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Abstract. The paper describes one possible robustification process on Bayes estimators
and studies how a robust estimator can work with prior information. This robustification
procedure, as one of possible sensitivity analysis, enables us to study the effect of the
outlying observations together with sensitivity to a chosen prior distribution or to a
chosen loss function. Consider ii.d. d-dimensional random vectors X,,..,X, with a

distribution P, depending on an unknown parameter 6 € ® c R'. We deal with robust

counterparts of maximvum posterior likelihood estimators and Bayes estimators in the
inference on O . Asymptotic properties of these robust versions, including their
asymptotic equivalence of order o, (n"), are proven.
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1. Introduction

Let X,,...,X, be i.d.d. d-dimensional random vectors with a common d.f. F (}c,g),
where Qe ® c R’ is an unknown parameter. Let 71'((?) be a density of 6} vanishing
oﬁtside ©® . Denote by 6, the “true” value of Q; for the sake of simplicity we shall
use the notation 6 = Q :

In this paper we shall deal with Bayes and Bayes-type estimators. That is, we are
interested in a suitable approximation of the integral ratio of the form

[w(6).exp{L(0)}d0
[v(0).exp{L(0)1d6
with appropriate w and v.
Specifically, if w(€)=60.v(0) and v(6) is a prior distribution for &, then (1)
becomes the posteror mean of #. The question of the effect of distribution of
X,,....X,, or robustness with respect to data, can be discussed when we put

(D

n >

L(O) = —Z p(X,,0), where p varies over a class of appropriate functions (Hampel
i=1

et al, 1986). This model also includes as a special case In f(x,0) = —p(x,0). Before
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starting to evaluate acceptable estimators for this theoretical setup, we note that this
situation has important practical aspects.

Applied statisticians often wonder whether or not we can use prior information in
the case when the daa contain gross errors or when they are contaminated by a heavy
tailed distribution. To solve this practical problem, we combine robust and Bayesian
approaches. Namely, we want to find a class of robust estimators that take into
account preliminary information. Analogously, from Bayesian point of view we look
for Bayes-type estimators being sufficiently insensitive to deviation from a classical
model. Accordingly, we need an estimator that puts Bayesian and robust viewpoints
together.

Following these ideas, two main steps are to be taken:

1. Identification of the outliers and a subsequent application of the classical Bayes
analysis to the remaining data set.

2 Modification of the robust methods, consisting either of plugging the prior
information inside the estimators or of altering the Bayes method by using the
robust approach.

One possible construction of a robust method is to start with the classical method and

replace the density in the definition of the estimator with the function c.exp{—p(X)}

that makes the resulting estimator more robust.

- The generalized maximum-likelihood type or M-estimator M, is defined as
M, eargmin ) p(X,,0) (2)
0e® i=1

- The Bayes type or B-estimator 7, is defined as

[ 0.expi=3 p(X,.0)}7(6)d0
T = =

n

: 3)
[expt=D p(X,0)}(6)d6

if both the integrals exist (Akahira & Takeuchi, 1981; De Bruijn, 1961; Ibragimov &
Khaminskii, 1981).

Analogously to (2), one can define a robust version of maximum posterior likelihood
estimators én as
0, cargmin{y_ p(X,,0) - In7(0)} (4)
PEC] i=]

Clearly, (4) is MLE with respect to posterior density (Berger, 1984; Tierney &
Kadane, 1986).

Notice that 7, and én are obtained as generalizations of Bayes estimators and
maximum posterior likelihood estimators, respectively. Indeed, putting,

p(X,0)=~-In f(x,0) (5)

The main technical tool is a Laplace type approximation and the fact that én is a

saddle point of both integrals in (3). From this point of view, one can look at én as a

computational versicn of 7, . Indeed, we can prove that asymptotically, under certain
assumptions,




T,=0,+0,(n") (6)
(Strasser, 1977).

The choice p=~In f again leads to a relation between Bayes posterior mean and
maximum posterior likelihood estimator.

2. The Results

The asymptotic properties of the introduced estimators will be proven under the
following sets of conditions:

(a)
(al) ® c R’ is an open connected set.

(a2) p: R x® — R_ is a continuous function.

9

Moreover, 29’? exists and for every € € @ there exist 6 >0, >0 such that for

every £,ne®, ||& —HH <d,|n ~(9H <6 and every x € R? it holds,
aZP aZIO
X, )=—=—(X%; < LS —n|.
256~ 2L )| < g
(a3) 7:® — R, is bounded and In 7 is well-defined with a continuous derivative
Olnx
06

(a4) The integral LH9Hexp(—p(x, 0))7(0)dO exists for every x € R*.
(b)
(bl) Forevery ne N

J-Mn (x)dF(x,0,) <+, where M, (x) = sup

[6lsn
0e®

2o
Py (x, 0)“.

(b2) There exists a point 8* € R’ such that _[p(x,@*)dF (x,6,) and

jg—’; p(x,0%)dF (x,6,) is finite.

Ez)l) We assume that the function
h(0) = [o(x,0)dF (x.6,) ©)
has a unique absolute minimum at € = 6,, i.e.
6, € argmin h(0) (8)

Oel

(c2) If sup||| = +o then
Z=6]




z//'

h(@,) < g =inf lim inf p(x,0) 9)

K>0 ||19H—>+w “ H<I\

’F . . . .
(c3) g—a%(@o) is a positive definite matrix

(c4) j %P (x.0 )(a" (x,0 )j dF(x,0,) is a real matrix.

The group (a) contains conditions on the loss function p and on prior information,
which is represented by the function 7 and by the set ® . Changing the order of
derivation and integration is guaranteed by the conditions of the group (b). Finally, the
group (c) requires ¢, to be an optimal solution of (8) with nice properties. There is only

the condition (a2) which needs a special discussion, the others are quite natural. The
3

o' p .
. But omitting (a2) we would

lose the rate n™' of 7, —én.

Theorem 1.
Suppose the groups of conditions (a), (b), and (c) are satisfied. Then, for n — +o0,

ol =0, ).

later this theorem as additional and supporting tool for Theorem 2.

Theorem 2.
Suppose the groups of conditions (a), (b), and (c) are satisfied. Then, for n — +o0,

JnlT, =6 =0,)

and

=0,().

’p

00’

1 s Oh
Z a@z [X,,@U +ﬁ9j4)§07(90)

uniformly for HQH < 9,, we have

Assuming, moreover, that exists and that,

A A -
T, =0, +n'1.E+0p(n D,

where

L : o’h 1, 8%h
A===[8y 8860, ————i(8,)exp — — 0
6 L’ ,;1 R ae,lae,zae,}( o) p{ 2 062" "

and




B 1, 0°h ,
B= L, exp(—gﬁ ?02(90)9}16’.

Note that one may obtain 7, = é,, +o0, (n') in a number of cases. Consider an
estimator of location, where p(x,0)=7(x-60). Having n symmetric at zero and

assuming that the true distribution is symmetric at €, i.e. F(x,0,)=1-F(26, —x,6,),
3

one deduces %(90) = 0. Consequently, A=0and 7, = é,, +o,(n").

3. Proof of Theorems

The steps of the proof of Theorems use the following auxiliary lemmas,

Lemma 1

Let conditions (al) — (a2), (b1) — (b2) be fulfilled. Then for every € € ® the integrals
h(O) = [p(x.0)dF(x) (10)
Oh op
—(0) = |—(x,0)dF(x 11
5O = [ (x.0)dF(x) (11)
o*h o'p .
57 @ = [ % 0)dF () (12)

are finite.

Lemma 2

Let conditions (al), (a2), (b) be fulfilled. Then there exists a set 4e X, P(4)=1 such
that for every we 4 and € ©®.

I &8 d’h
-y —(X 0) —> a), 13
2 2557 Xi(@).0) > —5(0) (13)
1 & op oh
N L (X (0),0) > —(6), 14
ng;ag( (@),0) > —2(0) (14)
and
1 n
;ZMXmmm»ma (15)
i=1
hold.
Lemma 3

Let assumptions (a), (b), (c) be fulfilled. Then for every & > 0 there exists A >0 such
that,

n

o 1e o 1 1
H;g{)ﬁza{;; p(x ,39)} 2 =2 p(X,.0,)=—In7(6;) + A

i=1

holds for n sufficiently large with probability 1.




Corollary 1

Under assumptions (a), (b), (c) we have 9“” w0,

Proof of Theorem 1: Let A€ X, P(A4) =1 be such that the assertions of Lemma 2 and

5

Lemma 3 hold. Denote by « the smallest eigenvalue of 8_}21(92) ; a >0 by assumption

(c3). ® being open, there is 6, > 0 such that,
—{0eR |66, <5 }coO.

Forevery we A4,
za P(X (0).0) >

uniformly on u, because of (a2).

Therefore, by (a2) there is 0 < & < &, such that for every y € R* and a sufficiently large
n,

13220 @0y Dl

\H 90|<5
Thus,
i 0 1 o
— ) pl X (®),0, +— +—1n7r(6 +—]:
e x@ar ]t
13 p(x,@).6,)- L=, —9’ : Za" (X, (0).6,)
n'g n

1'% [1&d% 1 0
+;0j0j9 (Zgaez [X( %0, +f dzds—;{lm[eo+ﬁj—1m(90)D

2%; (X, (0),6, ——ZpX(a)) 7 )—llnﬁ(ﬁ)

i=1 noio

2
(6, + —
&, =

g 9P
2ol + 29 (X, @),60)=In) —5—

>3 P(X,-(a))ﬁo)"},;lnﬂ(eo)Jr%(%“e‘f W%igr%()(’(”)’e‘))_gj

S

for every @ with the property ”9“ </né;

Q= sup ln(Mj is finite since 7 is continuous and positive by (a3).
In-aoles  \ 7(6,)




0 - .
Notice that (X 1555 ) s p(/X/”)@O) are 1.i.d. random vectors with zero mean and a

finite variance according to (cl), (c4). Therefore Z (X 0,)—<>Y, (d: total
differentiation), where Y is a Gaussian random vector with zero mean and

var(}) = I (x,0, )(8,0( 0 )] dF(x,0,). Finally, we have,

P( ”é,,_90H>H)— -, >5)+
P[ Q<-—ZI(9 H)a'o(X,,H)5 j
< plo, - §)+P[—Z~n’én—¢90H2— ollé, -, %H]
qu ), — 6, >5)+P(QI;,Z?; ) ‘}Qj]
therefore liﬁP( n|6, -6, >H)S P(HY“>3H—2J is a
17 H

random variable, and H can be chosen such that the right-hand side is arbitrarily small.
Theorem 1 is thus completely proven.

Theorem 1 is a Jrst step in the proof of Theorem 2. The remaining part of the
proof is divided into the following auxiliary lemmas,

Lemma 4
Let the groups of assumptions (a), (b), (c) be fulfilled. Then for every & >0 there exists
A > 0 such that

L_%”% 9-6Xp{— Z p(X.,0)+In ﬂ(@)}d&

0€©

< B,(A)o, (1)

and

v"ﬁ—ﬂ,ux} exP{_ ; p(X,,0)+In ﬂ(@)}d@

e®

< B,(A)o, (1)

where

B, (A) = exp(—nlx).exp[— i p(X,, én )+ In ﬂ(én )j

Lemma 5
Under the assumptions of Theorem 2,



Lexp[— > p(X,.0) +In(0) |d6 =
i=] /
/
1 n " N 1 » alh
— | exp| — X, 0)+Inx(0,) || | exp —-—60" —
[ﬁ] p[ 2 P(X,.6,)+In( >](L p[ =t =
Lemma 6

Let all the assumptions (2), (b), (c) hold. Then,
L@.ex;{— > p(X,,0)+1n ﬂ(@))d& -6, Lexp[— > p(X,,0)+1n ﬂ(@)jd@ +
i=] i=1

0, )9}1@ +o, (1)}

! (—%j exp[— Z p(X,,0,)+Inx(0, )).A,,
n

n i=1
where

4,=0,(1) asn—>ow.

3

Additionally if 22

63

? 3
is finite and — Z[a (X,,0,)+ 1 0 —‘“—)2{9]: (0°) uniformly

06° Jn j

for HQH <6, then 4, = 4+0,(1), where

1 d o’h 0? h
A=——[6% 6,6,0, ————(,)ex ——9’
N (3’9,@9,/99,3

Proof of Theorem 2: Using Lemma 5 and Lemma 6 one can derive

Le. exp(— ip()ﬁﬂ))n(@)d@ A %[%j exp[ Zp(X,, 6,)+nx(d, >j
T, = = =8 + :
LeXp[— D pX,, 9)jﬂ(9)d9 (%) exp(— > p(X,,6,)+Inx(b, )j(B +0,(1)
i=1 n i=1
=én+1 %M =0, --lo,,(l).
nB+o,() n

Under the additional assumptions we have,

T, = 9 +l £+0 [IJ
n B n
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