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Abstract. The paper describes one possible robustification process on Bayes estimators
and studies how a robw,t estimator can work with prior information. This robustification
procedure, as one ofpossible sensitivity analysis, enables us to study the effect of the
outlying observations together with sensitivity to a chosen prior distribution or to a
chosen loss function. Consider i.i.d. d-dimensional random vectors XI,,,,,Xn with a

distribution Po depending on an unknown parameter BEe c R'. We deal with robust

counterparts of maximum posterior likelihood estimators and Bayes estimators in the
inference on B. Asymptotic properties of these robust versions, including their
asymptotic equivalence oforder 0 p (n- I

), are proven.
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1. Introduction

Let Xl"",Xn be i.d.d. d-dimensional random vectors with a common d.f. F(x,B),

where BEe c R' i~ an unknown parameter. Let n(B) be a density of B vanishing
- --

outside e. Denote by Bo the "true" value of B; for the sake of simplicity we shall

use the notation B = B.

In this paper we shall deal with Bayes and Bayes-type estimators. That is, we are
interested in a suitable approximation of the integral ratio of the form

f w(B). exp {L(B) }dB

fv(B).exp{L(B) }dB '

with appropriate wand v.
Specifically, if weB) = B.v(B) ~nd v(B) is a prior distribution for B, then (1)

becomes the posteLor mean of B. The question of the effect of distribution of
XI"",Xn , or robustness with respect to data, can be discussed when we put

n

L(B) = - Lp(X;,B) , where p varies over a class of appropriate functions (Hampel
i=J

et aI, 1986). This model also includes as a special case Inf(x,B) = -p(x,B). Before
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starting to evaluate acceptable estimators for this theoretical setup, we note that this
situation has important practical aspects.

Applied statistici;rns often wonder whether or not we can use prior inforrnation in
the case when the da a contaiu gross errors or when they are contaminated by a heavy
tailed distribution. T,t solve this practical problern, we combine robust and Bayesian
approaches. Namely, we want to find a class of robust estimators that take into
account preliminary information. Analogously, from Bayesian point of view we look
for Bayes-type estimators being sufficiently insensitive to deviation from a classical
model. Accordingly, we need an estimator that puts Bayesian and robust viewpoints
together.

Following these ideas, two main steps are to be taken:
1. Identification of the outliers and a subsequent application of the classical Bayes

analysis to the remaining data set.
2. Modification ,tf the robust methods, consisting either of plugging the prior

information inside the estimators or of altering the Bayes method by using the
robust approach.

One possible construction of a robust method is to start with the classical method and
replace the density irL the definition of the estimator with the function c.exp{-p(X)}
that makes the resulting estimator more robust.
- The generalized rnaximum-likelihood type or M-estimator M, is defined as

M,eargLnlni p(X,,0)
0e@ l=l

- The Bayes type or B-estimator Tn is defined as

t^
I e.exp {-)) p( x, . 0)l r (0)d 0

.r _ t.,l
,r--,

l."pt-), pg ^0)\rt0)d0
l=

if both the integrals r:xist (Akahira & Takeuchi, 1981; De Bruijn, 1961; Ibragimov &
Khaminskii, 1981).
Analogously to (2), one can define a robust version of maximum posterior likelihood
estimators d, as

^ -I-
0,, e argmin{) F(X,,O) -ln?E@)\ (4)

0e@ i=l

Clearly, (a) is MLII with respect to posterior density (Berger, 1984; Tierney &
Kadane, 1986).

Notice thal T, and, 6, are obtained as generalizations of Bayes estimators and

maximum posterior likelihood estimators, respectively. Indeed, putting,

P(X ,0) = - ln f ('c,0) (5)

The main technical tool is a Laplace type approximation and the fact that 0, it u

saddle point of both integrals in (3). From this point of view, one can look at e, u" u

computational versicn of T,.Indeed, we can prove that asymptotically, under certain

assumptions,

(2)

(3)



T,=6,+oe(nt) (6)

(Strasser, 1977).
The choice p = -ln.f again leads to a relation between Bayes posterior mean and
maximum posterior I ikelihood estimator.

2. The Results

The asymptotic properties of the introduced estimators will be proven under the
following sets of conditions:

(a)

(al) @ c .RI is an open connected set.

(a2) p: Rd x @ -+ R, is a continuous function.
.1- n

Moreover, i{ existsandforevery 0e0 thereexist d>0, B>-0 suchthatfor' ae'
every €,rte",llf -Bll.6,llrt-ell.6 andevery xeRd itholds,
ll ^.r 12 n ll

ll{3 e, n - {# <,,rrll . B llr - ryll
llae' 

- '"' act' ll

(a3) n: @ -+ .R* is bounded and ln a is well-defined with a continuous derivative

}lnn
ae

(a4) The integral llldll*p(- p(x,0))n(0)dd exists for every x e Rd .

(b)
(bl) For every n e h' 

, ^,

, Ir,@)dF(x,o,,) 
( *-, where M,(x)= *oll*fr,4ll.

no,$,f00'' 
' 'll

(b2) There exists a point 0* e Rt such that [O@,0\df(x,do) and

[9 p@,0*)dl7(x,0) is finite.
r ae' "

(c)
(cl) We assume that the function

h(0) = [o@,ildr(x,o) (7)

has a unique absolute minimum at 0 = 0o,i.e.

9o e argminh(0) (8)
0e€t

(c2) If *pllBll- +m then



df.

h(o) < p = i{ 
ilrlilq*.._ ,ffi o@,e) (e)

rc, !*@r) is a pr,sitive definite matrix' ae'' "'
rao. (ao .\'--

@q l#(',e')\fr(*,e) ) 
dF(x,00) is a real matrix'

The group (a) contains conditions on the loss function p and on prior information,

which is represented by the function tr and by the set @ . Changing the order of
derivation and integration is guaranteed by the conditions of the group (b). Finally, the
group (c) requires 9o to be an optimal solution of (8) with nice properties. There is only
the condition (a2) which needs a special discussion, the others are quite natural. The

rt- rt. condition (a2) weakens an existence of continuous 
-. 

But omitting (a2) we would' ae"

'.. .' lose the rate n-' of Tn -0n.

Theorem 1.

Suppose the groups of conditions (a), (b), and (c) are satisfied. Then, for n -+ +co,

J;nt,-r.ll= o,(r).

later this theorem as additional and supporting tool for Theorem 2.

Theorem 2.
Suppose the groups of conditions (a), (b), and (c) are satisfied. Then, for n -) +oo,

Jillr, - ooll= o,(r)
and

"llr, - 
e,ll= o,(t).

Assuming, moreover, *" # exists and that,

!*q4( x,.e,,* t=r'l " , t!p^1
nfr00'\ '' ' "ln ) A0'' "'

uniformly for llall< ds, we have

A
Tn = A, * r^ .;+ or(n-t),

where

6or,
0, e, e,tl t2 ttA='+I,t,'.*,=, a3h

a0ba0h
(d,) *p[- in #*e,>ele

and



,= 1,""0[-:t #rn,>r)',

Note that one rray obtain Tn = 6, + o r{n-')
estimator of location, where p(x,0) = r7@ - 0).

assuming that the true <listribution is symmetric at
13 r

one deducet i!(0) =0. Consequently, A : 0 andae''

3. Proof of Theorems

in a number of cases. Consider an

Having ry symmetric at zero and

00, i.e. F(x,00) - 1 - F(200 - x,qo) ,

A , -t.1r=Ur+Or\n').

The steps of the proof of Theorems use the following auxiliary lemmas,

Lemma I
Let conditions (a1) * (a7'.), (bi) - (b2) be fulfilled. Then for every 0 e @ the integrals

f
h(e) = )e@,O)dF(x) (10)

*rt> = g@,o)dF(x) (r r)40" Jae"
a2h.^. ,O2o

ao,@): l#tx.o)dF(x) 02)
are finite.

Lemma 2
Let conditions (al), (a2), (b) be fulfilled. Then there exists a set AeX, p(A)=l such
thatforevery ateA and 0e@.

:2#'x'(at)'o)'ffrt>'

iZ#"'(at)'t))*ffire>'
and

It or",(at),0) -+ h(o)

hold.

Lemma 3
Let assumptions (a), (b), (c) be fulfilled. Then for every d > 0 there exists A > 0 such
that.

It n .l 1 n I

,i'rf I 
:1, p(x,,0)l> :2pV,.0,)-1lnz(fl 

) + Alte-e,tl>6V4" ') nfi' , . 
n

holds for n sufficiently large with probability 1.

( 13)

(14)

( 1s)



Corollary I
Under assumptions (a), (b), (c) we have 6,, o' 

) 0o .

Proof of Theorem 1: Let AeTu, P(A)=l besuchthattheassertionsof Lemma2and

Lemma 3 hold. Denote by a thesmallest eigenvalue d 
#@'); 

a > 0 by assumption

(c3). @ being open, there is 4 > 0 such that,

u, =b€ ft' I lle e,ll <d,)c@.
For every co e A,

!> t4U (at\.g\ - u'4^ otnfi 00" '' ' Ae"
uniformly on z, because of (a2).

Therefore, bV @2) there is 0<d<d, suchthatforevery yeRr and asufficiently large

n.

n*,rn ut'' iZ rqrf 
g,(")'o)Y ' illtll'

Thus,

iE r? (at), o o * !-Jr',l* ! rn n(e, . h) =

:E 06, (at), o ) - )n,@ ) * Ir' i"f^#W, GD, g 
o)

.* 
il,' [ :2#(x @,),00.. #,Y,*-;['',(r, * H'",,,,])

,- :Z 06, (a)), o o) - |1 a*, &t), o o) - |n o (e,)

( (n(g,++ll
. IlXwr . #En 

Q*(*,(a,),oo) -tnl # I It ( ))

, j2 orx, (,), 0 o) - L n n @ o1 . |(|rf . hE n # t* @0, 0 o) - n)

for every d with the property llell< Jia ;

g = 
orll.o*, ^(ffi)is 

finite since z is continuous and positive by (a3).



Notice tnat 9P(x,,0r)...,Y(x,,,0) are i.i.d. random vectors with zero ilIean and aae ae

finite variance accordirLg to (cl), (c4). Therefore +t 9t* ,0)-!--->y, (d: total
.,ln 7 00

differentiation), where Y is a Gaussian random vector with zero rnean and

var(r) = l+o,r;(1'^t",a,ll dF|.eo). Fi'ally, we have,rAe' " \dr7' " )

,lJ;llt,- % ll, n) < rllle,,- r, ll, u)-'

,l|,llt, - t,ll' - e < :t"[i(e. - e, t#q,,eo), 6 >lle,

= 
r\16.-4ll, d. r(x,ll6,-e,ll' -o.

= 
r\1a.- 4ll, r). "hrllltx,",r,,ll, i u #)

-qll'*"]" ln )

H,*,q)11,il4, - 
r,ll' +r)r;il', -illl#t

and

ll 
[,**., 

*o{- t orr,,0) + rn,r(',}rrll < B.(L) o,(t)

where

B,(A) = exp(-ntv, ".0[- tor* ,0,)*ttrfes)

rhererore rmr(J;11a,-4ll'")= "[flEi, ilbecause 
or corouary r, llrll is a

random variable, and H can be chosen such that the right-hand side is arbitrarily small.
Theorem I is thus completely proven.

Theorem I is a ,hrst step in the proof of Theorem 2. The remaining part of the
proof is divided into the following auxiliary lemmas,

Lemma 4
Let the groups of assumptions (a), (b), (c) be fulfilled. Then for every d > 0 there exisrs
A>0 suchthat

ll" [ .r ] ll

lll,_u,u,r 
0.expl- Lptx .d) + ln r@)laell < 8,, (A).o,(1)

ll '';3- t i=t J ll

Lemma 5
Under the assumptions of Theorem2,



1 . A2h \--0'-(e)0 1d0+oz oa- .)

( t p(x ,,0) +tn,e>)ae +

I.-o[- f orr,,o)+trrro)ye =

( t \' / , \f . (

t #l ."0[ Zprx,ti) *tnn(A,r.J[1,."n[

Lemma 6

Let all the assumptions (a), (b), (c) hold. Then,

t- (:- \
| 9.expl -) o(X,, -\ ;" ,,0)+tntt@))de=4f,t*P

;t#) '.e(- ior' ,e)*m'te,;)e.
where

An=oo(1) as n'->Q'

,(1)l
)

Additionar ,, o # is nnite ^", :*(# (x , ,00, . h4--"'.- #(d0 ) unirormry

f"t ll9ll < do then An = A + o ,(I), where

A = -+ t t >, eLtt^et. ^-^ ?'! - td")..*pf -!e, a'! 6;a)ae6 Jt', ,,.fr,=, 
rt 12 r\ a0t,aetr60r,' '[ 2- aer,"u]" )-'"

Proof of Theorem 2: Using Lemma 5 and Lemma 6 one can derive

le."^p( -'i, p6 ,,il)tr@)de€\=l^1,=______7?_(_=e,
[."p[ -Z pq ,,,\ln@)deret-I

\ /=t ,/

=O_+l oo(1) - ^ 1 ..

" n B+on0) =0n---o'(l)'

Under the additional assrmptions we have,

T,=6n*! +*,r,[11n B ',\n)
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