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Abstract

.This paper is concerned with the range restricted
interpolation of 'data on rectangular grids. The
interpolant is constrained to lie on the same side of the
constraint surface as the data. Sufficient non-negativity
conditions on the Bezier ordinates are derived to ensure
the non-negativity of a bicubic Bezier patch. The method
modifies Bezier ordinates locally to fulfill the sufficient
non-negativity conditions. The C1 interpolating surface is
constructed piecewise as a convex combination of two
bicubic Bezier patches with the same set of boundary
Bezier ordinates. The set of admissible constraint
surfaces include polynoimal surfaces of the fonn z = C(x,
y) where C(x, y) = L~=or}=oa;'jxjyj and the aiJ are real

numbers, as well as C· spline surfaces consisting of
polynomial pieces of the fonn z = C(x, y) on the
rectangular grid. Some graphical examples are
presented.

1. Introduction

The problem of positivity preserving interpolation is of
practical interest. Physical quantities like concentration
when represented visually should not admit negative
values since negative values are physically meaningless.
A number of works have been done for the univariate case
but not much has been done for the more general problem.
range restricted interpolation for both the univariate and
bivariate cases. As we are concerned with the constrained
bivariate interpolation to data on a rectangular grid, we
mention some of the work done in this respect. Mulansky
and Schmidt [5] present a non-negative interpolation to
gridded data by C· biquadratic splines on a refined
rectangular grid. They derive sufficient non-negativity
conditions on the first partial derivatives and mixed
second partial derivatives by using the corre$ponding
results for the univariate quadratic splines with additional
knots [4] and the tensor product structure for the spline
space. There exist an infinite number of interpolants
meeting the constraints. The selection of the interpolant is
based on a fit-and-modify approach or the minimization
of a suitable objective functional.

Brodlie, Butt & Mashwama [1] construct C· bicubic
splines on rectangular grids addressing the problem of
generating interpolants subject to linear constraints as
lower and upper bounds. The results of Schmidt and HeB
[6] for the univariate case are used to derive sufficient
non-negativity conditions on the first partial derivatives
and second mixed partial derivatives. These derivatives
are estimated and the estimated values are projected onto
the valid intervals defined by the sufficient non-negativity
conditions. This interpolation method is local.

In [7] a local C· scheme for interpolating data on a
rectangular grid subject to lower and upper constant
bounds has been· constructed. The interpolant is piecewise
an average of two blending surfaces, each being obtained
by blending between two boundary curves of the patch by
using univariate rational cubics. The weights of the
rational cubics are chosen to ensure that the blending
surfaces lie within the given bounds.

In this paper the construction of range restricted
bivariate C1 interpolants to data on a rectangular grid is
considered. We derive in Section 2 sufficient conditions
on the Bezier ordinates to ensure non-negativity for a
bicubic Bezier patch by using the univariate result on non­
negativity in [3] and some simple observations. A local
scheme applying these sufficient non-negativity
conditions for C· non-negativity preserving interpolation
is constructed in Section 3. The interpolating surface is
obtained piecewise as the convex combination of two
bicubic Be"zier patches, each with the same set of
boundary Bezier ordinates. In Section 4, we extend the
results to range restricted interpolation which considers as
lower and upper constraints polynomial surfaces of the

fonn C(x,Y)=Ll~I,J=oaj.jxlyj,where the aij are real

numbers, as well as C· spline surfaces consisiting of
polynomial pieces of the form z = C(x, y) on the
rectangular grid. Two numerical examples are presented
graphically in the last section.

2. Sufficient non-negativity conditions for a .
bicubic Bezier patch

A bicubic Bezier patch is defined as

P(u, v) = L~=oL}=obj.jB?(u)BJ(v), u, v E [0, 1], (2.1)
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where B1 are cubic Bernstein polynomials and b jj are the

B6zier ordinates of P. Consider a unit square with vertices
VI' Vz, V3 and V4• Given positive B6zier ordina,tes at the
vertices, i.e. we may assume

{bo.o, b3,o, bO,3' b3,3} = { a e, pe, yl, e}, (2.2)

with e > 0 and a ~ p ~ y ~ 1, our aim is to derive
sufficient conditions on the remaining B6zier ordinates for
the B6zier patch to be non-negative.

::{ p;:~ s) F:
VI el V2

Figure 1. Notation on a rectangle.

Denote the edges along V I V2, .o4V3, V I V4 and V2V3
by el' ez, e3 and e4 respectively (see Figure 1). A curve on
P along a line segment parallel to el is given by

P(u, s) = r.f=o'L}=obi.jB?(u)B]es) , U E [0, I], (2.3)

where s is a constant between 0 and 1. Observe that for
each fixed s, P(u, s), U E [0, 1], is a cubic B6zier curve

with 'L}=o bi,jBjes) , i = 1, 2, 3 as the B6zier ordinates.

Clearly, if all these curves are non-negative, then the
patch P(u, v) is non-negative. Similarly, a curve on P
along a line segment parallel to e3 is given by

P(t, v) = 'Lf=o r.}=obi,jB?e/)B}ev), ve [0, 1], (2.4)

wher~ .t i~.a. Gonst~t _b.etween 0 and 1.
Based upon Theorem 1 quoted from [3] and some

simple observations below we derive our sufficient non­
negativity conditions in Proposition 1.

Theorem 1 Let r(x) =A(l-X)3 + 3B(l-xix + 3C(l-x~ +
Dx3, x E (0, 1), where A, D > 0, and B < O'and lor C < 0 .
Then r(x) < 0 for some x E (0, 1) [resp~ r(x) = 0 for only
one point in (0, 1)] if and only if

3B2C2 + 6 ABCD - 4(AC3 + B3D) - A2D2 >0 [resp. = 0].
(2.5)

Denote t!. = 3B2C + 6ABCD-4(AC3 + WD) _A2Dz.
Observe that if A, D > 0, B = -A/3 and C = -DI3, then
t!. = 4AD(A-Dl Thus in this case if A:I:- D ,then r(x) as
defined above will be negative for some x E (0, I).

However if mintA, D} =e> 0, B = C =-l/3a,
where a >1, then r(x) ~ l(a -I) 14a, V' XE [0, 1]. (2.6)

Proposition 1 Let P(u, v) = r..f=o r..}=o bj,jB?eu)B](v), u,

v E [0, 1], where {bo,o, b3•0 , bO,3, b3•3 } is as given in (2.2).

Let A. = Y if eand ye are values at the diagonal vertices,
otherwise A. = p.
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If bl,o, bz.o, bl ,3, b2•3, bO.b bo)., b3,lo b3•2 , bl,b b2,1t bl •2, b2,2

~ - e13a , where a is the smallest solution in (I, 5] of

-27 ..12 a4 + 108 ..12a3 + (288 A. - 162 ..12
) a2

+ (108 A.z - 320 ..1+ 256) a - 27 A? + 32..1= 0, (2.7)

then P(u, v) ~ 0, V' U, V E [0, 1].

Proof In view of (2.6), in order that the four boundary
curves P(u, 0), P(u; 1), P(O, v), P(l, v) are positive, it

suffices to have bl•O' bz.o, bl ,3' b2,3, bO.b bO,2' b3,1t b3•2 ~

- e13a , a > 1. Without loss of generality, we may assume

bo•o= e. We shall distinguish two cases.

(i) when b3•3 =ye (i.e. e and yl are at diagonal vertices)

. (ii) when b3•3 ;t. yf. (i.e. f. and r-e are at adjacent vertices).

For case (i), we consider a curve along a line segment.
parallel to el which is given by (2.3). We will derive
conditions for the CUIVe in (2.3) to be non-negative. Let

A(s) = r}=o bO,jBJ(s) , B(s) = r..~=o q,jB](s) ,

C(s) = r..}=o ~.jBJ(s) .and D(s) = r1=o ~.jBJ(s), (2.8)

then (2.3) becomes

. P(u, s) = (I-u)3A(s) + 3(1-u)2UB(S)

+ 3(1-u)u2C(s) + u3D(s). (2.9)

Observe that A(s) ~ l(a -I)! 4a , D(s) ~ y l(a -1) 14a ,

B(s), C(s) ~ - f.l3a , 0 ~ s ~ 1. By Theorem 1, in order for

P(u, s) ~ 0, it suffices to have

. 3B2C+6ABCD-4(AC+B3D)-A2d=o,

where A=f.(a-1)/4a, D=y.e(a-l)/4a and

B = C = -l/3a . That is, it suffices to have ft.a) =0 where

f(a) = -27ra4 + 108ra3 + (288y-162r)a2

+(l08r-320y+256)a - 27r+ 32y.

ObseIVe that f(l) = 256 >°and f(5) S; 0, thus there exists
ao e (1,5] with ft.ao) = O. If there exists more than one ao,
then the smallest one in (1, 5] is chosen.

For case (ii) where b3,3-:I:- Y f, there are two

possibilities; either b3•0 =ye or bO•3= ye. When b3,o =y'e,
we consider again a curve along a line segment parallel
to el which is given by (2.9). Then we know A(s) ~

e(a -1)/4a , D(s) ~ pe(a -1)/4a, B(s), C(s) ~ - U3a,

S E [0, 1]. For P(u, s) ~ 0, it suffices to have a satisfying

~ 27p2a4 + 108p2a3 + (288fJ - 162{32)a2

+ (l08p2 - 320{3 + 256)a - 2713 2 + 3213= O. (2:.10)

When case (ii) occurs with b3•0 = Yl, the same argument
above is repeated by considering a curve along a Hne
segment parallel to e3 and we will also obtain (2.10).

Suppose now the boundary B6zier ordinates have
already been detennined by using the derivatives defined
at the vertices and their values have been ensured to be



not less than the lower bound - e/3a as stated in
Proposition 1. Then we shall derive two sets of less
stringent lower bounds for inner B6zier ordinates, i.e. a
lower bound which is less than or equal to - e/3a
suggested in Proposition I, by considering curves in (2.3)
and (2.4) respectively. \Ve shall need the following leIT'llT~

which can be obtained using simple calculus.

Lemma 1 Let rex) be as in Theorem 1.
(i) Suppose A = 0 and D > O.
For r(x) ~ 0, it is necessary that B ~ O.
If C < 0, then r(x) ~ 0 if and only if B ~ 0 and 3C ~ 4BD.

'(ii) Suppose A > 0 and D = O.
For rex) ~ 0, it is necessary that C ~ O.
IfB <·0, then rex) ~ 0 if and only if C ~ 0 and 3B2 ~ 4AC.

(iii) If A = D = 0, then rex) ~ 0 if and only if
_. ... ~B > O.Jm~;LC .~_O:.. _. ,... .

Let us first consider P as a surface consisting of curves
along line segments parallel to e.. i.e. curves P(u, s) as
given by (2.3). These are cubic B6zier curves with B6zier
ordinates given by A(s), R(s), C(s) and D(s) as in (2.8). As
all the B6zier ordinates for A(s) and D(s), s e [0, 1] are
already fixed, the minimum values A and D resp~ctively

for A(s) and D(s), s e [0, I], can be easily obtained.
Suppose that B(s) ~ B, C(s) ~ C for s E [0, 1] and B =
C, we would like to find an optimum negative value for B
and C by using Theorem 1 so that P(u, v) ~ 0 for u, v E

[0, 1] and then by using B and C to determin~ a less
stringent lower bound for the inner Bezier ordinates.

By Theorem 1, for feu, s) 2: 0 it suffices to have

3 B2 C'+ 6ABCD-4 (Ae + B3D)_A2 d = o.
.This equation is solved for B and C with B = C. Observe
thatB, C~ -et3a.

The lower bound for bl,I and b l.2 is obtained from the
relation B(s) ~ B, i.e. (1-S)3 (bl.o - B) + 3(1-S)2S (bl,I ­

B) + 3(I-s)i (bI,2 - B) + S3 (bI,) - B) ~ O. Let bl,1 - B =
b l,2 - B = mI' As bl,o, b l,) ~ - e/ 3a , then (bI,o - B) ~ 0
and (bI,3 - B) 2: 0 . For the case (bl,o - B) > 0 and (bI,)­

B) > o. by Theorem 1. in order that B(s) - B ~ 0 it
suffices to have

3 mI
4 + 6 ml

2
(bI,o - B) (bl,3 - B) - 4 ml

3
[(bl,o - B) +

(bI,) - B)J - (bl,o - B)2 (bl,3 - Bi = O.

This equation· is solved for the value of ml which is
negative, For the other three cases, i.e. (bl,o- B) = 0 and
(bl,3 - B) > 0, (bl,o - B) > 0 and (bI,) - B) =0, (bl,o - B)
= 0 and (bl ,3 - B) = O. by Lemma 1, in order that B(s) - B
~ 0 it suffices to have ml = O. Thus B(s) - B ~ 0 if bl,l

~ kB and b),2 ~ kB , where kB = ml + B and ml ~ O.
Similarly the lower bound ke for b2 ,1 and b2,2 is

obtained from the relation C(s) ~ C, Le. (l-s)\b2•0 - C) +
3(1-S)2S(b2,1 - C) + 3(l-S)S2(b2,2 - C) + s3(b2,3 - C) ~ O.
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We conclude that by ensuring bI,1 ~ kB, bl ,2 ~ kB, b2,1 ~ ke
and b2,2 ~ ke, then P(u, s) 2: 0, 'rj U, 'S e [0, 1].

In order to obtain the second set of lower bounds, we
consider P as a set of curves along line segments parallel
to e3, i.e. curves of the form given by (2.4). By repeating

similai arguments as above, we obtained lower bounds £B
and ec such that by ensuring bl,l ~ tB. b2,1 ~ eB. b I,2 ~ ee
and b2,2 ~ ee, then pes, v) ~ 0, 'rj S, VE [0,1].

Hence, P(u. v) ~ 0, \;f JU' V E [0, 1] by ensuring

bI,I ~ h.. b l,2 ~ h2, bl •I 2: h3, bz,z ~ h4 (2.11)

where h.. hz, h3, h4 are given by one of the following two
sets, Q = { hi = kB, hz = kB, h3 = ke• h4 = ke } or T = { hi
=tB. h2= .le, h3= tB, h4=te }. Either of these sets of
lower bounds could be used.

Observe that indeed h.. hz, h3, h4 ~ - t / 3a and so they
are less stringent lower bounds for the inner B6zier
ordinates than the one stated in Proposition 1.

3. Generation of non-negativity preserving
interpolating surface

Given functional values { fp,q } at the grid nodes
Vp,q(xp, Yq) of a rectangular grid with /p,q> 0, 0 ~ p S
m, 0 ~ q ~ n, where p, q are positive integers and Xo
< XI < ... < xm, Yo < YI < ... < Yn' We would like to
construct an interpolating CI non-negativity preserving
functional surface Sex, Y) through all the/'p,q.

To construct the interpolating sUrface S, first we define
S(xp, Yq) = /p,q, p=1,"',m, q=l,"·,n. The partial

derivatives Sx and Sy at each grid node are estimated by
using the three points difference approximation. The twist
at each grid node is estimated by using Adini's twist [2].
Though the resulting surface is dependent upon the
derivative estimation method. we shall focus on the
generation of the non-negative surface patches.

On each rectangle in the domain, S will be constructed
as a convex combination of two bicubic ·B6zier patches,
These two bicubic B6zier patches, denoted as PI and Pz,
will have the same set of boundary Bezier ordinates but
they may have different inner B6zier ordinates. Denote
the edges of the rectangle under consideration as elt e2' e3
and e4 (see Figure 1). These patches are constructed such
that PI is C l with its adjacent patches along the connnon
boundaries e3 and e4 while Pz is CI with its adjacent
patches along the common boundaries el and ez . Let the
bicubic Bezier rectangular patches Ph k = I, 2 be given as

Pk(u, v) = L~=oL:}=o btjBl(u)BJ(v), u, v E [0, 1].

It suffices just to consider the patch PI since PI and P2
are constructed in the same manner. The B6zier ordinates

bJ,o ' b:,o and bJ,1 are given by

bJ,o = PI(O, 0) =S(Vp,q) =h.q,



Figure 2. Vertex 0 with its associated
rectangles.

Consider the fOUf rectangles which share vertex Vp,q(xp,
Yq}. For simplicity, we denote the vertex Vp,q as 0 and its
adjacent vertices as A, B, C, D. E, F, G, H respectively
(see Figure 2).

For rectangle 1, abA is defined as follows. If

S 0
1 ~ it

( ).- - -(0) (xp-x I)~--
3 ax P- 3a) ,

where i l = min {S(O), SeA), S(B), S(C)} and al is as
described by (2.7)· for rectangle 1, .then abA = 1,

otherwise abA is defined by the equation

1 as 0 i lS(O) - - abA -:L( ) (Xp-Xp-I) =--.
3 @ ~I

Similarly for the scalar abc' if

O 1 as 0 i l
S( ) - "3 dy ( ) (Yq- Yq-l) ~ -~'

then abc = 1, otherwise abe is given by the equation

1 as eI
S(O) - - abc .:l. (0) (Yq- Yq-I) =--.

3 ~ 3~

blo = PI(O, 0) + .!. ()PI (0. 0)
, 3 ~ _

1 as
= S(Vp,q) + "3 (Xp+l,q - Xp,q) ax (Vp,q),

bJ,1 =PI(O, 0) + .!. dPl (0,0)
3 dV

1 as=S(Vp,q) + "3 (Yp,q+l - Yp,q) dy (Vp,q)

where Vp,q, Vp+l,q' Vp+l,q+h Vp,q+1 are the vertices of the
domain rectangle under c~:msideration. All the bi,i (except

bl,l' b)),2' b~.), b~.2) are similarly determined.

With these Bezier. ordinates, the resulting Bezier patch
may not ensure non-negativity. In view of Proposition 1,
we shall impose upon these boundary Bezier ordinates the
condition biJ ~ - eJ 3a, where .e =min {S(Vp,q), S(Vp+I,q).

------·----------S(V,;+!:ti+i);-SeVp,;j:;i)}"llllucnrs·llescnbed--by"(2.7). This is
achieved by modifying the partial derivatives at the
vertices if necessary. The derivatives Sx and Sy at a vertex
are modified by scaling each of them with a positive
factor a < 1. The scaling facto!." a is obtained by taking
into account all the rectangular patches sharing that
vertex.

Figure 3. Two adjacent rectangular patches. '

Vp+I,q+l.

Vp,q+l

ab I I I
b:.2a3,2 fbo.2

atl I 'bl b:.1aJ.) I 0,)

Vp•q

Vp_I,q+l

Vp_l •q

Consider two adjacent bicubic patches QI and PI with'.
Bezier ordinates a/,j and bl,i respectively (see Figure 3).

With al j = bJ,i' j = 0, 1, 2, 3, the necessary an~.

suffi~ient conditions for CI continuity along tl}~
boundaries Vp,qVp,q+1 where p ¢ 0 and p ¢ m are

Then we define al = min {abA' abc }. az. a3 and ~
are similarly defined for rectangles 2, 3 and 4
respectively. Lastly, in order to fulfill the non-negativity
preserving conditions stated in Proposition 1 for all the
boundary Bezier ordinates adjacent to 0, we choose
a.o =min { ai, az, a3, a4 }.

For the boundary node U which belongs to one or two
rectangles of the rectangular grid, au is defined in a way
similar to that for a nod« shared by four rectangles. The
only difference is that we consider only one or two
rectangles instead of four.

If at any node 0, fI.o < 1, then the x and y partial
derivatives at 0 are redefined as fI.o _times .the
corresponding initial valu~s and the Bezier ordinates
adj acent to 0 in each rectangle are redetennined by using
the modified derivatives SiO) and Sy(O). The boundary
Bezier ordinates of all the Bezier patches are determined
by repeating the above process at all the nodes ViJ.

Now to define the inner Bezier ordinate b~, for Ph k
= 1,2 where We { (1, I), (1,2), (2, 1), (2, 2) ), initial values
for b~ are determined by the mixed second order partial

derivatives for Pk • For example, btl is given by

bi - 1 ()2Pk (0 0) b k bi bi
1,1 - '9 Ohov ' + 1.0 + 0,1 - 0.0

1 ()2S
= '9 (Xp+l,q - xp•q) (Yp,q+l - Yp,q) dxdy (Vp•q)

+ .bl~o + b~,1 - S(Vp,q)

and the expressions for bf,I' bt2 and bf.2 are similar.

These initial values for the inner Bezier ordinates are
the same for both patches PI and P2• However the
resulting Bezier patch with these inner Bezier ordinates
may not ensure non-negativity. We modify the inner
Bezier ordinates if necessary' in order to ensure the
surface patch Pk is non-negative and is CI across two of
the boundaries of the rectangle. It suffices to describe the
detennination of the inner Bezier ordinates for PL'

F

E

D

G

c

4 3
0

1
(xp,Yq)

2

H

B

A
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bl,j =b&,j + hp (ali - aL )I hp_1' (3.1)

where hk = Xk+l - Xk, k = p-l, p, j = 0, 1,2, 3. Observe
that the cases j = 0 and j = 3 in (3.1) will be
automatically fulfilled since the Bezier ordinates adjacent
to Vp,q and Vp,q+l are detennined by using t.'1e x fu'ld y
partial derivatives at the corresponding vertices.

If at, < hf while bl,l ~ hi, where hf and h{ are
the lower bounds obtained in (2.11) for at. and bl,\

respectively. We reset ab to be equal to ~Q and make an
adjustment to bl.\ according to (3.1). For the other case

when bl,t < h{' while at. ~ hf, we reset bl,\ equal to
ht and adjust a~ 1 according to (3.1) in order that the two

, I
adjacent patches are C along common boundary. Observe
that the case where at\ < ~Q and bl.. < ht will never

occur, Indeed if atl < ~Q , then ab _.~ .~J,I .' and in order
--tliatfue C1 condition holds, we have bl.l ~ bJ,1 ; hence bl,.

~ ht. Using the same argument, we examine ab and

bf,2' and modify if necessary.

Along the boundary VO,qVO,q+1> inner Bezier ordinates
adjacent to it are determined by ensuring that they satisfy
(2.11), We determine inner Bezier ordinates adjacent to
boundary Vm,q Vm,q+l in same manner.

The inner Bezier ordinates for the patch Pz on each
rectangle are determined in a similar way, so that Pz is
non-negative and C1 with its adj~cent patch across the
common boundaries el and ez. The interpolating surface
patch P on ·the rectangle is defined as a convex
combination, that is P = C1PI + CZP2 where

CI = v2(l-vi I ( uZ(l_u)z + vZ(l_V)2),
Cz =uZ(l-ui I (i(l-U)2 + vZ(l_v)z).

Cl and Cz ensure that P = PI and dP'~ ~ dP1 ' ~ on e3

and e4, P = Pz and dP'~ = dP2' ~ on el and ez. Hence

P interpolates all the given data at the vertices of the
rectangle and is CI across all its boundaries, The
interpolating surface S is the composite surface
defined as SiR = PR , where R is a rectangle in the
domain and PR is the patch constructed as described
above on the rectangle R. Thus S is a non-negativity
preserving CI surface interpolating the given data.

4. Generation of range restricted
interpolating surface

We would like to extend our scheme for a larger set of
constraints besides the plane z = O. We consider the
constraint surfaces of the form z= C(x, Y) where

C(x, Y) = rr=o r~=o aj,jx
j
yj , ajj are real numbers (4.1)

because C(x, Y) can be expressed as a bicubic Bezier
patch on each rectangle in the domain.
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Given the functional data, points (Xj, Yj, f;j),
i = 1, "', m, j = 1, "', n, lying on one side of the

constraint surface z = C(x, y). We would like to generate a
CI interpolating surface z = Sex, Y) which lies on the same
side of the given constraint surface as the data.

Suppose that the data points lie above the constraint
surface. The partial derivatives S;n Sy and S:cy at (x;, Yj) are
estimated as in Section 3. Let G(x, Y) = S(x, y) - C(x, y).
A new set of data points (Xj, Yj, fij*), i = 1, "', m ,

j =1, "', n , is derived from the original data set and the

constraint function C(x, y) by letting /;j" = /;J - C(Xj, Yj)'
Then the construction of the CI interpolating function Sex,
Y) subject to the constraint surface z = C(x, y) is reduced
to the construction of the function G(x, y) so that it is non­
negative and C l

, with G(Xj, Yj) = /;/. With the initial
partial derivatives of G as

GxCXj, Yj) = Sixj, Yj) - Cixj, Yj),

Gy(Xj. Yj) =SiXj, Yj) - Cy(Xj, Yj),

G:cy(Xj, Yj) = Sxy(Xj, Yj) - C:cy(Xit Yj),

they are modified if necessary so that the sufficient non­
negativity conditions are fulfilled and the construction of
G proceeds as in Section 3. As the non-negativity
preserving interpolating surface G is piecewise a convex
combination of bicubic Bezier patches, thus so is S.

The arguments above have also been extended to
admit constraint which is a C1 piecewise polynomial
surface consisting of polynomial pieces of the form in
(4.1) on the rectangular grid.

5. Numerical examples

We shall illustrate the range restricted interpolation
scheme with two numerical examples. The linear
interpolant to the test data of the first example is shown in
Figure 4. The given data lie between the constraint planes
z = 6.51 and z = -0.01. The unconstrained interpolating
surface which is piecewise a convex 'combination of two
bicubic Bezier rectangular patches is shown in Figure 5. It
oscillates and crosses the upper and lower bounding
planes. The range restricted interpolating surface in
Figure 6 does not oscillate unnecessarily and it lies within
the upper and lower bounding planes.

The data of the second example samp~ed from the
surface z = cos xy lie above the Cl constraint surface

t
r -0,28 x2 - 0.3 y2 +0.9, (x. y) e [-2.5,0] x [-2.5,2.5]z-

- -0.3x3 -0.3 y2 +O.l66x2 +0.9, (x, y)e [0, 2.5] x[-2.5,2.5]

Figure 7 shows the linear interpolant. The unconstrained
interpolating surface has crossed the constraint surface as
shown in Figure 8 while the constrained interpolating
surface in Figure 9 stays above the constraint surface as
required.
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