A New Image-Database Encryption Based On A Hybrid Approach of Data-at-
Rest and Data-in-Motion Encryption Protocol'

Ooi Bee Sien, Azman Samsuddin, and Rahmat Budiarto
School of Computer Science, Universiti Sains Malaysia
11800, Penang, Malaysia
bsien@yahoo.com, azman@cs.usm.my, rahmat@cs.usm.my

Abstract

Conventional database encryption is built based on
the idea to encrypt data-at-rest and data-in-motion.
These solutions have successfully maintained the safety
of database, but cause a certain stage of performance
degradation at the meantime. If encryption of sensitive
data were activated in a database server that
implementing conventional approach, the server may
need to do extra works, besides its general handling on
records manipulation. This will degrade the
performance of the databuse server itself, especially
while it is dealing with huge data (e.g. image data) or
millions of records. This paper proposes a new option to
cope with the security weaknesses and performance
degradation problem caused by the above-said
weaknesses. A hybrid protocol (of combining the two
database encryption categories) is introduced here and
it is believed that this option should offer a better
solution in security, as well as the effort to boost up the
overall performance by using XOR during the
encryption process..

Keyword: Database Encryption, Image Encryption, and
Cryptography

1. Introduction

Since the evolution of electronic commerce, the usage
of database is no longer restricted to store business data
within an organization. Today, database is fully utilized
in business applications to keep track with business and
transaction records, customer information, financial
information, and other secnsitive data. A database
contains data ranging from different degree of
confidentiality, and is widzly accessed by variety of
users. Hence, it is also at risk to disclosure of wide-
ranging users. As the importance of database become
more and more vital in busiaess, database security turns
up to be a non-negligible issue in order to protect data
from its vulnerability tc potential attackers and
cryptanalysts.

! The authors acknowledge the research grant provided by
Universiti Sains Malaysia that has resulted in this article.

0-7803-8482-2/04/$20.00 ©2004 IEEE.

Encryption adds an additional layer of security to
make data unusable if, despite all efforts, someone does
get unauthorized access to the raw data. Aware of
encryption is being shown as the strongest security
alternative for data protection, previous researchers had
done a lot of efforts in database encryption, including
encrypt “data-at-rest” and “data-in-motion”.

1.1. Encrypting Data-At-Rest

The former category refers to encrypt data when it is
statically stored in a database server. The main objective
to implement this is to prevent unauthorized party from
reading through the database, or eavesdrop the
information that should be kept secret. It is claimed that
most attacks onto database occur when the data is sit at
rest. According to [1], data stay for longer period of time
inside a database server, compared to while it is being
transferred between the server and clients. Hence, a lot
of efforts have been put in this area. The operation of
securing data-at-rest involves transforming sensitive data
into unintelligible forms, so that it is only readable by
authorized parties. Sensitive data are encrypted as soon
as it is stored in the database. Upon leaving the database,
however, the data will be transformed back into plain
text [2]. As such, the data are always at risk of disclosure
while in transfer, excepting if a secure communication
channel is set between the client application and the
database server.

1.2. Encrypting Data-In-Motion

Encrypting data-in-motion solve the problem raises
up by the former database securing category. It plays an
important role to protect data while they are being
transmitted through communication channels. Critical
information is protected through a secure connection
established by the two communicating end points. To
securely transmit data-in-motion, there are a few options
applicable, such as Secure Internet Protocol (IPSec).
The most common standard that database vendors
adopted to is Secure Sockets Layer (SSL), or the follow

on Internet standard known as Transport Layer Security
(TLS).

! !

(O] oS ’ 0s

{1

w{‘:.OS

&
(a) (v) i©) () ©
Figure 1. Five Common Approaches for Integrating
Encryption Into a DBMS [3]
1.3. Motivation

Implementing either one of the above-said strategies is
not sufficient to keep data safe from exposure. And
hence, combining the two approaches is necessary and
emerges as a better choice. However, merely joining the
two methods does not yield advantage especially while
dealing with the overall performance of the application.
There are two times of encryption or decryption involves
per call. When client is accessing data from database, the
DBMS has to perform decryption of the encrypted data
before sending it out. The data will then being encrypted
again while pushed into the communication channel, and
decrypted back upon arriving to the other end point.

2. Related works
2.1. Integrating Encryption Into DBMS
Context

Previous developer classifies database encryption into
five major categories, which are architectural different to
each other. Common database encryption approaches
consist of application-integrated (Figure 1(a)), DBMS-
based (Figure 1(b)), DBMS-integrated (Figure 1(c)),
OS-based (Figure 1(d)), and OS-integrated approach
(Figure 1(e)).

Application-integrated approach is based on the idea
that all encryption facilities are performed at the
application program, rather than at the database engine.
This approach is suitable for user-data encryption but not
other database-generated data such as logs, metadata,
and index information.

With a DBMS-based approach, cryptographic tasks
are shared between the DBMS and application program.
Encryption and decryption are under control of
application program. The DBMS is just responsible for
automating parts of the encryption process, for instant,
use trigger for encrypting data during insertion or
updating, which are transparent to the application

0-7803-8482-2/04/$20.00 ©2004 |IEEE.

2

program. Similar to the previous approach, it is not
suitable for database-generated data.

Unlike the other two approaches discussed earlier,
DBMS-integrated approach includes all encryption and
decryption operations to the DBMS, making the process
transparent to application program. This approach
enables encryption of database-related or database-
generated data, besides user data.

On the other hand, an OS-based approach is possible
only on an operating system platform that supports
secure persistence storage of data. This functionality is
exposes through API. Encryption and decryption as well
as key management is performed inside the operating
system. Here, the DBMS accesses storage objects
differently depending to their encryption state, which
meaning those two different types of queries are
necessary for accessing encrypted and unencrypted data.

The last category of database encryption is an OS-
integrated approach, which based on mechanisms for
secure data storage that is completely integrated into the
operating system. In this case, all encryption and
decryption processes are hidden from application as well
as the DBMS. The processes are either performed by the
operating system or with the existence of an additional
hardware or device.

For a better understanding of database encryption
methodology applied by current database system, we
have take into account two most popular database
system: the Oracle 8i/9i and the Microsoft SQL Server
2000. The encryption solution of the former database
system is based on a DBMS-based approach; in which
encryption and decryption are performed within the
DBMS address space. On the other hand, Microsoft SQL
Server 2000 support encryption of network connection
and metadata, such as stored procedures, definition of
triggers, and so on. Encryption of stored data is available
with the assistant of Encrypting File System (EFS),
which is performed at file level.

2.2. Related Findings On Database Encryption

Understanding the importance of database secrecy has
brought to the accelerate emergence of various solution
in database protection. Here are some of the solutions
available with a brief overview of the features provided
by these solutions:

e nCipher’s database encryption solution — offers some
useful safety functionality in order to ensure data
security, which includes hardware key management,
authorized key usage, secure audit trail, and targeted
encryption. [4]

e Eruces tricryption — which is a combination of three
encryption processes: i) encrypt sensitive data with
unique, variable lifetime keys; ii) encrypt and store the
keys in a protected database that located away from
the encrypted data; and iii) encrypt the links between
the encrypted data and corresponding keys. [5]

e Secure.Data for SQL Server 2000 — which is
transparent to application and brings together some
enormous functionality such as its key management
capabilities for selectively encrypting, securing and
controlling access to database information. [6]

e The RSA security solution —offers a full range of
security services ranging from providing strong user
authentication, to delivering Web-based access
control. In addition, it is also a high-performing and
simplified encryption appl .cation [2].

Insert/

Updateto
Database

Client Computer
Figure 2. Hybrid Protocol of Database

Encryption

3. Design Methodology

3.1. Hybrid Protocol For Image Data

The main objective of designing this hybrid solution
is to boost up the performance of a database engine
when image data encryption is requisite. As discussed
earlier, the hybrid protocol that we are going to propose
here is actually a combination of encrypting data-at-rest
and data-in-motion. Image data is protected in both cases
— while statically staying at rest, and being transmitted.

As illustrated in Figure Z, the methodology that we
propose is application-integrated: all cryptographic tasks
are neither performed at the database server nor
additional cryptography server, but at the authenticated
clients that intend to acczss image data from the
protected database. Image cata are being encrypted at
client side before storing into database. In other words,
the responsibility of the database server is just to store
those unintelligible image data that have been encrypted
at client side.

0-7803-8482-2/04/$20.00 ©2004 IEEE.

3

Protected Database

(Name

IlmagelDl Image Data I Local Key

AT

Fnervnted | neal Kav

iImage Data

Client

Figure 3. Usage of Master Key and Local Key

With image data encrypted at client side, the
requirement for having a secure SSL connection could
be eliminated. This is because image data is already in
an encrypted form before sending out from the client.
Hence, even if the image data is eavesdropped during its
transmission to or from the database server, it is still
unreadable and meaningless to other party without
knowing local and master key of that particular image
data.

Each client that connected to the database server is
allocated with a “Master Key”, which is a public key
shared among a group of clients. Besides, there is a
randomly generated “Local Key” (by client who first
insert the image data) for each sensitive record. Client
uses local keys to perform encryption and decryption for
the corresponding image data. The local key will then
encrypted by master key and stored at database server
along with the sensitive data. For safety reason, master
key is stored at client side, separated away from the
encrypted image data and local keys that are stored at
database server.

Figure 3 depicts the storage pattern of local key with
their corresponding image data in a protected database.
The relationship of local key and master key along with
their usage is shown in Figure 3 as well. As we can see
from the figure, the responsibility of master key is to
encrypt or decrypt the local key of each image data.

Because the local key is stored in database in
encrypted form (for security reason), it needs to be
decrypted by the master key while arrives at client. Only
after then the processing of image data (encryption or
decryption) can be carried out. The details of client side
encryption and decryption will be further discussed in
Section 3.2. Incidentally, we will not go into depth in
discussion of key management throughout this paper,
since it is of another research area that is out of our
scope.

Theoretically, we would like to conclude that
practicing our hybrid approach offers great advantage to
the database server itself. Without extra processing of

encryption and decryption that are time-consuming, the
database server is proficient to operate efficiently with
optimal performance. In addition, even without the
existence of secure network connection through SSL,
encrypt data at client side prevent data at risk of
enclosure while being transmit to the database server.

More to the point, the elimination of SSL connection
enhances further the overall system performance besides
keeping data away from unwanted threats.

3.2. Image Encryption

For better security 1eason, we replace the
conventional encryption and decryption method with our
new option, which is designed specially for image data
that is normally huge in size.

Huge data always causc performance degradation
while standard encryption or decryption operations like
DES were to carry out. The operations are time-
consuming, as encryption of huge data will not complete
with a single round of encrypting operation. Applying
block-chaining method (such as ECB, CBC, CFB, OFB,
counter mode etc.), the dawa is split into blocks and
encryption is performed onto each of these blocks.

Similarly, our solution solits huge binary data into
blocks. The only different is: encryption or decryption is
only executed onto first block of each data, with the
data’s local key. Output from the first block encryption
will be XOR-ed to the second block. Likewise, this result
will be used to XOR-ed to the following block. The

operation continues until all of the blocks are completely
worked on. Figure 4 summarizes the operations during
an encryption process.

With replacement of XOR operations, the encryption
and decryption processes involve are decreased. We
believe that this solution is capable to enhance the
overall system performance, while offering equal

security as provided by conventional database
encryption solutions.

4. Implementation

For experimental purpose, this project is

implementing on a database engine called MySQL,
which delivers a fast, multi-users, and robust SQL
database server. The MySQL database engine that we
used for this project is of version 4.0.13-max-nt. It is
written in C and C++. The main reason why this
database engine is chosen is the availability of its open
sources, and its portability in multiple platforms, such as
Solaris, Linux and Windows.

Throughout this project, implementation is carried out
on Windows platform (Microsoft Windows XP). Sample
results shown later in this section is obtained based on
the following hardware specifications:

Microsoft Windows XP

Home Edition (Version 2002)
Mobile Intel Pentium 11l 1.2 GHz
256 MB

System

Processor
RAM

Image data

| XXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXKXXXXXXXXXXX E

Split into

blocks of

| XXXXXXXX—| llXXXXXXX | IXXXXXXX;‘ LXXXXXXXX]

equal length

Encrypt first
block with
local key

——[Encryption]

Local
Key

XOR output
with next
block

Encrypted

data to be
send to

database

Figure 4. Hybrid Protocol: Encryption of Image Data Performed at Client Side

0-7803-8482-2/04/$20.00 ©2004 IEEE.

4

4.1. Encrypting Data-At-Rest

AES (Advanced Encryption Standard) is chosen as the
data encryption algorithm, which is operating inside the
database server. As described earlier, data are encrypted
at the database server during its insertion, and decrypted
at the database server upor retrieval. Because of the
block-based nature of AES encryption, large image data
is forced to be processed block-by-block recursively
until all blocks operations are completed. Padding is
used whenever a block is uneven.

We have carried out some experiments to observe
how much time elapsed when encryption as well as
decryption is performed insid> the database server. Table
1 records the execution time for AES encryption and
decryption operations with 16-bytes key. The execution
time is proportional to the image size. Figure 5 depicts
the comparison between encryption and decryption,
where decryption of image data is relatively faster than
encryption. This phenomenon happens because
encryption involves a new random key generation for
each data during insertion, whilst decryption just
performs key retrieval from the database server.

4.2. The hybrid protocol

Next, we would like to make a simple comparison
between the conventional AES encryption with our
hybrid protocol performed on:o same image data. Table
2 shows the results of the cperations performed with
different key length.

Table 1. Encryption And Decrvption Of Image With

Different Size
sa(khy | Timeelapsed (see)
lmagesue(kb) | Encryption Decryption
18.4 0.60 0.20
582 0.71 0.23
102.0 1.40 0.65
191.0 2.32 0.70
254.0 5.00 1.02

Taking 16 bytes key as szmple, Figure 6 makes a
simple comparison between a server-side AES
encryption operation and a client-side XOR operation
performed onto same length of image data.

As illustrated, client-side hybrid protocol proved to be
able to reduce the total execution time of encrypting
data-at-rest about 10-40%, depending to the image size.
The method is less time-consuming compared to the
conventional ~database encryption approach, while
providing greater security to sensitive data (able to
protect data while statically stay at rest as well as while
the data is being transmitted).

0-7803-8482-2/04/$20.00 ©2004 IEEE.

5

T
| [ODecryption
o 477| EEncryption
3
g 3
1]
2 2
©
o 11
(] .
£
- o4
l\%-b' 5%9' AQF A0 qfab‘

Image size (kb)

Figure 5. Time Elapsed During Encryption and
Decryption of Image Data

Table 2. Hybrid Protocol Applied To Image With
Different Size

_______ Keylength (bytes) ,
. (kb) 16 24 32
18.4 0.37 0.43 0.41
58.2 0.50 0.45 0.47
102.0 0.89 0.62 0.60
191.0 1.92 1.86 1.82
254.0 4.64 4.43 4.42
54
5 a4l OHybrid protocol
3 HE Conventional
34
s 2
£
E N
04
REJEPT S) ook

Image size (kb)

Figure 6. Comparison of Server-Side Encryption
and Client-Side Hybrid

5. Discussion

Before ending this paper, we would like to emphasize
that all the proposed frameworks are restricted to image
data (or other binary data) encryption. The main reason
for this limitation is because of the varying access
pattern of a binary data and a normal field placed in
database server. Consider a table containing three fields

of Name, ImagelD, and ImageData. For instant,
database user can write selec: statements as follow:

Select * From Tablel Where Name = ‘Sharon’

Select * From Table]l Where ImagelD Like ‘10%’

As ImageData is of binary datatype, retrieval of
records from this table could only be done either by
Name or by ImagelD, but not by ImageData. We would
like to categorize them ag ficlds that could be included
for recordset binding. These fields are not suitable to be
implemented with our proposed encryption
methodology. Recall back our design of storing
encrypted local key at daabase together with the
encrypted data. If Name is encrypted with this method,
problems may occur during retrieval. Because Name is
encrypted and unreadable, we need to decrypt it but the
problem is — we do not know which local key to be used
for that particular data. Consequently, select statements
as shown above are no longer valid. In short, the only
protectable column is the binary ImageData.

Another strong point we get from the experiment that
have been carried out is — conventional encryption is
much more time-consuming, and yet, this does not
include time taken for transmitting data securely
(through secure SSL connection). We can imagine how a
database server is heavily loaded when a couple of data
are in query for processing if securing data-at-rest and
data-in-motion are intended.

6. Conclusion

Throughout the experiments that have been carried
out, cryptographic tasks that ar> performed at client side
is proved capable to reduce workloads of a database
server. We would like to corclude that the proposed

0-7803-8482-2/04/$20.00 ©2004 IEEE.

6

hybrid protocol could successfully provide an alternative
security solution for image data to be stored into
database.

7. References

(1]
[2]
[3]

Application Security, Inc. Encryption of Data at Rest —
Database Encryption. White Paper. (2002)

RSA Security, Inc. Securing Data at Rest- Developing a
Database Encryption Strategy. White Paper. (2002)
Thomas Fanghiinel. Using Encryption for Secure Data
Storage in Mobile Database Systems. Faculty of
Mathematics and Informatics, University Friedrich-
Schiller: Jena, German. (September, 2002)
NCIPHER, Inc. Database Encryption:
Hardware. nCipher Solution Brief,
(December, 2001)

Eruces, Inc. Securing Data Storage: Protecting Data at
Rest. Issue Four. (2001)

Protegrity, Inc. Protegrity Secure.Data Jor SQL Server
2000. (October, 2002)

William = Stallings. Advanced Encryption Standard.
Chapter 5 in Cryptography and Network Security:
Principles and Practices. International Third Edition.
Prentice Hall: United States of America. (2003)

Oracle Corporation. Protecting Data Within the
Database. Oracle9i Security Overview, Release 2 9.2),
Part Number A96582-01. (2001) Available from:
http://wxw'.csis.Lrvsu,cdu/GcneralIm‘b/()raclc/nctwork.Q
20/296582/protdata.htm

Jennifer Vesperman. Introduction to Securing Data in
Transit. (2002)

Peter Nilsson. Getting up to Speed with Data
Encryption. Business Briefing: Global Info Security.
(2002)

[4] Secured by

Issue One.
[5]
(6]
(7]

(8]

[9]

[10]

