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Abstract

The paper discusses a preliminary work on determining the radii of bubble columns i 950
flow process based on a set of simulated electrical capacitance tomography (ECT) datq fn
pipe is modeled and a model of an ECT sensor system is mounted around the periphe ':
the pipe to acquire ECT measurements for various values of bubble column rqgj, Th

measurement set and their corresponding radii values are used as the input ang outpU?
respectively, o a Mulli-Layer Percepfron (MLP) neural network in a fraining process, The'
trained MLP has been shown to be able to estimate the radii values of bubble columng
based on unseen ECT measurement.
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1. Introduction

Process interpretation is important in many industries. In oil transportation for example,
process interpretation is vital for improving the control of oil transportation and design of o
transportation equipment. One of the flow-regimes that occur during liquid flow is annular,
where a column of gas or air is formed in the middle of a pipe or vessel whilst the other
material is pushed towards the periphery of the process equipment (see figure 1). The gas
column size determination is crucial in order to obtain other important information about the
flow, such as void fraction and mass flow rate of a flowing component. It is often difficult to
determine the exact size of a gas column because it is located in the center of a process
equipment, where the sensitivity of a sensing system is very low. Hence, not many research

has focused on this matter.
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Figure 1. A schematic diagram of annular flow, (a) lateral view and (b) cross-
sectional view.

An Electrical Capacitance Tomography (ECT) system consists of a number of electrodes that
are able to detect the difference in dielectric permittivities between two moferiols.and
produce a change in capacitance measurement [1]. Pairs of all possible electrodes give @
set of difference in capacitance measurements associated to component distribution within
a cross-sectional area of the process equipment. Typically, the ECT measurements are Use

in conjunction with image reconstruction algorithms to produce cross-sectional images of the
sensed area. From the images, various process parameters such as gas column size €An be
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Biined. Nevertheless, the simple Linear Back Projection imaging method normally
2 ﬁuce distorted reconstructed images, while the iterative imaging techniques are too slow
L gl-fime processes [2]. Due to these drawbacks, gas column radii estimated via such

onstruction techniques may not be accurate,

) V.overCOm.e the problem, Artificial Neural Network (ANN) imaging approach has been
@ loyed [3]- This techniquge has been able to produce accurate Teconstructed images
g% around the centre part of a sensing area. Thus, the use of this approach should be

\ é to give accurate gas column radius estimations. However, in many cases, estimation of
FL rocess parameters is of more interest than the estimation of images. Hence, this
j h effort is channeled toward a direct method (i.e. that do not include image

Tesearc Cfo :
».P%&nstrucﬁon) of estimating gas column size from ECT measurements. By incorporating the
._fg%m network methodology, this direct method should be more efficient and cost effective
&bn the conventional imaging techniques.

g; ECT Model and Data

fheoretically, the ECT system parameters such as the number of electrodes, electrode size
and pipe wall thickness, affect the sensitivity of the system measurement. However, this
preliminary work focuses more on the estimation of bubble column radii using artificial neural

network approach.

for this preliminary investigation, the ECT model used is as schematically shown in figure 2.
The ECT sensor has 12 electrodes equally spaced around the pipe. Each electrode extends
to 22° of angular angle. The ratio between the ECT sensor and pipe radii is 1.2, and the ratio
petween the sensor screen and pipe radii is 1.4. The sensor is mounted around the periphery
of the pipeline at a point of interest. The pipeline material is perspex and the flowing material
isgas and crude oil.

bubble column
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Figure 2. A schematic diagram of the ECT model attached to the periphery of a pipe.

A total of 91 sets of ECT measurements corresponding to various radii values of gas column
hove been gathered using the designed ECT sensor. The simulation is done using an ECT
Simulator based on a two-dimensional finite-element method [4]. Each set of the ECT data
consists of 66 difference in capacitance measurements between all possible combinations of
pgirs of electrodes for a 12-electrode ECT system. The measurements are then normalized
using 5],
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—measured-capacitance between-electrodesi-andj-when-the-cross=section is fully fie

where N,-j is the normalized capacitance measurement between electrodes i andj, Cmeas
i o

the measured capacitance between electrodes i and j, C§* is the measured COpGCiionc
e

between electrodes i and j when the cross-section is fully filled with gas and cet is
i 8

d .
oil. With

Out of the total dataset generated, 70% of the dataset is used to train a Myl
Perceptron (MLP) neural network for the gas column radius determination.. The remainin
30% of the data was used to validate and test the trained system. The MLPs have bee?\
trained using the Levenberg-Marquardt training algorithm. Through the training Processey
an optimum MLP (i.e. one with an optimum number of processing elements) that prodUCe;
the least error when tested with the test dataset has been developed. Thisis done through ¢
“network-growing” method of determining the optimum number of processing elements in
the hidden layer of the MLP.

Lde[

The test errors have been calculated using the mean of absolute error (MAE) based on the
following equation,

] k
%MAE:E;|A{~E,.IXIOO% 2

where Kk is the total number of datasets, Aiis the actual oil height value for the i-th dataset
and Eiis the MLP-estimated oil height value for the i-th data. The results are then analyzed,

3. Results and Discussion

Table 1 shows the result of the "network-growing" method applied to investigate the
optimum number of processing elements needed in the hidden layer of the MLP. The
corresponding plot of the results is shown in figure 3. The plot also shows the standard
deviation error bars for each of the MAE values. It can be seen from the plot that the MAE
values decrease from about 0.57% to about 0.26% when the number of processing elements
increases from 1 to 7. They then start to increase when the MLP has 8 to 11 processing
elements in its hidden layer. When 12 processing elements are used, the MAE value drops a
little and then starts to.increase again. After this point, any decrease in the MAE value may
not be lower than that of 7 processing elements.

On the whole, the results showed that the system was able to estimate gas column radius to
about 0.26% of mean absolute error with a standard deviation of about £0.09%. This is
produced by an MLP that has 7 processing elements in its hidden layer. The results may be
better if the ECT sensor had been designed specifically for this purpose.

Table 1. MAE of produced by the MLP estimator at estimating bubble column radii of gas-ol
flows using the “network-growing" approach.

No. of processing Test set Standard
elements MAE (%) deviation (%)

1 0.5680 +0.1094

2 0.4700 +0.1623

3 0.4621 +0.1699

4 0.3676 +0.0434
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5 0.3016 +0.0649
6 0.2833 +0.0627
7 0.2619 +0.0911
8 0.2676 +0.0510 |
9 0.3101 1£0.0278
10 0.2871 +0.0537
11 0.3695 +0.0704
12 0.2999 +0.0588
13 0.3128 +0.1060
14 0.3138 +0.0579
15 0.3286 +0.0783
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Figure 3. MAE values produced by the MLP at estimating the bubble column radii for gas-oil
flows.

4. Conclusion

The work on bubble column radius determination has been described. The preliminary results
clearly demonstrate that it is feasible to obtain direct gas column radius estimation from ECT
measurements using artificial neural network approach. As discussed, the sensitivity of the
ECT sensor gets lower towards the center of the sensing area. Hence, proper investigation on
the design of the ECT sensor may help increase the sensitivity of the sensor system. This work is

in progress and could result in better accuracies of bubble column radii estimations by the
neural estimator.
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