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PENYARINGAN UNTUK PENYAKIT BATU GINJAL 

 
 

ABSTRAK 

Penyakit batu ginjal adalah ganguan urologi yang paling biasa berlaku di 

kalangan lelaki dan wanita tetapi dengan lebih tinggi kelaziman di kalangan 

lelaki. Peluang masa hayat bagi seseorang mempunyai satu batu ginjal adalah 

lebih kurang 10% dan risiko ulangan dalam tempoh masa 10 tahun adalah 

74%. Dengan itu, terdapat satu keperluan yang besar bagi membangunkan 

suatu kaedah penyaringan untuk pengesanan penyakit batu ginjal. 

Dalam kajian ini, pendekatan proteomik digunakan untuk pengekstrakan, 

pengasingan dan pengenalpastian protein daripada subjek sihat, pesakit batu 

ginjal dan pesakit batu ginjal rekuren. Protein daripada urin diestrak dengan 

menggunakan teknik pemendakan garam dan estrak protein itu dilarutkan 

dalam penimbal pelarut. Campuran tersebut diasingkan mengikut jisim molekul 

masing-masing dengan menggunakan SDS-PAGE. Gel tersebut seterusnya 

diwarnakan dengan Coomassie Biru. Imej gel itu direkod dan dianalisis dengan 

menggunakan satu sistem pengimejan. Jalur-jalur sasaran protein dipotong 

daripada gel dan protein tersebut dicernakan oleh tripsin secara Dalam-gel. 

Peptida-peptida triptik seterusnya dikeluarkan daripada gel dan dianalisis 

dengan menggunakan LC/MS/MS, ia membolehkan penjujukan asid amino bagi 

peptida-peptida yang dianalisis. Spektrum produk ion yang diperolehi daripada 

MS/MS dicari dengan menggunakan enjin pencarian pengkalan data protein 

Mascot untuk pengenalpastian protein. Sejumlah dua puluh sembilan jenis 

protein telah dikenalpastikan daripada subjek sihat, pesakit batu ginjal dan 

pesakit batu ginjal rekuren. THP daripada urin dikenalpastikan sebagai satu 



 xx

penanda biologi untuk pesakit batu ginjal dan telah disahkan oleh Western 

blotting. 

Dengan mengguna THP sebagai penanda, kaedah-kaedah SDS-PAGE 

dan ELISA dibangunkan untuk kuantifikasi THP dalam urin. Bagi analisis SDS-

PAGE, sampel urin dimendak dengan garam dan dipekat sepuluh kali. Nilai 

penggalan bagi perkumuhan THP dalam urin untuk SDS-PAGE adalah 1.30 

mg/mmol. Walau bagaimanapun, sampel urin untuk analisis ELISA dicairkan 

sepuluh kali dalam penimbal sampel. ELISA yang dibangunkan mencapai 

kelinearan antara julat 109.33 μg/mL sehingga 945.67 μg/mL. Tambahan lagi, 

ketepatan asai adalah antara 98 – 101%. Kepersisan asai adalah kurang 

daripada 4% (C.V.) bagi kebolehulangan dan kurang daripada 5% (C.V.) bagi 

kebolehasilan. Kespesifikan dan kepekaan asai masing-masing adalah 86% 

dan 80%. Nilai penggalan bagi kepekatan THP dalam urin untuk ELISA adalah 

37.00 μg/mL dan 41.20 μg/mL masing-masing bagi lelaki dan perempuan.  

SDS-PAGE menunjukkan satu penggalan yang lebih jelas antara subjek 

sihat dan pesakit batu ginjal apabila dibandingkan dengan ELISA. SDS-PAGE 

adalah kaedah kuantitatif yang lebih baik untuk menentukan amaun THP dalam 

urin. 
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IDENTIFICATION OF BIOMARKER AND DEVELOPMENT OF SCREENING 
METHOD FOR KIDNEY STONE DISEASE 

 

ABSTRACT 
 

Kidney stone disease is the most common urological disorders that 

occurred in both men and women but with higher prevalence in men. The 

lifetime chance of an individual having a stone in kidney is approximately 10% 

and the risk of recurrence during 10 years period is 74%. Therefore, there is a 

great need to develop a screening method for detection of kidney stone 

disease. 

In this study, proteomic approach was used for extraction, separation 

and identification of urinary proteins from healthy subjects, stone formers and 

recurrent stone formers. Urinary proteins were extracted using salt precipitation 

technique and the protein extract was dissolved in solubilizing buffer. The 

mixture was separated according to their molecular weights using SDS-PAGE. 

The gel was then Coomassie Blue stained. The image of the gel was captured 

and analyzed by using an imaging system. The target protein bands were 

excised from the gel and proteins were digested In-gel by trypsin. The tryptic 

peptides were then eluted from the gel and analyzed using LC/MS/MS which 

allows amino acid sequencing of the analyzed peptides. The acquired MS/MS 

product ions spectrum was search against Mascot protein database search 

engine for protein identification. A total of twenty nine proteins were identified 

from healthy subjects, stone formers and recurrent stone formers. The urinary 

THP was identified as a biomarker for kidney stone disease and was confirmed 

by Western blotting. 



 xxii

Employing THP as biomarker, SDS-PAGE and ELISA methods were 

developed for urinary THP quantification. For SDS-PAGE analysis, the urine 

sample was salt precipitated and concentrated ten times. The cut-off value of 

THP excretion by SDS-PAGE was 1.30 mg/mmol. However, urine sample for 

ELISA analysis was diluted ten times in sample buffer. The developed ELISA 

achieves linearity within the range of 109.33 ng/mL to 945.67 ng/mL of THP. In 

addition, the assay accuracy was around 98 – 101%. The assay precisions 

were less than 4% (C.V.) for repeatability and less than 5% (C.V.) for 

reproducibility. The assay specificity and sensitivity were 86% and 80%, 

respectively. Whilst the cut-off values of THP concentration by ELISA were 

37.00 μg/mL and 41.20 μg/mL for male and female, respectively.  

SDS-PAGE shows a clearer cut-off between healthy subjects and stone 

formers as compared to ELISA. SDS-PAGE is a better method to quantify the 

amount of urinary THP. 
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CHAPTER ONE 

INTRODUCTION  

 

1.1 Kidney Stone Disease 

Kidney stone disease or known as nephrolithiasis is a common 

problem especially in industrialised nations. It is defined as one or more stones 

namely aggregate of crystals mixed with protein matrices, which are formed in 

the kidney or in the ureter (Figure 1.1). This may cause obstruction of urine flow 

in the renal collecting system, ureter or urethra which causes severe pain, 

bleeding or local erosion of kidney tissue (Tiselius et al., 2002).  

 

 

Figure 1.1: Formation of kidney stone in the kidney and ureter 
(MedicineNet.com, 2005). 

Kidney 
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1.1.1 Epidemiology of Kidney Stone Disease 

 Kidney stone disease affects 1 - 20% of the general population. 

According to data provided by the U.S. National Health Interview Survey (1990 - 

1992) approximately 1 million people suffered from stone disease yearly.  In 

Asia, its lifetime incidence is 2 - 5% (Barbas et al., 2002). 

The incidence and prevalence of kidney stone also varies in proportion 

to age, race and gender. Kidney stone disease afflicts both men and women but 

with higher prevalence in men than in women. The lifetime chance of an 

individual having a stone is 10 - 15% and the peak age of onset is 20 - 30 years 

old (Sandhu et al., 2003b). The risk of recurrence is 74% within 10 years for the 

first-time stone formers (Lewandowski and Rodgers, 2004) and therefore 

increasing the risk of permanent kidney damage despite modern techniques of 

stone removal. 

 

1.1.2 Aetiology and Pathogenesis  

Formation of stone in kidney is a complex and multifactorial process. It 

is a crystallization process taking place in supersaturated urine, where the urine 

substances form crystals that stick together and subsequently grow into stones 

on the inner surface of the kidney (Hess and Kok, 1996).  There are four types 

of stones namely calcium stones, struvite stones, uric acid stones and cystines 

stones. Calcium stones are the most predominant that compose 75% of all 

stones (Bihl and Meyers, 2001). The recurrence of calcium stone is greater than 

other types of kidney stones. 

A number of chemical and physical factors are known as active 

participants in stone formation. There are three main factors relevant to stone 
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formation: supersaturation of urine with stone constituents, urinary matrix as 

well as concentration of inhibitors and promoters of crystal aggregation (Anne 

and Gill, 1999). In theory, when the concentration of stone constituents (calcium, 

oxalate and phosphate) reached saturation state, stone formation will be 

induced by association of small amounts of crystalloid to form nuclei 

(nucleation). The nuclei grows and aggregates on the surfaces of collecting 

ducts and renal papillary epithelium (Bihl and Meyers, 2001; Tiselius, 1996). 

Renal epithelial cells specifically bind and internalize the crystal aggregates. 

Events that occur after crystal aggregates binding could be important in 

pathogenesis of stone i.e. cellular responses might be essential for the initiation 

of stone formation (Barbas et al., 2002). 

 Stone formation is inhibited by substances in urine that prevent 

crystallization. However it will only occur once the stone salts were exceeded. 

Saturation of urine with calcium oxalate is common in the population; therefore 

the role of other factors in the formation of stone must be crucial (Bihl and 

Meyers, 2001). For instance, although most people will achieve urinary 

supersaturation at some time yet only some will form kidney stone. The role of 

lithogenic risk factors including promoters and inhibitors is to predispose stone 

formers or to protect non-stone formers. Other important factor is uric acid 

which can precipitate persistently in acidic urine even in the absence of 

hyperuriceamia (an excess of uric acid in blood) or hyperuricosuria (an excess 

of uric acid in urine) (Barbas et al., 2002). Catalyst-like ability of uric acid can 

cause formation of calcium oxalate stone without being incorporated into the 

crystals (Bihl and Meyers, 2001; Srinivasan et al., 2005). Likewise, urinary pH 

has an essential part in many inhibitor or promoter reactions (Tiselius, 1981). 
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Urine normally contains inhibitors (e.g., pyrophosphate, citrate and 

macromolecules) that prevent crystal growth. Macromolecular factors such as 

chondroitin sulphate and haparin are inhibitors to crystal aggregation (Tiselius, 

1996). Therefore, insufficient quantity of inhibitors that prevent crystallization or 

inhibitors fails to induce the necessary chemical reactions that prevent the 

formation of crystals is the initial step in the development of kidney stone. A 

number of urinary macromolecules have been investigated as potential inhibitor, 

one of which is Tamm Horsfall Glycoprotein (THP) or uromodulin (Schnierle et 

al., 1996).  

 

1.1.3 Clinical Presentation   

Kidney stone develops slowly and asymptomatic or silent until they 

begin to move down the urinary tract, producing either hematuria or some 

degree of urinary obstruction. It also causes pain which is the classic symptom 

associated with lodged stone (Bihl and Meyers, 2001). In acute ureteral colic, 

the pain is severe and often starts in the flank region and moves down to the 

groin. It may radiate to the groin or testes depending on the location of 

obstruction. In addition, nausea, vomiting, chills, fever and elevated blood 

pressure are common. The other classic symptoms are frequent urinate and 

dark urine. Complications of kidney stone are recurrence of stones, urinary tract 

infection, ureter obstruction, kidney damage and decrease or loss of function of 

the affected kidney (Sandhu et al., 2003b). 

 

 

 



 5

1.1.4 Diagnosis 

 Documentation of stone characteristic is extremely important (type, size 

and location) for therapeutic management of kidney stone disease. Preliminary 

evaluation should include urinalysis, urine culture and plain film of the abdomen 

(Bihl and Meyers, 2001). Diagnostic imaging like Plain Abdominal Radiography 

(KUB), Intravenous Urography (IVU) and ultrasound are used to confirm that the 

symptoms are caused by stone in the case of symptomatic kidney stone 

disease. X-ray or ultrasound can help to locate the stone and determine its size 

and shape. More than two-thirds of kidney stones are radiopaque and can be 

seen on radiogram. Not all radiopaque stones (up to 34%) can be seen on an x-

ray or ultrasound; some are too small and others may be obscured by bones or 

overlying bowel gas. Uric acid stones are particularly radiolucent because they 

do not absorb enough x-rays therefore must be detected by other means 

(Sandhu et al., 2003b).  

KUB is irreplaceable in the management of a known radiopaque 

ureteric calculus especially in planning extracorporeal shock ware lithotripsy 

(ESWL) or monitoring the progress of the stone fragments after ESWL. It is also 

more reliable for assessing stone status (Lingeman, 1996).  

 IVU remains the first-line investigation for suspected ureteric calculus. 

The radiographic findings are both simple to interpret and highly accurate in 

diagnosing renal obstruction. For stones in the pelvicalyceal system, its size and 

local anatomy can clearly defined. Although there is a risk of allergy and 

contrast nephropathy, IVU remains the gold standard for such identification (Bihl 

and Meyers, 2001). Ultrasound also used in management of stone, which can 
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indicate whether a stone is in the kidney or ureter and degree of any obstruction. 

Stone size can be measured directly on ultrasound (Sandhu et al., 2003b).  

Biochemical test such as blood and urine can identify the presence of 

infection and establish the stone's chemical composition. The presence of 

urinary crystals or minute amounts of blood (microhematuria) in microscopic 

examination, either finding provides strong evidence of kidney stones (Parks 

and Coe, 1997).   

Furthermore, for recurrence kidney stones including any with a 

radiologic evidence of new stone formation, an increase in size of a pre-existing 

stone or passage of stone in the past year. However, most of the kidney stone 

disease is idiopathic, indicating the absence of any identifiable clinical cause of 

the disease and without discernible biochemical and/or anatomical abnormality 

(Lewandowski and Rodgers, 2004).  

 

1.1.5 Management of Kidney Stone Disease 

Management of kidney stones depends on the clinical presentation, 

stone location and size (Bihl and Meyers, 2001). With an acute presentation, 

the presence of complication such as secondary infection or renal impairment 

may necessitate immediate intervention. While, uncomplicated cases can be 

managed conservatively with adequate fluids and analgesia. In both cases, if 

the stone does not pass spontaneously, definitive stone treatment is required 

and is often performed as delayed and elective procedure (Sandhu et al., 

2003a). Blockage of urine flow requires emergency drainage that can be 

achieved by placement of retrograde stent when the kidney stone fails to pass. 



 7

The advances in urological techniques have drastically altered 

management of patients with symptomatic kidney stones disease who require 

treatment. Most symptomatic upper urinary tract stones are small and occur in 

normal kidneys and pass spontaneously if it is less than 5 mm in diameter. 

However, up to 80% of stones are greater than 5 mm in diameter and are 

needed to be removed by surgery or treated with ESWL (Lingeman, 1996). The 

percutaneous nephrolithotomy (PNCL) (Sandhu et al., 2003a) approach is best 

suited for removal of large and complex stones, whereas ESWL is a non-

surgical technique that uses high energy shock wave to break the large stones 

into small fragments that will pass through urinary system (Erhard et al., 1996). 

 

1.2 Organic Matrix of Kidney Stones 

Kidney stones compose of an outer crystalline phase which mostly 

contains urate, calcium, oxalate and phosphates. The inner core of the stone 

contains organic stone matrix, which derived from a variety of sources including 

macromolecules of kidney and serum origin, exfoliated epithelial cells, cells 

originating in blood and urinary proteins (Khan and Hackett, 1993). 

One of the main theories concerning stone formation in the kidney is 

matrix theory (Van Aswegen and Du Plessis, 1991). According to the matrix 

theory, urinary proteins such as uromucoid promote precipitation of calcium 

oxalate and/or calcium phosphate crystals. Urinary proteins may act as binding 

surface for inorganic ions and thus provide a framework for deposition of stone 

salts (calcium, oxalate, phosphate and etc). Thus, the concentration of urinary 

proteins may play an integral role in stone formation. 
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Organic matrix of kidney stone has long been investigated yet its 

functional significant relationship to the kidney stone development remains 

obscure. A better understanding of the components of stone matrix and their 

interaction on the molecular level seems mandatory in order to gain better 

insight of stone formation. The effects of specific urinary macromolecules on 

calcium oxalate crystallization have been evaluated by Rose and Sulaiman 

(1982) and Drach et al. (1982). The authors explained that mucoprotein and 

mucopolysaccharides may act as promoters for stone formation and as 

enhancers for nucleation because of their ability to bind calcium. The organic 

matrix of the kidney stone accounts for 2 to 3% of total stone weight as reported 

by Sugimoto et al. (1985). Some matrix components play significant role in 

stone formation while others do not. The organic matrix of kidney stone mainly 

contains macromolecules derived from urine, which may serve as inhibitors to 

the formation of stone. There are variety of urinary macromolecules presence in 

urine and organic matrix of stone. The macromolecules reported were 

nephrocalcin (14 kDa), fibronectin (230 kDa), prothrombin fragment 1 (32 kDa), 

osteopontin (67 kDa) and THP (95 kDa). Thus, urinary macromolecules were 

suggested to be the major component of the organic matrix of kidney stones 

(Govindaraj and Selvam, 2002). Nevertheless, most of the stone proteins have 

not been fully characterized, which is due to the difficulties in isolating them in 

their native form. Although various methods including gel permeation 

chromatography and high performance liquid chromatography for the separation 

of proteins from organic stone matrix have been carried out, these methods 

could not completely isolate the proteins. Consequently, a complete profile of 

renal stone proteins is not available to date.    
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1.3 Urinary Proteins of Kidney Stone Disease 

Human urine is formed in kidney via ultrafiltration from the plasma to 

eliminate waste products such as urea and metabolites. Components in the 

ultrafiltrate are selectively reabsorbed result in less than 1% of ultrafiltrate is 

excreted as urine. Urine production under normal physiologic conditions is 1 - 2 

L/day however it also depends on fluid intake (Adachi et al., 2006). 

The glomerular filtrate has a similar composition of plasma except that 

it is almost free of proteins. Almost all the protein on the glomerular filtrate is 

reabsorbed and catabolized by proximal convoluted tubular cells, which result in 

the excretion of urinary protein less than 150 mg/24 hour (Adachi et al., 2006; 

Christensen and Gburek, 2004). Thus, the amount of protein presence in urine 

is very low. 

The concentration of urinary macromolecules that may serve as 

inhibitors or promoters is one of the main factors for formation of stone. The 

involvement of urinary macromolecules (urinary proteins) as inhibitors to the 

formation of stone was reported by researchers. Most of the urinary 

macromolecules are anionic with many acidic residues and frequently contain 

posttranslational modifications such as phosphorylation and glycosylation 

(Lafitte et al., 2002). They exert inhibitory effects by binding to crystals and 

consequently inhibit the adhesion of crystals to renal epithelial cell. Amongst the 

urinary macromolecules reported are nephrocalcin (14 kDa), an acidic protein of 

tubular cells origin. Nephrocalcin in the kidney stone patients’ urine is lacking of 

gamma-carboxyglutamic acid (GLA) residues which reduce its ability to inhibit 

crystals nucleation and calcium aggregation (Nakagawa et al., 1987). 
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Fibronectin (230 kDa): it is a multifunctional alpha 2-glycoprotein that 

distributed throughout the extracellular matrix and body fluids. Recent studies 

have demonstrated that it is excreted from tubular cells and its secretion can be 

stimulated by calcium oxalate crystals (Tsujihata et al., 2000). It may inhibit 

calcium oxalate crystals aggregation and their attachment to tubular cells 

(Tsujihata et al., 2000). 

 Prothombin fragment 1 or crystal matrix protein (32 kDa): It is a 

peptide generated from sequential cleavage of prothrombin. There is an 

increasing evidence reported that urinary prothrombin fragment 1 plays a 

contrasting roles involved in early stage of stone formation as both the active 

participant and the inhibitor of calcium oxalate nucleation, growth and 

aggregation (Grover and Ryall, 1999). 

Osteopontin or uropontin (67 kDa): In a crystal matrix, osteopontin has 

several biological functions including involvement in biomineralization and stone 

formation (Denhardt and Guo, 1993). Amino acid sequence of osteopontin 

contains a high proportion of aspartic acid residues, which binds calcium and is 

strongly associated with calcium oxalate crystals. Therefore, osteopontin has 

been suggested to be potent inhibitor to calcium oxalate crystallization and may 

also involve in crystal retention of crystallization in the kidneys (Fouad et al., 

1998). 

Tamm Horsfall glycoprotein (THP), (85 kDa): THP may play an 

important role in stone formation and has great potential to serve as biomarker 

for detection of kidney stone disease (Schnierle et al., 1996). 
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1.4 Tamm Horsfall Glycoprotein (THP) 

In 1950, Tamm and Horsfall discovered a glycoprotein in urine, which 

was named as Tamm Horsfall Glycoprotein (THP). THP is the most abundant 

glycoprotein present in the urine of healthy subjects (Tamm and Horsfall, 1950). 

THP is secreted by the thick ascending limb of the loop of Henle (Gokhale et al., 

1996; Muchmore and Decker, 1985). THP inserted into luminal cell surface by 

the glycosyl-phosphatidylinositol (GPI)-anchor and then excreted in urine at a 

rate of 50 - 100 mg/day (Cavallone et al., 2001; Kumar and Muchmore, 1990). 

Thus, THP is a glycosylphosphatidylinositol (GPI)-anchored protein.  

Muchmore and Decker (1985) identified a 85 kDa uromodulin in the 

urine of pregnant women. Uromodulin is commonly known as THP (Pennica et 

al., 1987). The author explained that its molecular mass, abundance  in urine 

and characteristic resembled with THP (Muchmore and Decker, 1985). In 

addition, uromodulin was reported to possess the same amino acids structure of 

THP (Pennica et al., 1987). However, its carbohydrate contents especially 

mannose chains and physiological function are slightly different from THP 

(Devuyst et al., 2005). 

 

1.4.1 THP Structure 

THP is a monomeric glycoprotein of approximately 85 kDa but has a 

strong tendency to form macroaggregates of several million Daltons. It has 639 

amino acids and 48 cysteine residues. In addition, it contains about 30% 

carbohydrate and heavily glycosylated by polyantennary sialated N-linked 

glycans (Fletcher et al., 1970; Pennica et al., 1987). The sialic acid may play an 
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important role to maintain THP function in kidney stones formation (Knörle et al., 

1994).  

 

1.4.2 Physiological Function 

The physiological function of THP still remains unclear. It has been 

suggested that it may play an important role in maintaining water permeability of 

the thick ascending limb of the loop of Henle due to its gel forming properties 

(Menozzi et al., 2002). It may also act as an adhesion molecule and involve in 

stone formation where it is present in the core of the stones (Tamm and Horsfall, 

1950). It may also protect urinary system from uropathogens by inhibiting 

bacterial adherence. As explained by Pak  et al. (2001), THP exerts a protective 

role against Escherichia coli colonization by competing for glycans carried by 

membrane glycoproteins of the urinary tract, e.g., uroplakin. According to this 

hypothesis, the infectious disease in urinary tract could have acted as selective 

agents for the large release of urinary THP from the kidney. Thus, THP is 

essential for the normal physiological function of kidneys. 

 

1.4.3 The Role of THP Glycomoiety in Renal Disease 

THP glycomoiety has been indicated to be responsible for the binding 

with adhesins of pathogenic strains of Escherichia coli (Pak et al., 2001), 

whereby prevent an individual from infectious disease. In addition, THP 

glycomoiety has been proposed to be involved in the renal diseases. There are 

differences in the carbohydrate composition of the THP isolated from renal 

disease patients and from the healthy subjects (Olczak et al., 1999a), where 

THP isolated from the patients has alternation of its oligosaccharide chains that 
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affects its biological activity. Olczak et al. (1999b) described that THP of renal 

disease patients reacted more weakly with lectins, which is specific for terminal 

oligosaccharides. In addition, THP has been reported to be responsible for 

pathological conditions such as tubulointerstitial nephritis, recurrent calcium 

oxalate stone and nephropathy due to its ability to precipitate with other proteins 

(Olczak et al., 1999a; Olczak et al., 1999b). 

 

1.4.4 The Role of THP on Stone Formation 

In relation to kidney stone disease, THP has been shown to be 

present in the core of calcium oxalate kidney stone as reported by Grant et al. 

(1973). However, it is not clear whether it is a passive support or an active 

participant in stone formation. The findings of crystallization assays that 

developed with the aim of elucidating the role of THP on stone production are 

controversial. Scurr and Robertson (1986)  explained that THP might acts as an 

inhibitor or promoter of stone formation as previously proposed by Rose et al. 

(1982). However, Sophasan et al. (1980) claimed that THP has no effect in 

stone formation. 

THP was implicated as both an inhibitor and promoter of stone 

formation (Hess et al., 1989; Sikri et al., 1981). Its inhibitory properties arose by 

coating crystals, retarding the attachment of new crystals and thus preventing 

crystals growth and aggregation. However, self-aggregation and polymerisation 

of THP is caused by high calcium concentration, high ionic strength and low pH 

(Stevenson and Kent, 1970), which allow the protein to act as a promoter by 

forming a mesh to which crystals adhere and thus initiate crystal growth .  
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Hess et al. (1989) described that THP is the major inhibitor of calcium 

oxalate crystal aggregation in the urine of healthy subjects. However, stone 

formers excreted defective urinary THP that diminish its inhibitory effect on 

stone formation (Hess et al., 1989). Taking into account those observations, it 

has been suggested that not only defective THP but a decreased THP excretion 

may facilitate the development of kidney stones. Nevertheless, the molecular 

basis of the urinary THP abnormality in stone formers needs further elucidation.  

In the studies of Knörle et al. (1994), the authors reported that THP 

from the healthy subjects was more glycosylated with sialic acid than the 

recurrent stone formers. The terminal sialic acid is essential for the inhibitor 

function of THP in healthy subjects, however this function was diminished in the 

recurrent stone formers owing to their THP lack of sialic acid (Knörle et al., 

1994). In 2001, Chen et al. demonstrated that THP exhibits inhibitory effect on 

stone formation. Thereafter, Carvalho et al. (2002) agreed that the inhibitory 

effect of THP is related to sialic acid. Therefore, carbohydrate structure of THP 

is the major feature that may regulate kidney stone formation. 

 

1.4.5 Assays Used for THP Measurement 

In accordance with these preliminary studies, THP evidently is a good 

candidate that may act as biomarker for detection of kidney stone disease. 

Therefore, researchers have been ventured variety of highly sensitive and 

specific assays to quantify THP, which was considered as a potential biomarker 

for kidney stone disease. There are large numbers of assays developed. 

Amongst these are electroimmunodiffusion, gel electrophoresis, 

radioimmunoassay and enzyme-linked immunosorbent assay (ELISA).  
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In a study, Boyce and Swanson (1955) showed that the amount of 

urinary THP excreted was constant in the healthy subjects, however it was 

increased in the stone formers (Boyce and Swanson, 1955). Bichler et al. (1975) 

explained that the Boyce and Swanson’s method using centrifuged and 

precipitated urine for THP measurement may lead to less reliable results. This is 

because aggregated and non-aggregated forms of THP have different solubility 

in salts solution and their proportions in urine are unknown (Bichler et al., 1975). 

As a consequent, the electroimmunodiffusion was developed by  

Bichler et al. (1975) and Samuell (1979) for THP measurement. Both of the 

authors reported that no significant difference between healthy subjects and 

stone formers. The average THP excretion in urine was 40 - 50 mg/day (Bichler 

et al., 1975; Samuell, 1979). However, Bichler et al. (1999) described that there 

are significantly decrease of THP excretion in uric acid stones patients, 

staghorn calculi or renal tubular acidosis. The authors explained that damage of 

distal and proximal tubular epithelial cells in some of the stone formers who 

prone to develop uric acid stones.  

A rapid and specific radioimmunoassay was developed by Hunt et al. 

(1985) for THP quantification. The authors reported that there were no 

differences between THP concentration in fresh and frozen urine samples after 

dialysis. However, freezing of dialysed urine before analysis can alter the 

protein structure and make the THP concentration more variable. 

The THP quantification has been limited by the laborious and relatively 

insensitive assay. Pretreatment of urine samples were included before assay 

such as dialysis, gel filtration, ultracentrifugation, freezing, incubation with 

detergents and adjustment of pH (Dawnay et al., 1982). 
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Therefore, Dawnay et al. (1982) investigated factors that affecting 

THP quantification in order to improve the developed radioimmunoassay. The 

THP concentration was affected by osmolality, THP concentration and pH of the 

urine. Consequently, the 24 hours urine sample was extensively diluted in water 

(100 dilutions) before assay.  The author found that THP level was not affected 

by the variation in THP concentration and pH of urine. This indicated that 

soluble form of THP was attained (Dawnay et al., 1982).  

Lynn et al. (1982) determined the amount of urinary THP excretion by 

using radioimmunoassay. The authors claimed that the amount of THP excreted 

was not influenced by exercise, age, diuresis and amounts of calcium or sodium 

excreted (Lynn et al., 1982). 

Romero et al. (1997) developed an ELISA  to quantify urinary THP 

concentration. The urine sample was frozen at -20oC before assay and series of 

diluted urine sample were incubated overnight in the assay.  The authors found 

that THP excretion in the recurrent stone formers was significantly decreased 

when comparing to healthy subjects.  

Currently, there is a commercially available ELISA kit (Synelisa THP 

assay). The ELISA kit uses 24 hour urine sample for THP excretion 

measurement. Using this kit, Ganter et al. (1999) investigated the THP excretion 

and its correlation  to citrate in urine of stone formers. Both are potent factors in 

the kidney stone forming process. THP excretion in stone formers was 

significantly lower as compared to healthy subjects (Ganter et al., 1999). The 

authors found that THP excretion was positively correlated to citrate. Thus, the 

decrease of THP in stone formers may indicate tubular dysfunction (Lynn and 

Marshall, 1984). 
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Glauser et al. (2000) also used the commercial ELISA kits  to 

investigate urinary excretion of THP and to identify possible determinants of 

urinary THP excretion in stone formers and healthy subjects. In both of the 

healthy subjects and stone formers, urinary THP excretion was related to body 

size, renal function and urinary citrate excretion whereas dietary habits do not 

affect THP excretion (Glauser et al., 2000). THP excretion in uric acid stone 

formers and staghorn calculi were found lower than healthy subjects, In addition, 

the decrease of THP excretion in uric acid stone formers was reported by  

Bichler et al. (1999). 

The major obstacle for accurate measurement of THP is aggregation 

of THP that exists in various polymeric forms in urine. Hence, Kobayashi and 

Fukuoka (2001) have tried to resolve the problem by solubilizing urinary THP 

using Triton X 100, EDTA and alkaline pH instead of conventional buffer such 

as phosphate buffer saline (PBS) prior to ELISA analysis. The authors showed 

that the combination of Triton X 100, EDTA and alkaline pH is the best 

solubilizing buffer for THP.  

Although immunoassay is selective and sensitive, it relies on the 

availability of specific polyclonal or monoclonal antibodies. Therefore, a lectin 

affinity bioassay without using antibodies was developed by Topcu (2002) to 

quantify the cytolytic activity of THP. The author employed lectin in the assay; 

lectin was suggested to have strong interaction toward THP and therefore the 

binding is proportional to the amount of THP involved in cytolytic activity. In view 

of this finding, the specific interaction of lectin and THP indicating lectin was 

used as capture material for development of ELISA. 
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1.4.6 Interaction of Lectin with THP 

 Lectins are glycoprotein of 60,000 - 100,000 Da molecular weights, 

which are known for their ability to recognize and bind certain types of 

carbohydrate residues. Most lectins are multimeric consist of non-covalently 

associated subunits. A lectin may contain two or more of the same subunit or 

different subunits (Pisztai, 1991). 

In addition, lectins are classified as unique group of proteins that 

attributed with specific carbohydrate binding sites. Thus, interaction of each 

lectins toward a particular carbohydrate structure is very specific, even 

oligosaccharides with identical sugar compositions can be distinguished (Boyd, 

1962; Pisztai, 1991).  

Lectin determinants in the carbohydrate moieties of glycoproteins 

have specific ligands for lectin binding. The reactivity of lectin is represented by 

binding power of the combination of two individual sugars (Wu, 2003). The 

interaction between a lectin and its receptor may vary greatly as a result of 

small changes in the carbohydrate structure of the receptor (Boyd, 1962). Thus, 

carbohydrate moieties of lectin are responsible for many biological functions.  

 Wu et al. (1995a) reported that THP in either native or its desialylated 

(asialo) contain important receptors for Triticum vulgaris (WGA). The sialic acid 

and its configuration impose on the oligosaccharide chains is of major important 

for the interaction with WGA. However, the interaction was lost after removal of 

sialic acid (Wu et al., 1995a; Wu et al., 1995b). Sherblom et al. (1988) explained 

that the strong interaction between THP and WGA is mediated by carbohydrate 

residues. Abbondanza et al. (1980) reported that the interaction between lectin 
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and THP is due to the carbohydrate specificity of lectin and the high affinity of 

oligosaccharide chains of THP for the lectin.  

The interaction of WGA to lectin receptor of THP is very specific and 

unique as if antigen-antibody or enzyme substrate interactions. Due to this 

reason, the WGA can be used as reagents for characterization of THP. 

Therefore, WGA can be used as capture material for development of an ELLSA 

to quantify urinary THP level. 

 

1.5 Urinary Proteome 

Urinary proteome is a term that represents the full protein profile of 

urine from the healthy individual. The content of urinary proteome contains not 

only plasma proteins but also kidney proteins (Pieper et al., 2004; Pisitkun et al., 

2004). Thus, urine can be very useful in clinical diagnostics as well as a 

potential source of biomarkers (Thongboonkerd, 2004). Urine is excreted daily 

from human body and therefore it can be obtained in large quantity. Although 

some of the biomarker present at low concentration in urine, they may be 

enriched in order to achieve the measurable concentration. Another advantage 

of using urine for diagnosis is it allows continual collection of test sample over 

lengthy time periods (Adachi et al., 2006; Smith et al., 2005).   

Urinary proteome provides sufficient information about the disease 

process affecting the entire renal tubules (Pieper et al., 2004). The pattern of 

urinary protein changes as a result of diseases particularly those affecting the 

kidney. In general, normal urinary proteins reflect a normal tubular physiology, 

however information of changes in urinary proteins excretion by various 

interventions is essential to provide better understanding about the tubular and 



 20

glomerular responses to physiological stimuli (Thongboonkerd, 2004). In order 

to discover novel disease biomarker of urinary proteome in human urine, both 

qualitative and quantitative analysis of a large number of patients and healthy 

subjects’ urine are needed (Pieper et al., 2004).  

Previously, the combination of SDS-PAGE and Western blotting were 

employed by using unconcentrated urine to map urinary protein of renal disease 

(Kshirsagar and Wiggins, 1986). The author found that many proteins in urine 

migrate with similar molecular weights and some proteins are not detected by 

silver stain. In addition, the specific identification of individual proteins using 

Western blotting is not feasible and limited by the availability of antibodies 

(Kshirsagar and Wiggins, 1986).  

 Recently, the advancement of mass spectrometry may be useful in 

complementing gel electrophoresis approach for identification of urinary 

proteins (Baldwin, 2004). Thus, the complete urinary proteome may be 

achieved. The mass spectrometry even is a powerful tool to discover biomarker 

of renal disease such as kidney stone. The state-of-the-art technologies 

integrated with protein enrichment technique, protein separation method and 

mass spectrometry (MS) should be conducted for biomarker discovery and 

protein analysis (Adachi et al., 2006). There are various protein enrichment 

techniques that can be used to concentrate urinary proteins. In many other 

studies, gel electrophoresis (SDS-PAGE or 2-D gel electrophoresis) was 

employed to separate and map protein expression at qualitative and 

quantitative level (Kshirsagar and Wiggins, 1986; Smith et al., 2005).  Using this 

method, protein expression of the sample obtained from healthy and diseased 

individuals can be compared. The appearance and disappearance of spots or 
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bands can provide information about differential protein expression, while the 

intensity of those spots or bands provides quantitative information about protein 

expression (Graves and Haystead, 2002). Thus, gel electrophoresis remains an 

essential component of proteomics. Furthermore, liquid chromatography mass 

spectrometry (LC/MS/MS) and/or Western blotting can be used to identify and 

characterize the urinary proteome (Thongboonkerd, 2004).  

 Spahr et al. (2001) applied gel electrophoresis and LC/MS/MS to 

identify proteins from unfractionated urine of healthy subjects. The authors 

stated that construction of urinary proteome map may provide useful information 

regarding differentially expressed proteins between the healthy and disease 

state. Hence, the urinary proteins pattern either in healthy subjects or patients 

should be consistent and comparative. In addition, Lafitte et al. (2002) 

described that the pattern of urinary proteins are specific either in healthy 

subjects or renal disease patients. Pisitkun et al. (2004) reported analysis of the 

urinary proteome of healthy subjects identified several proteins known to be 

involved in renal and systemic disease. 

 The database of urinary proteome is gradually expanded by the 

progressive investigation and studies. The goals are to build fundamental 

knowledge of renal physiology to define the pathophysiology of renal diseases 

and to identify novel biomarkers or new therapeutic targets. Thus, identification 

of an unique protein that is present either in healthy subjects or patients may a 

good candidate of biomarker (Pieper et al., 2004).  
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1.5.1 Biomarker  

Biomarker or biological marker is defined as a characteristic that is 

measured and evaluated objectively as an indicator of normal biological 

processes, pathological processes or pharmacologic responses to therapeutic 

intervention (Biomarker Definition Working Group, 2001).   

Biological fluids were suggested to reflect the ensemble of tissues 

present within a patient. The discovery of biomarker in biological fluids which is 

disease specific becomes a great challenge. In view of the fact that biological 

fluids do not have a corresponding genome or transcriptome that permits gene 

expression to be measured, DNA- or RNA-based diagnostics are not applicable 

to biological fluids (Anderson and Anderson, 2002). Therefore, proteomics 

approach is one of the few options for identifying biomarker in biological fluids. 

In some cases, the biomarkers of interest can be present in low concentration 

levels and masked by a high abundance protein or cover a wide range of 

chemical space, making the challenge to be great and critical (Drexler et al., 

2004). However, proteomics analysis has greatly increased our knowledge on 

the protein content of clinical important biological fluids. 

 

1.5.2 Discovery of Biomarker Using Proteomics Analysis 

Proteomics analysis of biological fluids is commonly applied to 

distinguish the diversity protein content in sample obtained from patients with 

specific disease and healthy subjects (Issaq et al., 2003). Initially, protein profile 

of healthy and specific disease individuals is compared to identify unique 

proteins which either presence in healthy or diseased individual. Subsequently, 

the proteins are digested by protease and then subjected to mass spectrometry 
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analysis. The mass spectrometry analysis can be categorized into biomarker 

discovery and proteomics diagnostic approach (Issaq et al., 2003). In the 

biomarker discovery approach, liquid chromatography is coupled with tandem 

mass spectrometry (MS/MS) to identify peptides that are unique or highly 

abundant in samples obtained from patients with specific disease state 

compared with healthy subjects. This approach generates copious of data and 

identify hundreds of proteins. However, it is very time consuming and hence 

limited number of comparative samples can be analyzed (Issaq et al., 2003).  

In the proteomics diagnostic approach, samples from healthy and 

disease affected individuals are applied to proteins chips that are modified with 

specific chromatographic resin. Subsequently, mass spectra of the bound 

proteins obtained and differences in peak intensities between sample sets are 

ascertained by bioinformatics algorithms (Petricoin et al., 2002). Most of the 

proteomics diagnostic approach does not reply on the actual identification of the 

specific protein(s) within the peak through which the diagnosis is determined, 

although identification of the selected peak can be pursued. This method 

becomes very popular due to its high throughput nature (Issaq et al., 2003). 

 

1.5.3 Identification and Validation of Biomarker 

The identification of a target protein is performed by comparative 

searches using protein databases or de novo sequencing. For a biomarker to 

be effective, it is necessary to accurately measure the small changes in 

intensities of the biomarker (most of the time at low level) in a complex matrix 

repeatedly on a large number of samples. Hence, the possible deviation of the 

results due to sample handling and the analytical technique itself need to be 



 24

kept at a minimum by developing a highly sensitive and quantitative analytical 

assay (Drexler et al., 2004). Therefore, appropriate sample preparation 

techniques (e.g., extraction, isolation and purification) and a suitable mass 

analyzer should be applied for monitoring of the biomarker. 

Three important steps was suggested as a general guideline for 

comprehensive analysis of biomarker discovery: (1) protein isolation to remove 

abundant proteins such as albumin and immunoglobulin without exclude other 

proteins that may alter the whole urinary proteome, (2) protein separation to 

reduce the complexity of the protein mixture and (3) peptide sequencing with 

high accuracy and rapid scanning (Drexler et al., 2004).  

Recent advancement in mass spectrometry integrated with gel 

electrophoresis, LC and/or multidimensional liquid chromatography (LC/LC) 

strategies have led to remarkable improvement in the ability for disease 

biomarker discovery. Thus, the combined techniques were used to identify and 

subsequently validate biomarker in the biological fluids.  

Quantitative protein expression profiling is a vital part in the proteomic 

analysis of healthy versus disease state. This will be the best option for protein 

quantification particularly in gel electrophoresis (SDS-PAGE or 2-D gel 

electrophoresis) where multiple proteins are present in one spot or band. Since 

tracking the protein responsible for differential staining is difficult, therefore 

changes in the protein expression level can be measured directly from mass 

spectrometry of a peptide ion derived from the protein (Graves and Haystead, 

2002). 

Typically, LC/MS/MS is performed to identify proteins and peptides 

sequence (Coon et al., 2005). The difference in intensity abundance of the 
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