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Abstract

The public-key encryption scheme is vulnerable to a
brute-force attack if the key sizz used is small. Thus, the
key size must be large enough b make brute-force attack
impractical. In practice, the h,y size that makes brute-

force attack impractical will ulso make the process of
encryption and decryption slow. There are several
modular exponentiation algorilhms that can be usedfor
speeding up modular based public-key algorithms. One
of the algorithms is Montgomery algorithm. However,
using Montgomery algorithm for public-key purposes
requires multiplication oflarge integers which runs very
slow. Therefore, multiplication algorithms must be
optimized in order to achieve acceptable performance.
Karatsuba algorithm is one o"r the possible algorithms
which can be used to perfonn multiplication of large
numbers. In this paper, we u'ill enhance Montgomery
algorithm with distributed Karztsuba algorithm running
on cluster of personal computers to decrease the
running time of modular exportentiation that is required
by the modular based public-key algorithms.

Ketwords: Public-Key Cryptography, Distributed Computing,
Montgomery Algorithm, and Karatsuba Algorithm

1. Introduction

The motivation for studying high-speed and space-

efficient algorithms for modrLlar multiplication comes

from their applications in pub.ic-key cryptography such

as RSA algorithm [] and the Diffie-Hellman key
exchange scheme [2], which are required fast hardware
and software implementations of the arithmetic
operations in GF(2k) for large values of fr. There are

many modular exponentiation algorithms available, and

one of them is Montgomery a.gorithm [3]. Montgomery
reduction algorithm is a techrLique that allows efficient
implementation of modular multiplication without

' The authors acknowledge the research grantprovided by
Universiti Sains Malaysia that has resulted in this article.

explicitly carrying out the classical modular reduction
step.

Montgomery multiplication avoids a division at the
expense of two multiplications, with overhead of the
initial and final conversions to and from Montgomery
representation. For single multiplication the Montgomery
algorithm is disadvantageous. The advantages become
apparent when we perform exponentiation. Therefore,
Montgomery algorithm will be suitable to compute
calculation such as I'f mod N, which normally appear in
modular arithmetic based public-key cryptography.
However, using Montgomery algorithm for public-key
purposes requires multiplication of large integers which
runs very slow. Therefore, multiplication algorithms must
be optimized in order to achieve acceptable performance.

Karatsuba algorithm [4] is one of the possible
algorithms which can be used to perform multiplication
of large integers in fewer operations than the usual brute-
force technique of long multiplication. It was invented by
Karatsuba and Oftnan [5]. In Karatsuba multiplication, to
multiply two z-digit integers x andy, both of the numbers
need to be divided into left and right halves (x1, x2 andy1,
y) and the halves are then use as shown in the following
formula:

x x y: (x2xy) xR2

+ (x2-x) + (y1-y) xR

+ (x1xy) x (R+1), (l)

where R = the size of the halves.

The value of R is choose to be half the width of the

numbers being multiplied, which simpliff the process of
multiplications by R to just a shifting operation [7]. Since

the numbers need to be multiplied need to be halved (into
'left' and 'right' parts) the algorithm works best when the

lengths of the numbers are the same size and are powers
of two [8].

Karatsuba's performance gains lies on the fact that the

multiplication process can be done with only three rather
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than four multiplications. In rrormal method, we need
four multiplications which arc (xt x y), (xt x y), (xz x
y) and (xz x y). In Karatsuba, these can be reduced to
three multiplications:

(xt * y), @
(xz x yil, B)
(x1 + x) x (yt + y), (C)

where(C-A-B)= (x1 x1,) +(xzxyl.

Karatsuba's multiplication is not very fast for small
values ofr [8].

The distributed computatic,n of Karatsuba can be
done by performing three multip,lications, (A), (B) and, (C)
in parallel on different nodes. The operations can be
performed as (C) within the current task, while (A) and
(B) are performed by two other llarallel tasks.

Karatsuba's algorithm has b:en employed to multiply
two integers of 2" digits in [4]. Ilaratsuba's multiplication
is recursively applied :urlrtil 2* digits, and then the grade-
school multiplication is used t(r compute the product of
2r-digit numbers. The experimental shows Karatsuba's
multiplication is much more r:fficient than the grade-
school multiplication and there r:xist a cutoff value 2r that
gives the best performance. The authors also observe that
Karatsuba's algorithm gives thr: best performance when
the length of the cutoff numb:r is 16 digits, which is
independent to the problem size

Liu, et al. [6], have used digit numbers in order to
evaluate Karatsuba Algorithm, end their results illustrated
that the parallel Karatsuba algorithm is more efficient at
number's length of approximattly 256 digits.

2. Methodology and New Design

Public key cryptography is rlesigned to provide many
cryptographic solutions such as key management, user
authentication and digital slgnature. Therefore the
operating speed of modular multiplication, the essential
operation for modular arithntetic based public key
cryptography, has to be improved.

The goals are to design a speed efficient architecture
and good performance of modular exponentiation with
distributed Karatsuba alg,trithm for software
implementation. The normal way to compute the modular
exponentiation is by decompose the calculation into
many modular multiplications. llhis can be done by using
the efficient Montgomery algorithm. Multiplication of
two very long digits in Montgomery algorithm usually
takes time to compute. Distributed Karatsuba is then
proposed to reduce the time of nrultiplication of these two
very large numbers. In our design, distributed Karatsuba
is chosen to perform the multiplication operations of big
numbers only if the numbers reing multiplied is more
than 256 digits.

Modular exponentiation is performed by repeated
modular multiplication. In this algorithm, the
multiplication operations must be performed sequentially
and the order of operation must be implemented in
sequential order. However, the multiplication operations
in Montgomery algorithm are being enhanced by
distributed Karatsuba algorithm. The steps of multiplying
two very big numbers are as following:
r The source (Server) package the two numbers and

then sends them to the destinations (Clients).
o Each client unpacked the numbers, partition the

numbers into four parts (as mentioned in Karatsuba
algorithm earlier), and then calculates the
intermediate result as shown in Figure 1.

Client I -(x2xy) xR2

Client 2 - (xz- x) + ( y1- y) x R

Client3 -(xt*yt) x@+l)

Then, each client retums the result back to the
Server.

r The Server adds these numbers together, before
continue with the next operation in the algorithm.

-'&:-'H/ -; -e
tr #p c,ien,3

Client 2

Figure 1. Typology of Server and Client

3. Implementation

Four machines (Pentium 4 with 2.4GHz processor)
supported by windows XP operation system have been
used to implement the proposed method. They
communicated together by socket programming. The code
were developed using Visual Basic version 6.0 and
chip8086XT library to assist in the performing of
mathematical operation for very large numbers. This
library serves to overcome any overflow problem that
might occur with such mathematical operations.

A socket provides an endpoint for communication
between the various processors. Connection between the
server and the clients was maintained via the use of
WinSocket library, which is provided by MicrosoftrM,
within a Visual Basic package. The communication is
established by hansmitting messages between sockets
done by the processors. Any processor may make use of
multiple ports to receive messages, but a processor cannot
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share ports with other processors on the same computer.
The obvious benefits of using socket programming are:
o High performance.
. Easy to program.
o Provides primitive support lbr communication.

3.1 The problems during the implementation

As mentioned earlier, the socket programming under
VB6 has been used to connec:t the machines together.
There are many disadvantages to used Winsock library
such as:
r It does not support synchronization between the

clients and server.
r The buffer size is limited.
r VB6 does not have a functi<ln to convert a value from

decimal representation fomr to binary representation
form.

r VB6 does not support big number calculation.

These problems were solved as follow: First, the
synchronization problem was solved using infinite loop
with "Doevents" command to make the server waiting for
all results to arrive. With the same idea the buffer size
problem was also solved. This solution has a drawback
that sometimes it takes extra loc'p which will increase the
execution time. The rest of ihe problem was solved
coding.

4. Data Analysis and Discussion

Before distributed Karatsuba can be used in
Montgomery algorithm, it is imrortant to find the critical
length number when distributed Karatsuba performs
better than sequential Karatsutra. This can be done by
testing the effrcient execution time between sequential
and distributed Karatsuba. Tt.e critical length number
was found to be 256 digits ar; shown in Figure 2, in
agreement with the above authors [6].

Experiment was done and various data are collected
from the implementation of Montgomery algorithm,
using both sequential and parallt:l Karatsuba algorithms.

Referring to the original aigorithm, the aim of the
analysis of the collected data, which is obtained by the
implementation of the algorithrr in sequential mode and
with parallel Karatsuba algorithm, is to use these tow
modes optimally. Different inpul parameters were used by
the two implementations, sut;h as_ the number, the
exponent, and the modulo (W mod N). Our
implementations have been tested with the argument
length M (8 and 1 6 digis), exponent E (64, 128, 256, 512,
and 1024), and modulo N (100, 200, 300, 400, 500 and
600 digits).

The first input parameters are obtained by fixing the
Iength M : 8 digits and modulo E = 64, and ranging the
value of exponent, Nfrom 100 t,t 600 in steps of 100. The
results are displayed on Figure .]. It can be observed that
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the execution time at low N (100 and 200) using the
sequential mode is more efficient than the parallel mode.
At value of N = 300, namely the critical point, a reverse
behaviour starts to appear which clearly reflects that the
Montgomery algorithm supported by distributed
Karatsuba algorithm is better than the algorithm in
sequential mode. Above this critical point, N > 256, the
distributed mode is clearly the more efficient mode.

+PaEllel Kamtsuba

--*-- Sequential Kamrsuba

nS ,r,S r$ uS Es oS roa s$ 
"S 
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Figure 2. Comparison Between Sequential and
Parallel Karatsuba Algorithm

A similar result is also obtained when using E = 128,
256, 512 and 1024. Figure 4, shown the results that
obtained when the exponent E: 128.
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Figure 3. Result of Montgomery Algorithm (E=641

There are two results which imply that the
communication time cost is greater then the
multiplication cost. As the exponent value increases, the
length of number will also increase lending to increase in
the multiplication cost. At the exponent value of E :256
and above, the Montgomery algorithm enhanced by
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distributed Karatsuba gives the best performance and the
communication cost becomes le'ss than the multiplication
cost.

When the input parameter rl.1 is changed to 16 (U :
16 digits) and N being the sanre as pervious case (N:
100, 200, 300, 400, 500, and 600 decimal digits), the
performance time is also increases. However, as before at
the exponent value of 256 and above, our enhanced
algorithm gives the best perfomrance. Figure 5 shown the
result when the input parameter M :16, N ranged from
1 00 to 600 in steps of I 00, and the exponent E = 128.

the results was noticed at the same previous input
parameters when the input argument has changed from
M:8 to M=16, the only difference between the two
results were that the large execution time was obtained at
M:16 compare ta M=8.
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5. Conclusion

It has been observed that Morrtgomery Algorithm with
distributed Karatsuba can run faster on distributed
computers when the numbers that being multiplied is
more than 300 digits in length each. Similar behavior of
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Abstract

A rearrangeable nonblocking network of Benes
network is well known for its realization for any
arbitrary permutation. Later', the introduction of
Arbitrary Size (AS) Benes ne,twork which improving
Benes network in term of the size of network, hence
giving a better performance by performing a Benes
network to arbitrary size. By reducing the number of
switching elements in the network, the performance and
utilization of switching elements (SEs) can be increased
and optimized. In this paper, w,z introduce an Optimized
AS-Benes (OAS-Benes) that cones with an enhancement
by reducing the number of SEs based on the prevrous
model ofAS-Benes.

Keyword: Interconnection .Yetwork, Rearrangeable
Nonblocking Network, and Bencs Network.

1. Introduction

A nonblocking network is a switching network that
can connect an unused input by a path through unused
edges to any unused output, regardless of which inputs
and outputs have been already connected. In addition, it
is rearrangeable if, given any set of disjoint paths
between some inputs and ouq)uts; every unused input
can be connected by a path through unused edges to any
unused output with possible rearrangements of the
previously established paths [3].

The Benes network is reitrrangeable nonblocking
network which can realize ar.y arbitrary permutation.
The Benes network of dimerrsion n is shown to be
strictly nonblocking ifonly a suitable chosen fraction of
1,/z of inputs and outputs is usrrd. In Benes network, the
r-dimensional Benes network connects 2'inputs to 2"
outputs through 2r-l levels ol2 X 2 switches. Here,
each level of switches consis.s of 2'-1 switches, and
therefore the size of the network has to be a oower of
two.

I The authors acknowledge the :esearch grantprovided by
Universiti Sains Malaysia that t as resulted in this article.
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This paper is based on rearrangeable nonblocking
networks. In order to provide a better computational
performance especially for tasks that require real - time
response, a high performance switching networks is
needed. This can be achieving through a good utilization
of processors and a good control algorithms. Here, we
proposed a rearrangeable nonblocking network with
reduced switching elements. The reduction of the SEs is
achieved by eliminating SEs which is not going to be
used by the routing algorithm.

2. Arbitrary Size (AS) Benes Network

AS - Benes network is an extended of Benes model
with arbitrary size. It is constructed from 2 X 2 switches
with the internal state being determined by a binary
control signal D : {0,1} l2l. Each element of switches
can be set by a control line into a direct-connection state
or a crossed-connection state as shown in Figure l, thus
realizing all permutations from two inputs to two outputs
trl.

ba'_-.'b

-T-l- a lC o" ---l_--F o

L-r Ll
direct-connection state

(b=0)
cross-connection state

(b=1)

Figure 1. Two State of 2 x 2 Switch

Here, by introducing a 3 X 3 AS-Benes network, it
can be generalized to recursively construct a network of
any size. To construct a 3 X 3 permutation, it consist
three 2 X 2 switches. By considering a simple wire to be
a network that can realize any 1 X 1 permutation, we can
view the 3 X 3 network in Figure 2 as being built from a

2 X 2 network and 1 X I network [1].
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Figure 2. A3x3AS-Benes Network

Specifically, an AS-Benes f size n is constructed
recursively from an upper sub-n etwork AS-Benes of size
Ln/21 and lower sub-network AS-Benes of size f n/2].
When z is even the construction is similar to that of the
Benes network. Meanwhile, for odd size, the frst n-l
output are connected to upper sub-network of sizeLn/2J
switches and each switch is connected to the two smaller
(ln/a) x LzZa-l ) aS-eenes nehvorks. The last input and
the last output are connected directly to the lower sub-
network AS-Benes of sizel n/2 l.

2.1 Routing Algorithm

A connection between ouq)uts and inputs may be
established through either the' upper AS-Benes sub-
network (of size ln/2j or th: lower AS-Benes sub-
network (of size ln/2]). Civen that each switch at the
first and last levels in an AS-Benes has precisely one
connection to each ofthe upper and lower sub-networks,
the realization of any given permutation, fl, in an AS-
Benes should satisff the property that paths sharing any
switch at the first or last levels must go to different sub-
networks. Using this property, it can be shows that,
given any one-to-one mappinl3, lf, of n inputs to z
outputs, there is as set of edgt: disjoint paths from the
inputs of a size n AS-Benes to its outputs connecting
input i to output ll(r) for 0 < i < n-l fll.

As an example, we illustrate the paths in Figure

in a 9 X 9 AS-Benes ne:twork. The bold paths
represent the first loop which starts at input r-1 and
terminate output n-1. After this loop, there are only two
pairs of inpuVoutput left whictr form a second loop. In
this way, all paths can be assigned to the upper or lower
sub-networks without any conflict.

2.2 Applications of Benes l{etworks

The Benes network has been proposed for use in
telephone networks [4]. It and other closely related
networks were also used as interconnection networks for
parallel computers. It has also been suggested for use in
ATM switches [5]

Optimized AS-Benes Networks

From the looping algorithm introduced before, a
connection between inputs and outputs can be
constructed through either the upper or lower AS-Benes
network. This can happen since, to construct any size
nxn AS-Benes network, recursively a network of size 3
can be used for an odd size while for an even size, it's
based an original Benes network.

Here the left-most of the network can be eliminated
by taking an advantage of the straight state of the SEs
rather than the cross-state. This method can be accepted
since the network is consffucted from two sub network
(upper and lower) and each sub network is based on its
own routing algorithm. From the routing algorithm
perspective, each sub-network has an independent
algorithm and did not affect each other; therefore, the
upper leftmost switch of even sub-network can be
eliminated. This approach will continue until we reach
the smallest size of AS-Benes, AS- Benes of size 3x3 or
AS-Benes of size 2x2.. Figure 4 shows a 9 X 9
Optimized AS-Benes similar to Figure 3, except the
leftmost switches depicted by circles are eliminated.

lower srh

Figure 3. Two Loops In the Realization of a
Permutation in a 9 x 9 AS-Benes

Figure 5 shows the OAS-Benes for all upper leftmost
switches being eliminated. Circles depicted in the Figure
5 indicate the location of the switches that are being
eliminated. The numbers of switches being eliminated in
OAS-Benes of size 17 are 5 switches.

The recursive function was developed to calculate the
number of switches that will be used for each node after
the elimination in each sub-network. This recursive
function can be used to compare the number of switches
needed in an z x n AS-Benes. This comparison is shown
in Figure 6 for n tp to 32.

3 for the mapping

[-ot 234s(;781
Lto862r03sJ
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lower sub network

Figure4. AgxgOptimizedAS-Benes

Figure5. A 17 xlTOptimizedAS-Benes
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Figure 6. Comparison of permutation Networks

4 Conclusions

By reducing the number of Switching Elements
used in this design, the cost of switches can be cut and
performance can be increase sintultaneously. In term of
a large networks or a huge usage of Switchrng
Elements, the number of reduced Switching Elements
can be signihcant.
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