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BIOJERAPAN KUPRUM(II) DAN KROMIUM(VI) PADA ENAPAN TERAKTIF :  
MODEL ISOTERMA DAN KINETIK 

 
 

Abstrak 
 

 
 Objektif kajian ini adalah untuk: (i) menilai kecekapan enapan teraktif terkultur 

makmal dalam penyingkiran Cu(II) dan Cr(VI) daripada larutan akueus secara 

berasingan dan gabungan, (ii) mengenalpasti model penjerapan keseimbangan yang 

sesuai bagi sistem logam tunggal dan gabungan dengan menggunakan enapan 

teraktif terkultur makmal dan (iii) mengenalpasti model penjerapan kinetik bagi sistem 

logam tunggal dengan menggunakan enapan teraktif terkultur makmal. Enapan teraktif 

yang digunakan dalam kajian ini dikulturkan dalam tiga buah reaktor kelompok 

berturutan (SBR) berskala makmal serbasama yang dioperasikan dengan mod 

PENGISIAN, TINDAK BALAS, PEMENDAPAN, PENGELUARAN dan REHAT dalam 

nisbah 2:12: 2.5: 1.5: 6 untuk tempoh 24 jam per kitaran. Enapan berusia 20-, 30- dan 

40-hari disediakan dengan membazir satu amaun tetap campuran reaktor daripada 

reaktor berkenaan sebelum berakhirnya mod TINDAK BALAS dalam setiap kitaran. 

Enapan disediakan dalam keadaan yang hidup dan kering. Ciri-ciri enapan teraktif 

kering ditentukan dengan spektrofotometri FT-IR, penentuan kandungan kation utama 

dan pentitratan potensiometri. Kajian keseimbangan biojerapan untuk sistem logam 

tunggal bagi Cu(II) dan Cr(VI) dijalankan dalam kelompok. Masa keseimbangan bagi 

Cu(II) dan Cr(VI) masing-masing adalah 4 dan 24 jam. Data keseimbangan biojerapan 

disesuaikan dengan model Langmuir, Freundlich dan Redlich-Peterson. Model 

Langmuir dan Freundlich dalam bentuk linear dan bukan linear digunakan dalam 

menyesuaikan data keseimbangan manakala hanya bentuk bukan linear bagi model 

Redlich-Peterson digunakan. Keputusan menunjukkan bahawa model Langmuir dan 

Freundlich dalam bentuk bukan linear adalah lebih baik untuk disesuaikan dengan 

data eksperimen Cu(II) dan Cr(VI) berbanding dengan bentuk linear. Model Langmuir 

dan Redlich-Peterson dalam bentuk bukan linear didapati lebih baik daripada model 



 xiii

Freundlich dalam menyesuaikan data keseimbangan Cu(II) manakala ketiga-tiga 

model memberi kesesuaian yang baik untuk Cr(VI). Dalam biojerapan Cu(II), enapan 

kering yang berusia 20-, 30- dan 40-hari memaparkan kapasiti penjerapan terendah 

pada pH 2 tetapi tertinggi pada pH 4. Bagi enapan hidup, tiada corak jelas bagi 

kapasiti penjerapan diperhatikan berhubung dengan pH dan usia enapan. Dalam 

biojerapan Cr(VI), kapasiti penjerapan tertinggi bagi enapan kering berusia 20- dan 40-

hari adalah pada pH 2 dalam julat pH 2 – 6. Kajian keseimbangan biojerapan dalam 

sistem logam gabungan dijalankan pada pH 2 dan 4. Pada pH 2, kapasiti penjerapan 

maksimum untuk Cr(VI) didapati berkurang secara mendadak daripada 15 ke 1.7 mg/g 

dalam kehadiran Cu(II). Ini menunjukkan bahawa Cu(II) mempunyai kesan 

antagonistik terhadap biojerapan Cr(VI) pada enapan. Pada pH 4, kapasiti penjerapan 

maksimum untuk Cu(II) didapati bertambah dari lebih kurang 9 kepada 12 mg/g dalam 

kehadiran Cr(VI) dan ini menunjukkan kesan sinergistik terhadap biojerapan Cu(II) 

pada enapan. Lima model kinetik, iaitu model pseudo-tertib pertama, pseudo-tertib 

kedua, tindak balas berbalik tertib-kedua, tindak balas tak berbalik tertib-kedua dan 

eksponensial berganda, digunakan untuk memuat dengan data kinetik biojerapan 

dalam sistem logam tunggal.  Bagi Cu(II), kesemua model dapat menyesuaikan data 

kinetik dengan baik kecuali model tindak balas berbalik tertib-kedua. Bagi data kinetik 

biojerapan Cr(VI), kesesuaian baik diperhatikan untuk kesemua model kecuali model 

pseudo-tertib kedua dalam bentuk linear dan model tindak balas berbalik tertib-kedua. 
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BIOSORPTION OF COPPER(II) AND CHROMIUM(VI) ONTO ACTIVATED SLUDGE : 
ISOTHERMS AND KINETIC MODELS 

 
 

Abstract 
 

 
 The objectives of this research are: (i) to evaluate the efficiency of laboratory-

prepared sludge for the removal of Cu(II) and Cr(VI) individually and in combination 

from aqueous solutions, (ii) to ascertain appropriate adsorption equilibrium models for 

both single and binary metal systems using the laboratory-prepared sludge and (iii) to 

ascertain appropriate adsorption kinetic models for the single metal system using the 

laboratory-prepared sludge. The sludge used in this study was cultivated in three 

identical laboratory-scale sequencing batch reactors (SBR) operated with FILL, 

REACT, SETTLE, DRAW and IDLE periods in a ratio of 2: 12: 2.5: 1.5: 6 for a cycle 

time of 24 h. Sludges of 20-, 30- and 40-day sludge ages were prepared by wasting a 

fixed amount of mixed liquor from the respective reactor just before the end of the 

REACT period during every cycle. The sludge was prepared in the live and dried forms. 

The characteristics of dried sludges were determined by the FT-IR spectrophotometry, 

determination of major cation content and potentiometric titration. Biosorption 

equilibrium studies for the single metal systems of Cu(II) and Cr(VI) were carried out in 

batches. The equilibrium times for Cu(II) and Cr(VI) were found to be 4 and 24 h, 

respectively. The equilibrium biosorption data were fitted to the Langmuir, Freundlich 

and Redlich-Peterson models. The Langmuir and Freundlich models in the linearized 

and non-linear forms were used to fit the equilibrium data whereas only the non-linear 

form for the Redlich-Peterson model was used. The results show that the non-linear 

forms for the Langmuir and Freundlich models were better fitted to the experimental 

data for Cu(II) and Cr(VI) than the linearized forms. Among the non-linear forms of the 

models, the Langmuir and Redlich-Peterson models were better than the Freundlich 

model in fitting the adsorption equilibrium data for Cu(II) whereas all the three models 

provided good fit for Cr(VI). In the Cu(II) biosorption, dried sludges of all the sludge 
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ages exhibited the lowest adsorption capacity at pH 2 but the highest at pH 4. For live 

sludges, no pronounced trend for the adsorption capacity was observed with respect to 

pH and sludge age. In the Cr(VI) biosorption, the highest adsorption capacities of 20- 

and 40-day dried sludges were at pH 2 in the pH range of 2 - 6. The biosorption 

equilibrium studies for binary metal system were conducted at pH 2 and 4. At pH 2, the 

maximum adsorption capacity for Cr(VI) was found to decrease drastically from 15 to 

1.7 mg/g without and with the presence of Cu(II). This showed that Cu(II) had an 

antagonistic effect on the biosorption of Cr(VI) onto the sludge. At pH 4, the maximum 

adsorption capacity for Cu(II) was found to increase from around 9 to 12 mg/g without 

and with the presence of Cr(VI) indicating a synergistic effect of Cr(VI) on the 

biosorption of Cu(II) onto the sludge. Five kinetic models, namely pseudo-first-order, 

pseudo-second-order, second-order reversible reaction, second-order irreversible 

reaction and double-exponential models, were applied to the biosorption kinetic data in 

the single metal systems. In the case of Cu(II), all the models fitted the kinetic data 

very well except for the second-order reversible model. For the kinetic data of 

biosorption of Cr(VI), the best fit was obtained with all the models except the linearized 

form of the pseudo-second-order and second-order reversible reaction models. 
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1.0 Introduction 

The discharge of industrial wastewater containing toxic heavy metals to the 

environment is becoming a serious environmental issue. Metals are mostly originated 

from industries such as metal finishing, chemical, electronic and electrical, printing and 

packaging. In order to control and prevent pollution, as well as to protect and enhance 

the quality of the environment, environmental legislation has been enacted in most 

countries. In Malaysia, the Environmental Quality Act was promulgated in 1974 and 

the Department of Environment is empowered to enforce the Act.  

 

As heavy metals pose serious environmental problem and are dangerous to 

human health, it is very important to treat the metal-contaminated wastewaters before 

being released to the environment. Among all heavy metals, ingestion of copper, 

chromium and zinc beyond permissible quantities causes various chronic disorders in 

human beings. In this research, copper and chromium were selected because of their 

widespread use in industries. 

 

1.1 Heavy metals 

Heavy metals refer to metallic elements that have specific gravities greater 

than 4.0 and are toxic or poisonous at low concentrations. Examples of heavy metals 

include chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), 

molybdenum (Mo), silver (Ag), mercury (Hg), cadmium (Cd), nickel (Ni), tin (Sn), lead 

(Pb), antimony (Sb), bismuth (Bi), and selenium (Se). Heavy metals are natural 

components from the earth’s crust. They cannot be destroyed or degraded. In very 

small amounts, many of these heavy metals are essential for normal development of 

biological cycle. However most of these heavy metals become toxic at high 

concentrations due to their ability to accumulate in living tissues. Eventually, the heavy 

metals threaten humans as they become pre-concentrated throughout the food chain.  
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1.2 Sources of heavy metals (Copper and Chromium) 

Copper(II) and chromium(VI) ions are serious environmental pollutants, 

frequently encountered together in industrial wastewaters, including those from mining, 

metal finishing, plating, electroplating, metal processing, dyeing and petroleum 

industries. Copper and chromium were chosen for biosorption studies with regard to 

their wide use in industry and potential pollution impact. The worst polluter is the metal 

finishing, plating and metal processing industries. According to the Environment 

Quality Act 1974, the permitted concentrations for copper(II) and chromium(VI) 

discharged in effluents are 1.0 and 0.05 mg/L, respectively. 

 

1.2.1 Copper 

Copper usually occurs in nature as oxides and sulphides. In acidic 

environments, free aqueous Cu2+ dominates. At pH 6 – 8, the predominant species are 

Cu2+, Cu(OH)2, CuHCO3
+, CuCO3, and CuOH+. The major species are Cu(OH)4

2- and 

Cu(OH)3
- at pH more than 10 (Bodek et al., 1998). Copper is an essential substance to 

human life. Copper is found in a variety of enzymes and is used for biological electron 

transport. Like all heavy metals, it is potentially toxic, especially at high concentrations. 

Thirty grams of copper sulfate is potentially lethal in humans. In high doses, it can 

cause anemia, liver and kidney damage, and stomach and intestinal irritation. Wilson's 

disease, a disease that causes the body to retain copper can lead to brain and liver 

damage if untreated. Inhalation of copper produces symptoms similar to those of 

silicosis and allergic contact dermatitis. Copper normally occurs in drinking water from 

copper pipes, as well as from additives designed to control algal growth. The 

suggested safe level of copper in drinking water for humans varies depending on the 

source, but tends to be pegged at 1.3 mg/L according to the US Environmental 

Protection Agency. Too much copper in water has also been found to damage marine 

life. The observed effect of these higher concentrations on fish and other creatures is 

damage to gills, liver, kidneys, and the nervous system. Common oxidation states of 
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copper include the less stable copper(I) state, Cu+, and the more stable copper(II) 

state, Cu2+, which forms blue or blue-green salts and solutions. Under unusual 

conditions, a +3 state and even an extremely rare +4 state can be obtained. 

 

1.2.2 Chromium 

The most common oxidation states of chromium are +2, +3, and +6, with +3 

being the most stable whereas +1, +4 and +5 are rare. Chromium compounds of 

oxidation state +6 are powerful oxidants. Chromium(0) is unstable in oxygen, 

immediately producing a thin oxide layer that is impermeable to oxygen and protects 

the metal below. Chromium hexavalent (VI) compounds, are used as pigments for 

photography, and in pyrotechnics, dyes, paints, inks, and plastics. They can also be 

used for stainless steel production, textile dyes, wood preservation, leather tanning, 

and as anti-corrosion coatings. 

 

Trivalent chromium occurs naturally in many fresh vegetables, fruits, meat, 

grains, and yeast, and is often added to vitamins as a dietary supplement. Trivalent 

chromium, Cr(III), is required in trace amounts for sugar metabolism in humans, and its 

deficiency can cause chromium deficiency. In contrast, hexavalent chromium is very 

toxic. Potassium dichromate is a powerful oxidizing agent and is the preferred 

compound for cleaning laboratory glassware of any possible organics. It is used as a 

saturated solution in concentrated sulphuric acid for washing the apparatus. Chrome 

green is the green oxide of chromium, Cr2O3, used in enamel painting, and glass 

staining. Chrome yellow is a brilliant yellow pigment, PbCrO4, used by painters. 

Chromic acid has the hypothetical structure H2CrO4. Neither chromic nor dichromic 

acid is found in nature, but their anions are found in a variety of compounds. 

Chromium trioxide, CrO3, the acid anhydride of chromic acid, is sold industrially as 

"chromic acid". Chromium is present in the electroplating wastewater as Cr(VI) in the 

form of oxyanion, such as chromates (CrO4
2-), dichromates (Cr2O7

2-) and bichromates 
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(HCrO4
-). Hexavalent chromium exists as different form depending on the pH. The 

species of H2CrO4 predominates at pH less than 1, HCrO4
- at pH between 1 and 6, and 

CrO4
2- at pH above 6. The dichromate ion, Cr2O7

2- , exists when the concentration of 

chromium exceeds approximately 1 g/L (Dionex,1996). 

 

1.3 Conventional metal-removal technologies 

In recent years, the removal of heavy metals ions from wastewaters has 

received a great deal of attention. There are several methods currently available for 

the removal of heavy metals from industrial wastewaters. The main methods are 

chemical precipitation, ion-exchange, membrane technologies, chemical reduction, 

electrolytic processes and adsorption. In conventional practice, chemical precipitation 

is the most commonly employed technology for metals removal (Vazquez et al., 2002). 

However, many of these approaches can be less cost effective or difficult for practical 

use. These processes have significant disadvantages including incomplete metal 

removal at low concentrations in vast wastewater quantities.  

 

Chemical precipitation is a widely used, proven process for the removal of 

metals and other inorganics, suspended solids, fats, oils, greases and some other 

organic substances (including organophosphates) from wastewater. Precipitation 

involves the alteration of the ionic equilibrium of a dissolved metallic compound to 

produce an insoluble precipitate. The process typically uses an alkaline reagent to 

cause the solubility of the metal ions to decrease, and thus precipitate out of solution. 

The chemicals most frequently used for precipitation of metals are hydroxides, 

sulfides, and carbonates. Majority of present technology is based on hydroxide 

precipitation. In certain cases where heavy metals are complexed, or at concentration 

below the level of minimum hydroxide solubility, sulfide precipitation is a viable 

alternative. Carbonate precipitation is used where it provides superior precipitation 
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properties or lower effluent concentrations. The disadvantage of precipitation is the 

production of sludge which constitutes a solid waste disposal problem. 

 

Ion exchange is a versatile separation process used to remove metal 

contaminants from aqueous wastewater and to recycle or discharge the treated 

solution. It involves the use of an ion selective resin to remove ionic contaminants such 

as metals from the solution. Three basic types of resins, namely, cation exchange 

resins, anion exchange resins, and metal selective chelating resins are employed. The 

major attraction of ion exchange is the broad range of resins manufactured to treat 

specific wastewaters. The ion exchange resin works selectively to remove only the 

toxic compound while allowing the non-toxic dissolved ionic solid to remain in solution. 

Ion exchange can provide an effective pollution control in a wide range of applications 

such as water purification and chemical recovery. However, a high capital expenditure 

is usually required in order to purchase and operate such a system. Furthermore, the 

economics of this method depend very strongly on the energy price and the amount of 

electricity consumed per treated volume of metal solution. 

 

Membrane technologies such as reverse osmosis and electrodialysis are used 

commercially to recover dissolved metals from aqueous wastes generated through 

electroplating or metal etching processes. The technology is applicable to specific 

wastewaters, provided pretreatment measures can be used to remove suspended and 

dissolved solids and ensure acceptable membrane lifetimes. Current membrane 

processes tend to be hindered by the problems of limited flow-rates, instability of the 

membranes in salt and acid conditions and fouling by inorganic and organic species. 

 

Chemical reduction as a waste treatment process is an established and well 

developed technology. The reduction of hexavalent chromium’s oxidation state to 

decrease toxicity and encourage precipitation is presently used as a treatment 
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technology in numerous electroplating facilities. Major advantages of using chemical 

reduction in the case of reducing hexalent chromium include operation at ambient 

conditions, automatic controls, high reliability, and modular process equipment. 

Hexavalent chromium can be reduced to trivalent chromium, which can then be 

removed by precipitation. The pH of the aqueous solution is reduced to 2 with 

hydrochloric or sulfuric acid. Then the reducing agents such as sulfur dioxide and 

sodium metabisulfite are added. The pH is increased to 8.5 by addition of lime and the 

trivalent chromium is precipitated. An alternative reducing agent applicable to most 

heavy metals is sodium borohydride. The disadvantage of this process is the utilization 

of chemicals throughout the reduction process.  

 

Electrolytic process is used to remove dissolved metals from rinse waters 

generated by metal plating and etching processes. In this case, an electrolytic cell is 

attached to the rinse bath following the plating or etching tank, the rinse solution is 

circulated through the electrolytic cell. As the solution passes through the cell, 

dissolved metals ions are reduced and deposited on the cathode in elemental form. 

There are a number of different electrolytic cell designs. The use of one design over 

another depends upon the application. Noble metals such as gold and silver are easy 

to remove electrolytically using flat plate electrode, but metals such as copper, tin, lead 

and cadmium are more difficult to remove and sometimes may require the use of the 

more complex electrolytic cell designs.  

 

Adsorption was first observed by Lowitz in 1785 and applied as a process for 

the removal of colour from sugar during refining. The first granular activated carbon 

units were used in the treatment of water supplies in Hamm, Germany in 1929 and at 

Bay City, Michigan in 1930 (Montgomery, 1985).  Adsorption on activated carbon is a 

recognized method for the removal of heavy metals from wastewater. Activated carbon 

adsorption involves the separation of a substance from one phase, typically an 



 7

aqueous solution, and the concentration of the substance at the surface of an 

activated carbon adsorbate. Adsorption is a relatively simple method for the removal of 

heavy metals compared to other conventional methods. Important adsorbents in 

industrial use are activated carbon, silica gel and alumina. Although promising results 

have been reported, the high cost of the adsorbents, which increases the cost of the 

wastewater treatment limit their use.  

 

1.4 Biological technologies (biosorption and bioaccumulation) 

Searching for a low cost and easily available adsorbent has led to the selection 

of materials from agricultural and biological origin, along with industrial by-products, as 

adsorbents. Biological treatment using either living or dead microorganisms or plants, 

offers unique capabilities to concentrate and reduce the levels of heavy metals to 

environmentally acceptable limits in a economically and environmentally friendly 

manner (Volesky, 2001).  

 

From the terminological point of view, the term bioaccumulation is usually used 

for metal uptake by living cells and the term biosorption for passive sequestering by 

dead cells (Volesky, 1990). Biosorption and bioaccumulation belong to the group of 

biological methods suitable for heavy metal removal from wastewater. These methods 

have many advantages over the conventional methods in that they are highly 

selective, more efficient, easy to operate and cost effective for the treatment of large 

volume of wastewaters containing low level of heavy metals. The use of dead biomass 

eliminates the problem of toxicity and no activation or chemical modifications of the 

sorbent are necessary.  

 

Biosorption or bioadsorption is in fact a passive immobilization of metals by 

biomass. A variety of microbial and other biomass types has been shown to have good 

biosorption potential and several have been proposed as the basis for treatment for 
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metal-bearing industrial wastewaters. The microorganism’s cell wall consists mainly of 

polysaccharides, lipids and proteins, which have many binding possibilities for metals.  

 

1.4.1 Biosorbent 

There is a large volume of literature relating to the performance of different 

biosorbents for the removal of different heavy metals (Bailey et al. 1999). Cost is a 

very important factor when considering materials for use as biosorbents. A material 

can be deemed as low cost if it requires little processing, is abundant in nature, or is a 

by-product or waste material from another industry (Bailey et al. 1999).  

 

 Agricultural wastes have been applied as biosorbents for Cu(II) and Cr(VI) 

remediation from wastewaters. The most commonly-used agricultural wastes or by 

products include sawdust (Hamadi et al., 2001), sugar beet pulp (Pehlivan et al., 

2006), shea butter seed husks (Eromosele et al., 1996), rice hull (Tang et al., 2003), 

papaya wood (Saeed et al., 2005) and coconut shell (Babel and Kurniawan, 2004).  

 

Besides agricultural waste, removal of Cu(II) and Cr(VI) using industrial waste 

or by products has been explored. The most important of these adsorbents are used 

tyres (Hamadi et al.,2001), activated sludge (Aksu et al., 2002, Hammaini et al., 2002, 

Wang et al., 2005, Gulnaz et al., 2005, Hawari and Mulligan, 2006), lignin (Mohan et 

al., 2006) and  fly ash (Pehlivan et al., 2006).   

 

For simplicity, biomass-derived metal sorbents have been subdivided into 5 

categories: (a) algae and seaweed, (b) fungi and yeast, (c) bacteria, (d) plants and (e) 

wood, grasses, compost, peat moss (Mohan and Pittman Jr., 2006). These biomasses 

produced encouraging results in removing heavy metals from dilute aqueous solutions.  
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(a) Algae and seaweed used for Cu(II) and Cr(VI) removal include Chlorella kessleri 

(Kaduková and Virčíková, 2004 ), Caulerpa lentillifera (Apiratikul and Pavasant, 2006), 

Chlamydomonas reinhardtii (Arıca et al., 2005), F. vesiculosus (Cochrane et al., 2006), 

C. vulgaris (Acikel and Aksu, 1999), Sargassum sp. (Valdman et al., 2001) and 

Ecklonia maxima, Lessonia flavicans and Durvillea potatorum (Aderhold et al., 1996).  

 

(b) Fungi and yeast 

Various types of fungal biomass and yeast have been used for the removal of Cu(II) 

and Cr(VI) from wastewater. These include Rhizopus arrhizus (Sağ and Kutsal, 1996, 

Prakasham et al., 1999) and waste beer yeast (Han et al., 2006).  

 

(c) Bacteria 

Biosorption of Cu(II) and Cr(VI) using bacteria gave promising results. Sphaerotilus 

natans (Esposito et al., 2001), Nocardia sp. (Sadowski, 2001), Arthrobacter sp. 

(Pagnanelli et al., 2000), Bacillus sp. (Nourbakhsh et al., 2002), Ochrobactrum 

anthropi (Ozdemir et al.,2003), Bacillus thuringiensis (Sahin and Öztürk, 2005) and 

Aeromonas caviae (Loukidou et al., 2004) have been used for Cu(II) and Cr(VI) 

remediation.  

 

(d) Plants 

Cu(II) and Cr(VI) remediation were studied using various plants, including Thuja 

orientalis (Nuhoglu and Oguz, 2003), olive pomace (Pagnanelli et al., 2005), Pinus 

sylvestris (Ucun et al., 2002) and  Tectona grandis l.f. (King et al., 2006).  

 

(e) Wood, grasses, compost, peat moss 

The ability of wood to remove Cu(II) and Cr(VI) from wastewater was investigated by 

Saeed et al. (2005). Utilization of peat moss for treating Cu(II) and Cr(VI) contaminated 
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wastewater was carried out by Ho and Mckay (2000), Ma and Tobin (2003), Ma and 

Tobin (2004) and Cochrane et al. (2006). 

 

1.4.2 Removal of metals by biosorption 

The literature reviewed below presents some of the common heavy metals 

such as Cu(II), Cr(VI), Cd(II), Ni(II) and Pb(II) studied by researchers. The literature 

review was divided into two parts, namely single metal and binary metal systems. 

 

1.4.2.1 Single metal system 

The biosorption of Cr(VI) in aqueous solution onto native, heat and acid-treated 

microalgae Chlamydomonas reinhardtii was investigated by Arıca et al. (2005). The 

Langmuir and Freundlich isotherm models were found to describe well the 

experimental data. The kinetics of Cr(VI) biosorption on the biomass was determined 

with the first and second-order equation. The experimental data were better fitted with 

the second-order equation than the first-order equation. 

 

Biosorption of Cr(VI) was studied by Prakasham et al. (1999) using free and 

immobilized Rhizopus arrhizus in stirred tank and fluidized bed reactor at pH 2. The 

immobilized biomass exhibited similar adsorption capacity as free biomass as 

evaluated using the Freundlich adsorption isotherm. The studies with fluidized bed 

reactor revealed higher efficiency in Cr(VI) removal over stirred tank reactor.  

 

Vijayaraghavan et al. (2005) reported Ni(II) biosorption onto Sargassum wightii, 

a brown marine algae, in batch experiments. The equilibrium data obtained at pH 3.0 

to 4.5 have been analyzed using five two-parameter models (Langmuir, Freundlich, 

Temkin, Dubinin-Radushkevich and Flory-Huggins) and five three-parameter models 

(Redlich-Peterson, Sips, Khan, Radke-Prausnitz and Toth). From the results obtained, 

the Toth equation provided the best model for nickel biosorption data at all pH 
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conditions. Besides, the three-parameter models better described the nickel 

biosorption data compared to two-parameter models.  

 

Cochrane et al. (2006) compared three biosorbents, crab carapace, the 

macroalgae Fucus vesiculosus and peat with two commercial materials, an activated 

carbon and an ion-exchange resin for the removal of Cu(II) from aqueous media. 

Kinetic models of Lagergren first-order, pseudo-second-order and intraparticular 

diffusion were used to model the data. The kinetic process for all materials was found 

to follow the pseudo-second-order rate model. Ion exchange was found to be the main 

mechanism occurring in the biosorption of Cu(II) using crab carapace, Fucus 

vesiculosus and peat. Langmuir and Freundlich isotherms were used to describe the 

adsorption equilibrium data. It was found that Langmuir and Freundlich isotherm 

models could not be fitted to the experimental data for peat and activated carbon. 

Based on the results from the study, it was suggested that both crab carapace and 

Fucus vesiculosus were effective and efficient biosorbent materials for the removal of 

copper from aqueous solution and may be considered as viable alternatives to 

activated carbon and ion-exchange resin.  

 

Esposito et al. (2001) utilized Sphaerotilus natans for the biosorption of Cu(II) 

and Cd(II), respectively, from aqueous solution. Equilibrium biosorption studies of 

Cu(II) and Cd(II) were carried out to investigate the effects of pH and biomass 

concentration. Equilibrium modelling was performed for both metals by using the 

Langmuir, Freundlich and Redlich-Peterson adsorption models. The Langmuir model 

was found to be the most suitable model to fit the data for both metals. 

 

Sahin and Öztürk (2005) reported batch adsorption of aqueous Cr(VI) using 

dried vegetative cell and spore-crystal mixture of Bacillus thuringiensis. Cr(VI) ions 

uptake of Bacillus thuringiensis spore-crystal mixture exhibited better performance 
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than dried vegetative cell of Bacillus thuringiensis. The Scatchard, linearized form of 

the Langmuir equation, were used to obtain more compact information about the 

interaction between Cr(VI) ions and biosorbents. The plot results are further studied 

using Langmuir and Freundlich models. The adsorption data provided an excellent fit 

to both the Langmuir and Freundlich isotherms. 

 

 Biosorption of Cr(VI) from aqueous solutions on Aeromonas caviae particles 

was investigated in a well-stirred batch reactor by Loukidou et al. (2004). Equilibrium 

and kinetic experiments were performed at various initial bulk concentrations, biomass 

loads, temperatures and ionic background. The adsorption equilibrium data fitted the 

Langmuir model a little better than the Freundlich model. Several chemical reaction 

kinetic models included Ritchie second-order equation and pseudo-second-order were 

used to identify a suitable kinetic equation. Predictions based on the pseudo-second-

order rate expression were found in satisfactory accordance with experimental data. 

 

 Cone biomass of Thuja orientalis was assessed for its capability for Cu(II) 

removal from wastewater with respect to pH, contact time, temperature, agitation 

speed at several initial metal ion and biosorbent concentrations (Nuhoglu and Oguz, 

2003). The adsorption constants were defined according to the Freundlich, Langmuir 

and BET isotherm models. The experimental data were fitted well to the Langmuir 

adsorption model.  

 

The applicability of cone biomass of Pinus sylvestris in Cr(VI) removal from 

aqueous solution was reported by Ucun et al. (2002). Decreasing pH from 7.0 to 1.0 

increased the removal extent of Cr(VI) and Freundlich isotherm was used to calculate 

the adsorption constants. 
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 Ünlü and Ersoz (2006) studied the adsorption of Cu(II), Pb(II) and Cd (II) metal 

ions onto sporopollenin. Adsorption on sporopollenin can be expressed better with the 

Freundlich adsorption isotherm rather than the Langmuir and D-R isotherms. 

Experimental data were also evaluated using the pseudo-first, pseudo-second and 

intraparticle diffusion kinetic models. Adsorption processes for Cu(II), Pb(II) and Cd (II) 

ions were found to follow the pseudo-second-order kinetic model. Intraparticle diffusion 

was found to take part in adsorption processes but it could not be accepted as the 

primary rate-determining step. Adsorption of heavy metal ions onto sporopollenin was 

found to occur with an ion-exchange process and chelating effect of the functional 

groups on sporopollenin. 

 

 Studies on a batch adsorption system using Tectona grandis l.f. as the 

biosorbent to remove Cu(II) from aqueous solution were performed under various 

conditions such as different initial concentrations, pH, adsorbent dosage and 

adsorbent particle size (King et al., 2006). The experimental equilibrium data were 

fitted with the Langmuir and Freundlich models. The best model to the experimental 

equilibrium data was the Langmuir model. The optimum pH value was found to be 5.5. 

The pseudo-first and pseudo-second order kinetic models were used to describe the 

kinetic data. The kinetics of the adsorption of Cu(II) on Tectona grandis l.f. was found 

to be better described with the pseudo-second-order model. 

 

 Adsorbent materials derived through pyrolysis and activation from waste 

carbonaceous materials such as used tyres and sawdust were reported to have 

comparable performance to commercial activated carbon in the removal of Cr(VI) from 

aqueous solution (Hamadi et al., 2001). The results indicated that the optimum pH for 

the removal of all types of carbon was around 2. The batch adsorption kinetics have 

been tested for a first-order reversible reaction, pseudo-first-order and pseudo-second-

order reaction. The pseudo-second-order reaction model provides the best correlation 
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of the data. The equilibrium data for adsorption of Cr(VI) onto the carbon followed the 

Langmuir model. The negative values of the free energy change (∆G0) at different 

temperatures indicate the endothermic nature of Cr(VI) adsorption on the carbons. 

 

 The use of non-living anaerobic biomass treated with Ca ions appeared to be a 

promising biosorbent to remove Pb(II), Cd(II), Cu(II) and Ni(II) from aqueous solution 

(Hawari and Mulligan, 2006). The cation exchange capacity of treated biomass was 

found to be comparable to the metal binding capacities of commercial ion exchange 

resin. The initial pH value of the solution affected metal adsorption. The pH effects 

were not significant over the pH range of 4.0 to 5.5 but the uptake capacity of biomass 

decreased at lower pH values. The data pertaining to the adsorption dependence upon 

metal concentration fitted to Langmuir isotherm. 

 

 The equilibrium and kinetic characteristics of Cu(II) adsorption on partially 

deacetylated prawn shell were studied in batch stirred-tank experiments (Chu, 2002). 

The extent of Cu(II) removal increased with an increase in pH. Both the Langmuir 

model with pH-dependent parameters and the extended Langmuir-Freundlich model 

with pH-independent parameters account very well for the equilibrium data. A 

diffusion-based model and two surface reaction rate models, a second-order reversible 

reaction model and a second-order irreversible reaction model were used to describe 

the transient behaviour of the batch contactor. Modelling studies using two different 

second- order surface reaction models demonstrated that transient profiles obtained 

experimentally for a range of initial metal concentrations and adsorbent dosage were 

in good agreement with calculated curves of both models provided their rate constants 

were properly correlated with the two system variables. In contrast, deviation exists 

between experimental data and theoretical curves calculated from a diffusion-based 

model. 
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 The biosorption of Cu(II) and Pb(II) from aqueous solutions by dried activated 

sludge was investigated with respect to initial pH, initial metal ion concentration and 

temperature (Wang et al., 2005). The results showed that both the heavy metals 

uptake processes obeyed the pseudo-second-order kinetics. The equilibrium data 

fitted well to both Langmuir and Freundlich adsorption models. The main mechanism 

of Cu(II) and Pb(II) biosorption on dried activated sludge was binding of heavy metals 

with the amide I group. 

 

 The kinetics of adsorption of Pb(II), Cu(II) and Ni(II) onto sphagnum moss peat 

was evaluated as a function of initial metal concentrations and peat doses using 

pseudo-second-order rate equation (Ho and Mckay, 2000). The biosorption of three 

divalent metals onto sphagnum moss peat was described by pseudo-second-order 

based on the assumption that the rate limiting step was chemical sorption or 

chemisorption involving valency forces through sharing or exchange of electrons 

between sorbent and sorbate. The rate constant, equilibrium adsorption capacity and 

the initial adsorption rate were calculated and an empirical model was derived for 

predicting the adsorption capacity of metal ions adsorbed.  

 

Sadowski (2001) assessed the effect of biosorption of Pb(II), Cu(II) and Cd(II) 

on the zeta potential and flocculation of Nocardia sp. Biosorption of these metals was 

due to the net negative charge of the biomass surface and the degree of 

electronegativity of the metal ions. The electrostatic interaction of metal ions with the 

negatively charged functional groups on the bacteria surface was proposed as the 

primary mechanism of biosorption. The electrokinetic data showed that the isoelectric 

point of Nocardia cells was around pH 3.5. An increase of the metal ion concentration 

led to a decrease in the negative value of zeta potential of the bacteria cell. Usage of 

the combination of oppositely charged flocculant and surfactant was found to be 

suitable for the separation of bacteria cells after the biosorption. 
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The biosorption of Cu(II) ions from aqueous solution by dried activated sludge 

was investigated in batch systems with respect to pH, initial metal concentration and 

particle size by Gulnaz et al. (2005). The optimum pH and temperature for Cu(II) 

biosorption were 4.0 and 20 oC, respectively. Langmuir and Freundlich isotherms were 

fitted very well with studied temperature and concentration ranges. The biosorption of 

Cu(II) on dried activated sludge was determined as an exothermic reaction. The 

pseudo-first-order, pseudo-second- order and intraparticle diffusion model were 

applied to analyze the biosorption data. The pseudo-second-order was found to be the 

most appropriate model to describe the biosorption system. The FT-IR spectrum 

showed that the different functional groups of dried activated sludge were responsible 

in binding metal ions or protons in aqueous solution. 

 

Ho et al. (2004) assessed the kinetics and equilibrium of Pb(II) adsorption onto 

tree fern with respect to initial concentration and temperature. Three equilibrium 

models, namely the Langmuir, Freundlich and Redlich-Peterson isotherms were used 

to analyze the adsorption data. The Langmuir and Redlich-Peterson isotherms were 

found to have higher correlation coefficients than that of Freundlich isotherm. The 

pseudo-first-order, pseudo-second-order and the chemical phenomenon model were 

applied to fit the kinetic data. Adsorption of Pb(II) fitted the pseudo-second-order best. 

The results on the effect of temperature suggested the adsorption rate-controlling step 

was likely chemical in nature for the adsorption of Pb(II) on tree fern. 

 

The ability of bacteria Arthrobacter sp. to remove Cu(II), Cd(II) and Fe(II) was 

evaluated and the chemical modeling of experimental data was applied to interpret the 

mechanism of biosorption (Pagnanelli et al., 2000). The potentiometric titration of an 

aqueous cellular suspension showed that the biomass cell wall had two weakly acidic 

sites. Adsorption isotherms obtained from the subsequent additions method, SAM, 

were found to be pH dependent. A chemical model was developed based on a 
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possible set of reactions between ions in solution and biomass. Copper biosorption 

between pH 3-5 was mainly due to two mechanisms, namely ion exchange and 

complexation while for pH above 5, the suggested mechanism involved was superficial 

microprecipitation.  

 

 A dead exopolysaccharide producing bacterium, Ochrobactrum anthropi was 

found to be capable of removing Cr(VI), Cu(II) and Cd(II) from single metal ion solution 

(Ozdemir et al., 2003). Experiments were performed as a function of pH, initial 

concentration and biosorption time. The optimum pH values for Cr(VI), Cu(II) and 

Cd(II) were 2.0, 3.0 and 8.0, respectively. Biosorption data fitted both the Freundlich 

and Langmuir isotherms.  

 

Papaya wood was evaluated as a new biosorbent for Cu(II), Cd(II) and Zn(II) 

removal from their aqueous solutions as a function of pH, contact time, amount of 

biosorbent and initial metal ion concentration (Saeed et al., 2005). The affinity of 

papaya wood to adsorb metals was in the order of Cu(II)>Cd(II)>Zn(II). The biosorption 

data fit perfectly to the Langmuir isotherm. The biosorption kinetics obeyed the 

pseudo-second-order rather than pseudo-first-order models. Based on the desorption 

results, it was concluded that desorption process of all the three metals based on the 

treatment of papaya wood with 0.1 N HCl  was almost 100 % complete. 

 

The sugar beet pulp (SBP) and fly ash (FA), an industrial by-product and solid 

waste of sugar industry were utilized as potential low cost sorbents for the removal of 

Cu(II) and Zn(II) ions from aqueous solution (Pehlivan et al., 2006). Parameters such 

as initial pH, adsorbent dose, initial metal ion concentration, and contact time on 

adsorption of Cu(II) and Zn(II) onto the SBP and FA were studied. Adsorption of metal 

was pH dependent. The maximum uptake of Cu(II) and Zn(II) occurred at pH 5.5 and 

6.0, respectively, for SBP and at pH 5.0 and 4.0, respectively, for FA. The adsorption 
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data for SBP fitted very well to the Freundlich model and those for the FA fitted to the 

Langmuir model for Zn(II) and Freundlich model for Cu(II). The adsorption data for FA 

in the adsorption of Zn(II) suggested that the monolayer adsorption occurred mainly 

due to ion exchange. The presence of low concentration of Na and Cl ions did not 

reveal any significant effect on the adsorption of both metals by SBP and FA. 

 

  The literature review above indicated that there were many studies on the 

biosorption of copper(II) and chromium(IV) as single metal using various kind of 

biosorbents. However, the presence of only one kind of heavy metal ion is a rare 

situation either in nature or in wastewaters. The following review presents the results 

from those researchers who studied the biosorption of two metal ions simultaneously 

onto biosorbents in binary metal system. In comparison, relatively fewer studies were 

conducted on the biosorption of binary system consisting of two metal species of 

opposing charges. 

 

1.4.2.2 Binary metal system 

Sağ and Kutsal (1996) studied the biosorption of Cu(II) and Cr(VI) from binary 

metal mixtures onto  Rhizopus arrhizus, a filamentous fungus, as a function of metal 

ion concentration, pH and temperature. The optimal pH for Cu(II) and Cr(VI) 

biosorption was 4.0 and 2.0, respectively. In the Cu(II) and Cr(VI) binary metal system, 

the combined effects of these two metals were found to be antagonistic but the total 

interactive effects of Cu(II) and Cr(VI) ions on Rhizopus arrhizus were found to be 

synergistic.  

 

Acikel and Aksu (1999) investigated the simultaneous biosorption of Cu(II) and 

Cr(VI) onto an algae, Chlorella vulgaris, from binary metal mixtures in a single-staged 

batch reactor. The pH values of 2.0 and 4.0 were chosen as the optimum biosorption 
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pH for Cr(VI) and Cu(II). The adsorption phenomenon was expressed by the 

competitive, multi-component Freundlich adsorption isotherm. 

 

Tang et al. (2003) reported the adsorption characteristics of Cu(II) and Cr(VI) 

by ethylenediamine-modified rice hull from single and binary metal ion solutions. 

Optimum adsorption pH values of Cu(II) and Cr(VI) in single metal ion solutions were 

5.5 and 2.0, respectively. Simultaneous removal of Cu(II) and Cr(VI) occurred at pH 

greater than 3.0. The adsorption kinetics of both metals from single and binary metal 

system were studied as a function of metal concentration, agitation rate and particle 

size.  Adsorption of Cr(VI) was more rapid than Cu(II). Kinetics of adsorption were 

fitted to the pseudo-first-order and pseudo-second-order models. It was found that 

application of the pseudo-second-order-model provided better correlation of the 

experimental data than the pseudo-first-order model, implying that the rate-limiting 

step may be chemisorption. Equilibrium adsorption data fitted the Langmuir isotherm. 

Ethylenediamine-modified rice hull possessed higher adsorption capacity for both 

metals compared with natural rice hull in single and binary metal system. Synergistic 

effect was observed in binary metal system. 

 

Waste beer yeast, a by-product of brewing industry, was found to be a low cost 

and promising adsorbent for adsorbing Cu(II) and Pb(II) from wastewater (Han et al., 

2006). Biosorption of Cu(II) and Pb(II) ions was investigated in batches and the 

equilibrium data was fitted well to both the Langmuir and Freundlich model isotherms. 

Competitive biosorption of two metal ions was investigated in terms of adsorption 

quantity. The competitive results showed that the adsorptive quantity for one metal 

was significantly decreased in the presence of the other metal, but the total capacity 

for binding heavy metals changed little. The binding capacity for Pb(II) was more than 

that for Cu(II). It was referred that ion exchange was probably one of the main 

mechanisms during the adsorptive process. 
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By-product lignin from paper production was used for the biosorption of Cu(II) 

and Cd(II) from aqueous solution in single, binary and multi-component systems with 

respect to pH, temperature, lignin particle size and solid to liquid ratio (Mohan et al., 

2006). The adsorption data fitted the Langmuir isotherm better than the Freundlich 

isotherm. Cu(II) and Cd(II) adsorption data were best described by a pseudo-second-

order rather than pseudo-first-order kinetic model. Adsorption occurred through a 

particle diffusion mechanism at 10 and 25 oC while at 40 oC it occurred through a film 

diffusion mechanism. The results showed that the adsorption capacity of black liquor 

lignin was higher than many other adsorbents or carbons or biosorbents utilized for the 

removal of Cu(II) and Cd(II) from wastewater in single and multi-component systems. 

 

Ma and Tobin (2003) investigated the biosorption of Cr(III), Cu(II) and Cd(II) 

from binary metal solutions onto peat at pH 4. The order of maximum uptake was 

found to be Cr(III) > Cu(II) > Cd(II). The presence of co-ions had inhibited the uptake of 

individual metals by up to 70 %. As the solution pH was largely unchanged during 

biosorption, speciation effects were unlikely to have a major influence on metal uptake. 

Three models, Model A, B and C were chosen to model the experimental metal uptake 

data. Model B which involved valency considerations was found to be unsuitable. In 

contrast, Model A, which assumed negligible H+ ion uptake and neglected valence 

effects on uptake and Model C, which included binding and competition effects of H+ 

ions but neglected metal valence influences, were found to exhibit good fit to the 

experimental data. Using Model A and the corresponding best-fit parameters, three-

dimensional biosorption surfaces were generated using the MATLAB software.  

 

Apiratikul and Pavasant (2006) studied the binary adsorption of Cu(II), Cd(II) 

and Pb(II) by dried green macroalga, Caulerpa lentillifera. The studying of binary 

component biosorption model using three concepts consisted of competitive, 

uncompetitive, and partial competitive adsorption isotherm models. The partial 
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competitive binary isotherm model was proven to be effective in describing the 

experimental data. Antagonistic competitive effect was found to occur for the 

adsorption in binary systems where the adsorption capacity of primary metal ion 

decreased in the presence of the secondary metal ion. Pb(II) was found to be the most 

favorable metal adsorbed by Caulerpa lentillifera, followed by Cu(II) and Cd(II). The 

partial competitive binary isotherm could also be used to predict the effect of pH on the 

adsorption of these metal ions. Reduction in the adsorption capacity and adsorption 

affinity was observed with a decrease in pH. The carboxyl, hydroxyl, sulfonate, amine 

and amide functional groups were proposed to be responsible for the adsorption of 

these metals. 

 

The competitive biosorption of Cd(II) and Ni(II) onto dried Chlorella vulgaris, a 

green alga from binary metal mixture was studied and compared with single metal ion 

in a batch stirred system (Aksu and Dönmez, 2006). The dried biomass was selective 

for mixed cation components and it exhibited higher adsorption capacity for Cd(II) than 

for Ni(II). The effects of single and binary metal ion concentrations on the biosorption 

capacity of biomass were investigated at an initial pH 4.0. The biosorption data in 

binary systems showed that the Ni(II) biosorption was strongly repressed by increasing 

Cd(II) concentration in solution. The Langmuir and Freundlich adsorption models were 

found suitable for describing the biosorption equilibria of cadmium(II) and nickel(II) ions 

in both single and binary metal systems.  

 

The biosorption of Cr(VI), Ni(II) and Cr(VI)-Ni(II) binary mixtures on the dried 

activated sludge was investigated in a batch system by Aksu et al. (2002). The 

individual Langmuir and Freundlich adsorption isotherms for Cr(VI) and Ni(II) ions were 

obtained at pH 1.0 and 4.5, respectively. Although dried activated sludge exhibited 

higher adsorption capacity for Cr(VI) and Ni(II) individually but the equilibrium uptake 

of Cr(VI) and Ni(II) in the binary mixture were found to be decreasing due to the 
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antagonistic interaction occurred between the metals. Adsorption isotherms were 

developed for the single and binary metal systems at pH 1.0 and 4.5 and expressed by 

the mono- and multi-component Langmuir and Freundlich adsorption models. The 

results indicated that the mono-component equilibrium data fitted very well to both the 

mono-component Langmuir and Freundlich models for both the metals and the pH 

studied. For the case of multi-component system, multi-component Freundlich model 

agreed well with the experimental data in the studied initial mixture concentration 

range at both the studied pH values. 

 

1.5 Equilibrium and kinetic models of biosorption 

1.5.1 Sorption equilibrium models 

Modelling the equilibrium data allows comparison of different biosorbents under 

different operating conditions. Equilibrium data, also known as adsorption isotherms, 

are basic requirements for the design of adsorption systems and provide information 

on the capacity of the adsorbent or the amount required to remove a unit mass of 

pollutant under the system conditions such as initial pH of metal solution, initial metal 

ion concentrations and amount of biosorbent. There are many equilibrium models in 

use but the most common models are the Langmuir, Freundlich and Redlich-Peterson 

models. These three equilibrium models were used to analyze the equilibrium data of 

Cu(II) and Cr(VI) in the single metal system for this study. In the binary metal system, 

the extended Langmuir model and the non-competitive Langmuir model were used to 

evaluate the biosorption data. 

 

1.5.1.1  Langmuir model 

The Langmuir adsorption isotherm (Langmuir, 1916) is valid for monolayer 

coverage of the adsorption surface. This model assumes that adsorption occurs at 

specific homogeneous adsorption sites within the adsorbent and intermolecular forces 

decrease rapidly with the distance from the adsorption surface. The Langmuir 
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adsorption model further bases on the assumption that all the adsorption sites are 

energetically identical and adsorption occurs on a structurally homogeneous 

adsorbent. The well-known expression of the Langmuir model is given by: 
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where qe (mg/g) and Ce (mg/L) are the amount of adsorbed metal per unit weight of 

biomass and unadsorbed metal concentration in solution at equilibrium, respectively. 

The quantity qm (mg/g) is the maximum adsorption capacity and KL is a constant 

related to the affinity of the binding sites (L/mg). The parameters qm and KL can be 

determined from the Ce/qe versus Ce plot based on Eq. (1.2). 

 

1.5.1.2  Freundlich model  

The Freundlich isotherm was originally empirical in nature, but was later 

interpreted as adsorption to heterogeneous surfaces or surfaces supporting sites of 

varied affinities. It is assumed that the stronger binding sites are occupied first and that 

the binding strength decreases with the increasing degree of site occupation. The 

Freundlich model is formulated as (Freundlich, 1906): 
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which can be linearized in the logarithmic form as shown below: 
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Here, Ce and qe have the same meaning as noted above whereas n (dimensionless) 

and KF (L/g) are the Freundlich constants denoting the relative adsorption capacity and 

the intensity of adsorption, respectively. According to Eq. (1.4), the plot of the ln qe 

versus ln Ce gives a straight line and KF and n values can be calculated from the 

intercept and the slope of this straight line, respectively. 

 

1.5.1.3  Redlich-Peterson model   

The Redlich-Peterson isotherm (Redlich and Peterson, 1959), which contains 

three parameter incorporating the features of the Langmuir and the Freundlich 

isotherms, can be expressed as: 

 

g
e

e
e BC

AC
q

+
=

1
  (non-linear form)    (1.5) 

 

where Ce and qe have the same meaning as in the Langmuir isotherm, A is the 

Redlich-Peterson model isotherm constant, B the Redlich-Peterson model constant 

and g the Redlich-Peterson model exponent which lies between 0 and 1. All of them 

can be evaluated from the linear plot represented by Eq. (1.6) using a trial-and-error 

optimization method. 
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1.5.1.4  Extended Langmuir equation for binary system 

 The extended Langmuir equation (Chong and Volesky, 1995) was used to 

evaluate the adsorption data in a binary metal system. This equation consisted of three 

parameters generated using the MATLAB software. The equation was derived based 

on the binding of metals onto the binding sites of adsorbent at equilibrium. 
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