f3 are the parameters used for

fulfilling the positivity as well as the 0 2 continuity conditions. Central to the argument of this approach is the
following theorem which gives the necessary and sufficient conditions for the curve segment r in (3.1) to
cross over or just touch a given line.

Theorem 3: Let ret) be given by (3.1) and L a given line. Suppose that A, D lie on one side of
while B and I or C lie on the opposite side of L.
If r(t) crosses over the line L [respectively touches the line at only one point], then

J f3 ?e - > 3 bd, b - > 3aae ,

and

the line L

(3.2)

b 2e 2 + 18a f3 abed -4(aae3 + f3 b3d)-27a 2f32 a 2d 2 > 0 [respectively = 0]. (3.3)

where a, b, C, d are signed distances of the control points A, B, C, D from the line L, with points on the same
side of the line as A and D having positive distances and negative otherwise. Moreover if (3.3) holds, then
-(3.2) also holds and ret) crosses over the line [respectively touches the line at only one point ].

When the rational cubic segment in (3.1) crosses a given line, two methods of moditication are presented
for modifying the curve segment. The tirst method modities the curve by increasing one or both of the weights
of the rational cubic according to Theorem 3 so that the new curve segment just touches the line. Observe that
increasing the weights, which is equivalent to decreasing the magnitudes of the tangent vectors at the
corresponding data points, pulls the curve towards the line segment AD. The adjacent segments of the

modified segment has to be adjusted in order to restore 0 2 continuity at the knot. The second approach
modifies the curve segment by the addition of a knot, i.e. the curve segment to be moditied is replaced by two
segments with the addition oJ a point that lies on the constraint line.

The constraint boundaries which have been considered above are linear curves. Non linear constraint curves

was tirst considered in (Ong & Unsworth, 1992). The parametric C 2 scheme of (Goodman et ai., 1991) was

adapted to generate non-parametric constrained C l curves with straight lines and quadratic curves as
constraints. Figure 3 shows two quadratic constraint curves which are marked by (i). The unconstrained
interpolating curve which is marked by (ii) has crossed the constraints but the constrained interpolating curve
which is marked by (iii) stays within the region enclosed by the quadratic constraint curves. The latter is
obtained by modifying the initial weights along with the addition of a knot denoted by a "x" in the figure.

(Meek et ai., 2003) further extends the method of Goodman et al. to allow a polyline as a more general
constraint where all the data points need not lie on one side of the infinite line through each of its edges. This is
made possible through an extension of Theorem I. Moreover data points may also lie on the constraint



polyline. In Figure 4 the unconstrained interpolating curve drawn in gray crosses the constraint polyline which
is drawn in dotted lines. The constrained interpolating curve drawn in black does not cross the constraint
polyline.

Figure 3. The interpolating curve with quadratic constraint curves
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Figure 4. The interpolating curve with constraint polyline

Zhang and Cheng (2000) presented the construction of a C' parametric cubic interpolating spline curve
which preserves the convexity of the data and lies on the same side of a given polygon as the data points. The
constraint that the interpolant lies on one side of the given polygon is satisfied by varying both the magnitude
and direction of the tangent vectors at the data points. The main task of this method is to choose appropriate
tangent vectors. The tangent vector is usually defined as a weighted combination of adjacent chord vectors, i.e.
the tangent vector Ti at data point Pi uses three consecutive data points Pi-I' Pi' Pi+1 and is defined as

T j = (I-ai )fV>i +ai fV>i+I' aE [0, I],

Pi+J -Pi . P .
where fV>. = , hi = (i+1 - t; and t j are the knots associated with j' i -I ~ j ~ i + I. Zhang and

, hi

Cheng used scaled chord vectors. The tangent vector D i at Pi is defined as

D i =(I-ai)Pi fV>j +aivi fV>i+J'

where 0 ~ Pi' Vi ~ I are scalars to be determined.. The introduction of two degrees of freedom, J.1; and Vi'

provides flexibility in constructing the curve so that it has a shape suggested by the given data and lies on the
same side of the given polygon as the data points. The number of interpolating curves that have the shape
suggested by the data points and satisfy the given constraints could be infinite. Two techniques are presented to
select the final interpolating curve. The tirst one selects the final curve by modifying the initial Bessel tangents



whenever necessary; and the second one achieves that by minimizing the maximum curvature of the constructed
interpolant via an iterative numerical approach.

4. Conclusion

We have considered the problem of constructing interpolating curves that avoid constraint boundaries
which may be straight lines, quadratic curves or polylines. Several methods and techniques have been
presented.
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