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Abstract

Evolutionary Algorithms (EAs) is an umbrella phrase used
to illustrate a computer-based problem solving systems,
which utilizes a computational model of evolutionary
processes as key fundamentals in their design and
implementation. In these algorithms, encoding and
reproduction mechanisms are used to solve some difficuit
problems based on the principle of evolution — survival of
the fittest. The search operators such as crossover,
mutation and reproduction are applied to evolve the
solutions based on certain probability values. However, it is
usually very difficult to determine or estimate an optimal
set of search operator rates for a problem.

This paper intends to investigate the relationship between
the data density and the search operator rates for
examination room assignment problem. For this, we have
suggested the Matrix-based EAs Model to solve the
examination room assignment problem. In this particular
problem, we allocate examinations into a number of rooms
Jor a particular slot. Thus, data density in this paper refers
to the total number of candidates for all the examinations
per the maximum capacity of all available rooms in a
particular slot. We believe that for better performance, the
probability values of search operators need to be adjusted
inline with different data densities. '
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Introduction

Evolutionary Algorithms (EAs) are invented based on the.
observation of natural evolution. In these algorithms,
encoding scheme (representation), selection method,
reproduction mechanisms and evaluation functions are used
as a robust tool to evolve the solutions for some difficult
problems based on the principle of natural evolution —
survival of the fittest [1]. It can also be viewed as a
phenomenon of utilizing the collective learning process of a
population of individuals,

In general, EAs share a common framework. Firstly, there
must be a group of chromosomes as the basic element in a
population. These chromosomes must be represented
properly by using some of the encoding scheme such as bit
string, matrix, tree etc [2, 3, 4]. Next, we need to initialize a
random population of chromosomes at the initial stage.
From a pool of chromosomes, parent selection is done
based on chromosomes’ fitness. The selected chromosomes
will then perform genetic operators such as crossover
(mating process), mutation or reproduction in order to
search the solutions with respect to the task that needs to be
solved. Along the process of searching the solutions, it is
directed by some objective functions that measure the
fitness or quality of the chromosomes in a population.
These steps are repeated until an appropriate solution is
obtained.

There are three common search operators in most of the
EAs: crossover, mutation and reproduction. We usually
employ a stochastic transition rules in determining which
operators to be performed on the selected chromosomes.
Hence, the occurrences of genetic operators depend on
probability values. However, in most of the cases, it is hard
to determine or estimate an optimal set of search operator
rates in improving the performance.

The aim of this paper is to study the significance
relationship between data density and the genetic operator
rates for examination room assignment problem. Let us
denote by P as the probability of applying crossover, Py as
the probability of applying mutation as Py as the probability
of applying reproduction. We have applied the Matrix-
based EAs Model [5] in solving the examination room
assignment problem. In this particular model, we employ a
matrix to represent a chromosome. A chromosome is a
candidate solution for the problem. This matrix consists of
rows and columns. Each row represents a room whereas
each column represents an examination in a particular time
slot. The matrix is assigned with a set of numbers. These
numbers represent the total candidates allocated in a room.
Thus, data density refers to the total number of candidates
for all the examinations per the maximum capacity of all
available rooms in a particular slot.
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Examination room assignment problem is an instance of
resource allocation problem. This problem is a NP-
complete problem [6, 7. It is even more complicated when
it involves a many-to-many relationship between
examinations and rooms. A many-to-many relationship
reflects a situation that an examination could be split into
multiple rooms or a room could be shared by multiple
examinations. We may acquire more information about
university examination timetabling problem via [8]. They
provide a comprehensive survey regarding the university
examination timetabling in Britain. If we solve this problem
with EAs, it has been identified that an optimal set of
parameter setting is hard to find. The setting usually
depends on data density. We believe that this study will aid
us in determining or estimating the EAs parameter setting
Ofpc, PM and PR-

This paper is organized as follows: Firstly, it describes the
examination room assignment problem in general. The
following section gives a basic description about the
Matrix-based EA Model. Then, it describes the hypotheses
that have been identified. The subsequent section presents
our experiment design towards the study of the relationship
between data density and search operator rates. Our
experimental findings have also been discussed. Finally, we-
conclude the whole paper with a short summary.

Examination Room Assignment Problem

An examination room assignment problem is a problem in
which events (examinations or subjects) have to be
arranged into a number of rooms/venues, subjected to a set
of constraints. There are two basic entities in this problem:
examination and room. Hence, our aim is to allocate
examinations into a number of rooms for a particular slot.-
This allocation plan must also fulfill the hard ! and soft *
constraints listed below:

e Provide only one place to every student for a
particular examination (hard constraint).

o Allocate some examinations to a specific room
(hard constraint).

. & Threat subjects with equivalent code as one entity
(hard constraint),

e  Optimize the utilization of room by decreasing the.

empty seat in a particular room (soft constraint).

¢ Minimize the cases where just a handful of
students are allocated over several rooms (soft
constraint).

e Minimize the cases where examinations with
different duration are allocated in one room (soft
constraint).

e Ensure the rooms are near to one another for the
split examinations (soft constraint).

In this particular problem, two possible relationships may'

exist between examination and room: one-to-one

! Constraints that must not be violated at any circumstances.
% Objectives that are highly desirable but these may be ignored, if
necessary to produce a feasible assignment timetable.

relationship and many-to-many relationship. In the one-to-
one relationship, a room may accommodate only one
examination. Sometimes, it is difficult to accomplish this
requirement since there is a possibility where an academic
institution lacks of any large examination hall that is able to
accommodate all the candidates. Thus, we need to split a
large examination to several rooms or allow a room to be
shared by several examinations. This situation is recognized
as a many-to-many relationship. Considering all these
factors simultaneously in producing a feasible allocation
plan is a difficult task.

Matrix-based EAs Model

In this Matrix-based EAs Model, we adapt the algorithm
that is stated in Koza [p.29, 9] (see Figure 2). Firstly, we
employ a matrix to encode the chromosome in a population.
This matrix consists of rows and columns. Each row
corresponds to a room whereas each column corresponds an
examination in a particular time slot. The matrix is assigned
with the number of candidates allocated in a room. Refer to
Figure 1 for a conceptual representation of a chromosome.
That figure illustrates the examination with code AKW101
is split over R1 and R4. At the same time, Rl
accommodates candidates that take the examination
AKW101, AKW102 and MAA102.
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Figure 1~ Conceptual Representation of a Chromosome

According to the Figure 2, we need to create a population
with a number of chromosomes. These chromosomes are
then evalvated by a fitness function. We perform a
summation technique to design the fitness function and it
consists of four different evaluations. Each evaluation in the
fitness function corresponds to a soft constraint that needs
to be optimized. This fitness function eventually gives a
penalty value as the final outcome. Based on the penalty
value, we select the promising chromosomes for further
transformation. For this, we employ the Roulette Wheel
selection. The selected chromosomes will either be applied
reproduction, crossover or mutation. Only one operator is
chosen at a time. In other words, Pgr + P¢ + Py = 1. The
transformed chromosomes are then inserted to the new
population, We repeat these steps until the individuals in
the new population reach a limit. This is a complete cycle
for one generation. We usually reiterate the system until
designated result is obtained or the fitness value converges
to a point.
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Figure 2 — EAs-based Flowchart

Hypotheses

The aim of this paper is to study the relationship between
search operator rates and the data density. Before we
mention about the identified hypotheses, we would like to
explain more on the phrase of “data density” by giving the
example as below.

Data Density
In the Matrix-based EAs Model, we assign the matrix with

a set of numbers. These numbers represent the total

candidates that sit for an examination in a particular room.
We may have several examinations in a particnlar slot. For
instance, we may have ten examinations to be conducted in
a slot. Let’s assume there are a total of 2000 candidates
sitting for those ten examinations. Also, let’s assume the
capacity of available rooms is 2500. With these two pieces
of information, we emerge the data density for that slot as
total candidate per room capacity, which is 2000 / 2500 =
0.80. We believe that this data density has a great impact on
the setting of search operator rate in the Matrix-based EAs
Model.

Data Density Versus Search Operator Rates

Let’s assume we have four types of scenarios, each of them
characterizes a slot with different data densities, which is
high, intermediate, low and extremely low respectively. The
room capacity remains unchanged for those four slots.

For a slot with a high data density, we anticipate a high
crossover rate (Pc) will produce individuals with relatively

high penalty point. This indirectly will decrease the overall.

fitness of a population. On the other hand, we believe that a
high reproduction rate (Pg) and mutation rate (Py) will
produce satisfactory results. This makes sense, as the slot

with high data density will only have limited seats to
perform optimization. For instance, assume that we have
2500 empty seats and there are 2400 candidates to be
allocated. The data density for that slot is 0.96, which is
quite high. Thus, the system will only has 2500 — 2400 =
100 empty seats to perform optimization, These similar
setting (low Pc, high P and Py,) also applies to a slot with
extremely low data density. We believe that the slot with
limited empty seats will require relatively high Pg and Py to
fine-tune the results. High Pctends to disrupt the system.

For a slot with an intermediate data density, we expected a
high P¢ would help in improving the overall fitness of a
population. Py and Py should be decreased. This is because
a slot with intermediate data density will has adequate
empty seats to perform optimization. For instance, assume
that we have 2500 empty seats and there are 1800
candidates to be allocated. The data density for that slot is
0.75, which is relatively moderate. Thus, the system will
has 2500 — 1800 = 700 empty seats to perform
optimization. This similar setting (low P and Py, high P¢)
also applies to a slot with low data density.

Experimental Design

We have proposed an experiment design in investigating
the relationship between the data density and search
operator rates. We would like to provide the details of the
data selection and how we conduct the experiments.

Data Selection

We use the examination data at Universiti Sains Malaysia®
(USM). At that academic year, there are 39 slots of data
with different total number of candidates. We select four

3 Examination data for Semester 1, Academic Session 2001/2002.



groups of data, named as G1, G2, G3 and G4. These four
groups of data represent slots with high, intermediate, low
and extremely low data density respectively. The room
capacity is 2540. G1 has 2520 candidates, G2 has 1635
candidates, G3 has 325 candidates and G4 has 31
candidates. Thus, the data density for G1, G2, G3 and G4 is
0.99, 0.64, 0.13 and 0.01 respectively.

Experiment Details

Table 1~ Experiment Design Details

Category | Experiment Pr Pc Pu
Exp 1 0.00 | 050 | 0.50
Category 1 Exp2 0.50 0.25 0.25
Exp 3 090 } 0.05 } 0.05
Exp 4 0.50 { 0.00 | 0.50
Category 2 Exp § 0.25 | 0.50 | 0.25
Exp6 0.05 | 0.90 | 0.05
Exp7 0.50 | 0.50 | 0.00
Category 3 Exp 8 025 | 025 | 0.50
Exp9 0.05 | 005 | 0.90

. We group the experiments into three major categories. Each

category examines the behavior of search operators with
different probability value. Category 1, Category 2 and
Category 3 examines the reproduction, crossover and
mutation respectively. There are three experiments included
in each category. For instance, in Category 1:

»  First experiment ~ the reproduction is prohibited to
perform whereas the other two operators have
equally remaining chance to perform.

¢ Second experiment — the reproduction has half the.
chance to perform whereas the other two operators

have equally remaining chance to perform.

« Third experiment — the reproduction has highly
dominated the chance to perform whereas the
other two operators have equally remaining chance
to perform.

Similar setting also will be applied to Category 2 and
Category 3, which examine the behavior of crossover and
mutation respectively.

We create a population of 100 individuals. The system is
then run for 10000 generations. The details of the
experimental design are shown in Table 1. Because of
randomness of the EA, a single run may not guarantee the
accuracy of the results. Therefore, we perform each
experiment for ten times. The average value will be
calculated accordingly.

Experimental Result

We will discuss our results based on two different
perspectives: quality of the merit individual and
performance of the system. For the first part, we will
acquire the average penalty value for the best individual
taken from ten experiments. This value reflects the average
quality of the best individual in ten experiments. For the
latter part, we will study the system performance by
acquiring the average penalty value for each individual ina
population. These values are then presented via a graph of
type average penalty value versus generation. This graph
reflects the changes in penalty value of individuals in a
population. A good EAs-based system tends to show
reduction in penalty value along the evolution process.

Quality of the Merit Individual

Table 2, 3 and 4 show results for Category 1, Category 2
and Category 3 respectively. Note that the results for G4 are
identical for these three categories.

In Category 1 (see Table 2), which examines the
reproduction behavior, a setting of relatively high Pk tends
to produce relatively good results for G1 (refer to Exp 2 for
G1). However, this will not work on G2 and G3 (refer to
Exp 3 for G2 and G3).

Table 2 — Average Penalty Point of the Merit Individual for Category 1

Category Exp G1 G2 G3 G4
Expl | 1301.2 | 94257.6 | 609%02.2 | 817301.

Category 1 | Exp2 | 1064.0 | 93017.8 | 609205.0 | 817301.
Exp3 | 1276.6 | 101924.0 [ 614969.0 | 817301.

Table 3 — Average Penalty Point of the Merit Individual for Category 2

Category Exp Gl G2 G3 G4
Exp4 | 1464.8 | 150582.8 | 617727.0 | 817301.

Category2 | Exp5 | 1261.4 | 92609.6 | 609534.8 | 817301.
Exp6 | 1466.0 | 92328.2 | 609926.6 | 817301,




Table 3 — Average Penaity Point of the Merit Individual for Category 3

Category | Exp G1 G2 G3 G4
Exp7 | 1468.8 | 92436.2 | 609778.2 [ 817301.0
Category 3 | Exp8 | 1241.6 | 98597.6 | 609626.2 | 817301.0
Exp9 | 1212.8 | 116510.4 | 619336.8 | 817301.0
In Category 2 (see Table 3), which examines the crossover Hvwrags Pensly Polat Vs Generaton
behavior, a setting of relatively high P¢ tends not to o000
produce relatively good results for G1 (refer to Exp 6 for
G1). However, this works on G2 and G3 (refer to Exp 6 for i
G2 and Exp 5 for G3). ¥
The behavior of mutation is similar to the behavior of 3
reproduction. A setting of relatively high Py tends to E, - L og1 ooz
produce relatively good results for G1. However, this will < oo i\
not work on G2 and G3 (refer to Exp 9 for G1, G2 and G3 Exp3
in Table 4).
Performance of the System T e me %o s ww s e

This section describes the system performance for each
category.
Figure 3, 4, 5 and 6 illustrate the impact of reproduction
(Category 1) on the system performance for G1, G2, G3
and G4 respectively. Figure 3 and 4 show similar
characteristic, both graphs show that Exp 1 has the highest
- average penalty value followed by Exp 2 and Exp 3. Thus,
a setting of high Py tends to improve the average fitness of a
population over generations for G1 and G4. Notice also in
Figure 3, the graph for Exp 1 and Exp 2 show major
fluctuation along the EA process when the Py is low. On the
other hand, Figure 4 and 5 show reduction in Exp 1, Exp 2
and Exp 3. The reduction will then stop and show no more
changes after some times. Exp 2 shows relatively good
result as it stagnates faster than Exp 1 and Exp 3. Thus, a
relatively low Py works well in G2 and G3.
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Figure 3 — Performance Graph for G1 (Category 1)
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Figure 5 — Performance Graph for G3 (Category 1)
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Figure 6 — Performance Graph for G4 (Category 1)

Figure 7, 8, 9 and 10 illustrate the impact of crossover
(Category 2) on the system performance for G1, G2, G3
and G4 respectively. Figure 7 and 10 show that Exp 6 has
the highest average penalty value followed by Exp 4 and
Exp 5. Thus, a setting of high Pc tends not to work well in
G1 and G4. Notice also in Figure 7 and 10, the graph for



Exp 5 and Exp 6 fluctuate along the EA process when the
Pc is high. On the other hand, Figure 8 and 9 show
reduction in Exp 4, Exp 5 and Exp 6. The reduction will
then stop after some times. In Figure 8, Exp 6 shows
relatively better result than Exp 4 and Exp 5. In Figure 9,
graph for Exp 5 overlaps with Exp 6. Both of them show
relatively better result than Exp 4. Thus, a high Pc tends to
works well in G2 and G3.
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Figure 7 — Performance Graph for G1 (Category 2)
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Figure 8 — Performance Graph for G2 (Category 2)

Averng e Penalty Point VS Generaton

!
—Bed

¥ omocxe o

gm

|

A Exp4.
820000 \. Exp5
Exp 6
1] 100 200 3000 4000 5000 8000 7000 3000 9000 10000

Genendonis)

Figure 9 — Performance Graph for G3 (Category 2)
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Figure 10— Performance Graph for G4(Category 2)

Figure 11, 12, 13 and 14 illustrate the impact of mutation
(Category 3) on the system performance in G1, G2, G3 and
G4 respectively. In Figure 11, Exp 7 fluctuates along the
EA process. It also shows that Exp 9 has the lowest average
penalty value. In Figure 14, Exp 9 has the highest average
penalty value followed by Exp 7 and Exp 8. Thus, a
relatively high Py tends to produce relatively better result in
G1 and G4. On the other hands, in Figure 12 and 13, both
graphs show Exp 9 has the highest average penalty value
followed by Exp 8 ad Exp 7. Note also the Exp 9 in Figure
12 actually show increment in the graph. Thus, a relatively
low Pyyworks well in G2 and G3.
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Figure 11 - Performance Graph for G1 (Category 3)
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Figure 12 — Performance Graph for G2 (Category 3)
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Figure 14— Performance Graph for G4 (Category 3)
Conclusion

A study of the impact of different data densities on the
search operator rates in the Matrix-based EAs Model in
examination room assignment problem has been presented
in this paper. We have conducted a series of experiments in
study the behavior of reproduction, crossover and mutation
operator with different data densities. Results are discussed
from two different perspectives: quality of the merit
individual and performance of the EAs-based system.

For G1 and G4 that show a high and extremely low data
density respectively, a setting of relatively high Py and Py
tends to produce better results. This is because both groups
represent an extreme state: G1 has limited empty seats
whereas G4 has too many empty seats to perform
optimization. The system tends to start with a relatively

better solution at the initial stage. Therefore, we need’

reproduction and mutation to fine-tune the results. The
crossover opetator tends to disrupt the process in G1 and
G4.

For G2 and G3 that show an intermediate and low data
. density respectively, a setting of high P tends to produce
better results. This is because G2 and G3 have appropriate
empty seats and crossover operator will employ those
empty seats to perform optimization in getting a better

solution. A relatively high P and Py tend not to work well

in G2 and G3.
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