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1.INTRODUCTIOI{

A Boundary Element approach for predicting the productivity of oil wells arranged in
complex configuratirns within irregularly shaped reservoirs were developed. The integral

equations are writterL for boundary points as well as for the locations of the wells which are

treated as point souroes and sinks with specified pressures but unknown strengths. Using this
approach, the solution to the resulting matrix gives the values of the nodal boundary pressure

and their normal derivatives, as well as the unknown flow rates of all the wells.

2. PROBLEM FORMULATION

Consider a hypothetical two-dimensional homogeneous reservoir ^S having N,SJ sources

and/or sinks located randomly within an arbitarily shaped reservoir. The following
assumptions were used in developing the theory: a) the reservoir is in steady-state flow with
reservoir pressure above bubble points r.e. undersaturated condition; b) single phase fluid
having small (and constant) compressibility and constant viscosity is flowing in the system;

c) the reservoir has a uniform thickness and it has a finite boundary; and d) gravitational

effects are negligible.

The differential equation describing the unknown functions i.e. pressure, at all points in
the reservoir is obtained by the introduction of Darcy's law into the continuity equation. By
imposing the conditrons and assumptions stated above, the differential equation describing
the pressure distribution in the reservoir is [1,2]:
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where p is pressurg, 1i is the dynamic viscosity of the fluid, /r is the permeability, {, is the

flow rate of the m'n well per unit area (positive for injectors and negative for producers), d is

the Dirac delta funct,i on, X, Y are coordinates axes, and X^ , Y^ are coordinates of the m'o

source and/or sink w,rere m goes from 1 to N^SS.

Equation (1) can be transformed into an integral equation by multiplying it with the free-

space Green's function and integrating it twice by parts. The free-space Green's function is

also called the fundarnental solutionlI,2,3f and is given as:
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where r is the distance between a field point (X, Y) and, a point of application of a unit
charge (xc Yd. After standard manipulation [l], equation (l) then becomes:
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where the boundar,, of the reservoir is divided into N constant elements with constant
properties as shown in Figure l. o is the included angle at the l' pivot point It is assigned a
value of Yz when ft16' pivot point is on a smooth boundary Q.e. noton a corner), and a value of
I when the pivot point is inside the problem domain. For simplicity, let
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Figrire l: Reservoir having N,s^g sources and sinks where its
boundary is divided into Nsegments or elements

where X; ,Y; are coordinates of any pivot point, 4; is the distance between the pivot point
and the jth element where 7 -nt ho* i to N, and ri,^ isthe distance betrveen the pivot
point and the m'h sourre and/or sink. Equation (3) now simplifies to:
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The boundary of the reservoir, J, can be of the Ope So or S4r76nor a combination of the
two types. Over the So type boundary, the pressure p is specified as constant throughout the
element while dp/dn is unknown. over the .s6p6offie boundary, the dp/dn is preslcribed as
constant and the pressure p is unknown. Similarly, the sources and/or sinks can also have
known and unknovm rates. For the known flow rate well, the well-bore pressure, p, is
unknown and for tht: unknown flow rate well, the well-bore pressure is prescribed.

The idea is to apply Equation (7) at all the boundary nodes (o = Yz), as well as at the
entire source and,/or sink locations (cr: 1).By doing so, a system of N+N,s,Sequations with
N+N^9^s unknown can be obtained and simplified to matrix form as follows:

IHGGSS] U : (8)
where IHGGSSJ consists of the coefficients 11, G and GSS. The vector d contains all the
N+l/S^t unknowns ol p, dp/dn, p* and q and ) is a vector containing all the known values.

3. VALIDATION

The flow rates rbtained from Muskat's analytical equations [4] are compared with the
BEM solutions for a circular battery of wells located at a radius i = 50 feei in a circular
reservoir as of radirts R : 5,000 feet as shown in Figure 2. The wells in the battery are
symmetric about the center. In order to have uniform pressures around the boundary of the
reservoir, it was necessary to place the center of the battery at the reservoir center.

Figure 2: /t' circttlar battery of n wells at the center of a circular reservoir

The ratio of the t,rtal production of the battery, Qoto the production of a single well, py is
plotted against the nrmber of wells and compared with the Muskat's results as shown in
Figure 3' The perfecl. match of the plots in Figure 3 clearly shows that the BEM solutions
agree with the Muskar;'s analytical solutions.

Even though regular well pattems and boundary geometries are presented in these
example applications, this was done simply to allow comparison wittr publistred analytical
solutions. The methocl is equally applicable to non-pattern well clusters arbitrarily located in
reservoirs with irregular boundary shapes.
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4. CONCLUSIONS;

The concept of forrnulafing differential equations at source and/or sink points as well as atboundary node points was investigated and found to give excellent results. The formulation
has the advantage o.i calculating the unknown source and/or sink rates directly u"p* of thematrix solution.

Other potential uses include (i) the calculation of the production of individual wellswithin leases in a rnultiple lease reservoir and (ii) the identification of candidate wells in afield that may need work-over by comparing the'predicted production rates with the actual
field production rater;.
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Figure 3: Oomparison between Muskat's solution and the BEM solution
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