
"rry
A New rmage-Database Encryption Based on A Hybrid Approach of Data-at-

Rest and Data-in-Motion Encryption Protocoll

Ooi Eiee Sien, Azman Samsuddin, and Rahmat Budiarto
S,:hool of Computer Science, Universiti Sains Malaysia

I 1 800, Penang, Malaysia
bsiem@yahoo.com, azman@cs.usm.my, rahmat@cs.usm.my

Abstract

Conventional database encryption is built based on
the idea to encrypt data-at-rest and data-in-motion.
These solutions have successfully maintained the safety
of database, but cause a a.rtain stage of performance
degradation at the meantime. If encryption of sensitive
data were activated in a database server that
implementing conyentional approach, the server may
need to do extra works, besides its general handling on
records manipulation. 'lhis will degrade the
performance of the databuse seryer itself, especially
while it is dealing with huge data (e.g. image data) or
millions ofrecords. This pa1,er pylposes a new option to
cope with the security wtaknesses and performance
degradation problem catsed by the above-said
wealorcsses. A hybrid protocol (of combining the two
database encryption categories) is introduced here and
it is believed that this op'tion should offer a better
solution in security, as well as the effort to boost up the
overall performance by using XOR during the
encryption process..

Keyword: Database Encryption, Image Encryption, and
Cryptography

1. Introduction

Since the evolution of electronic commerce, the usage
of database is no longer restdcted to store business data
within an organization. Todly, database is fully utilized
in business applications to k.eep track with business and
transaction records, custolner information, financial
information, and other scnsitive data. A database
contains data ranging from different degree of
confidentiality, and is wid:ly accessed by variety of
users. Hence, it is also at risk to disclosure of wide-
ranging users. As the importance of database become
more and more vital in business, database security turns
up to be a non-negligible issue in order to protect data
from its vulnerability tc, potential attackers and
cryptanalysts.

' The authors acknowledge the research grant provided by
Universiti Sains Malaysia that has resulted in this article.

0-7803-8482-2t 04t$20.00 @2004 | EEE.

?t' 1. ;',r:'
{ t ,t -

t
. T-, .ra ! t' l

I ;.

J

. \i
t

Encryption adds an additional layer of security to
make data unusable if, despite all efforts, someone does
get unauthorized access to the raw data. Aware of
encryption is being shown as the strongest security
altemative for data protection, previous researchers had
done a lot of efforts in database encryption, including
encrypt "data-at-rest" and "data-in-motion".

1.1. EncryptingData-At-Rest

The former category refers to encrypt data when it is
statically stored in a database server. The main objective
to implement this is to prevent unauthorized party from
reading through the database, or eavesdrop the
information that should be kept secret. It is claimed that
most attacks onto database occur when the data is sit at
rest. According to [1], data stay for longer period of time
inside a database server, compared to while it is being
transferred between the server and clients. Hence, a lot
of efforts have been put in this area. The operation of
securing data-at-rest involves transforming sensitive data
into unintelligible forms, so that it is only readable by
authorized parties. Sensitive data are encrypted as soon
as it is stored in the database. Upon leaving the database,
however, the data will be transformed back into plain
text [2j. As such, the data are always at risk of disclosure
while in transfer, excepting if a secure communication
channel is set between the client application and the
database server.

1.2. EncryptingData-In-Motion

Encrypting data-in-motion solve the problem raises
up by the former database securing category. It plays an
important role to protect data while they are being
transmitted through communication channels. Critical
information is protected through a secure connection
established by the two communicating end points. To
securely transmit data-in-motion, there are a few options
applicable, such as Secure Internet Protocol (IPSec).
The most common standard that database vendors
adopted to is Secure Sockets Layer (SSL), or the follow

on Intemet standard known as Transport Layer Security
(rLS).

WWffiWWW
;1ffi..., ,*.,i
trvv

ios osl
(a) (b)

H!#94,ff
t
f

I()s
I

l:,,, ,,::|,W
?i tvvi%.s

(d) (e)

Figure 1. Five Common Approaches for Integrating
Encryption Into a DBMS [3]

1.3. Motivation

Implementing either one of the above-said strategies is
not sufficient to keep data safe from exposure. And
hence, combining the two approaches is necessary and
emerges as a better choice. Ilowever, merely joining the
two methods does not yield advantage especially while
dealing with the overall perlbrmance of the application.
There are two times of encryption or decryption involves
per call. When client is accessing data from database, the
DBMS has to perform decr5ption of the encrypted data
before sending it out. The data will then being encrypted
again while pushed into the r;ommunication channel. and
decrypted back upon arrivinp, to the other end point.

2. Related works

2.1. Integrating Encryption Into DBMS
Context

Previous developer classilies database encryption into
five major categories, which are architectural different to
each other. Common database encryption approaches
consist of application-integrated (Figure 1(a)), DBMS-
based (Figure lO), DBMs-integrated (Figure l(c)),
OS-based (Figure l(d)), arrd OS-integrated approach
(Figure l(e)).

Application-integrated approach is based on the idea
that all encryption facilities are performed at the
application program, rather than at the database engine.
This approach is suitable for user-data encryption but not
other database-generated data such as logs, metadata,
and index information.

With a DBMS-based approach, cryptographic tasks
are shared between the DBMS and application program.
Encryption and decryption are under control of
application program. The DIIMS is just responsible for
automating parts of the encryption process, for instant,
use trigger for encrypting data during insertion or
updating, which are transparent to the application

2

program. Similar to the previous approach, it is not
suitable for database-generated data.

Unlike the other two approaches discussed earlier,
DBMS-integrated approach includes all encryption and
decryption operations to the DBMS, making the process
transparent to application program. This approach
enables encryption of database-related or database-
generated data, besides user data.

On the other hand, an OS-based approach is possible
only on an operating system platform that supports
secure persistence storage of data. This functionality is
exposes through API. Encryption and decryption as well
as key management is performed inside the operating
system. Here, the DBMS accesses storage objects
differently depending to their encryption state, which
meaning those two different fypes of queries are
necessary for accessing encrypted and unencrypted data.

The last category of database encryption is an OS-
integrated approach, which based on mechanisms for
secure data storage that is completely integrated into the
operating system. In this case, all encryption and
decryption processes are hidden from application as well
as the DBMS. The processes are either performed by the
operating system or with the existence of an additional
hardware or device.

For a better understanding of database encryption
methodology applied by current database system, we
have take into account two most popular database
system: the Oracle 8i/9i and the Microsoft SeL Server
2000. The encryption solution of the former database
system is based on a DBMS-based approach; in which
encryption and decryption are performed within the
DBMS address space. On the other hand, Microsoft SeL
Server 2000 support encryption of network connection
and metadata, such as stored procedures, definition of
triggers, and so on. Encryption of stored data is available
with the assistant of Encrypting File System (EFS),
which is performed at file level.

2.2. Related Findings On Database Encryption

Understanding the importance of database secrecy has
brought to the accelerate emergence of various solution
in database protection. Here are some of the solutions
available with a brief overview of the features provided
by these solutions:

r nCipher's database encryption solution - offers some
useful safety functionality in order to ensure data
security, which includes hardware key management,
authorized key usage, secure audit trail, and targeted
encryption. [4]

. Eruces tricryption - which is a combination of three
encryption processes: i) encrypt sensitive data with
unique, variable lifetime keys; ii) encrypt and store the
keys in a protected database that located away from
the encrypted data; and iii) encrypt the links between
the encrypted data and corresponding keys. [5]

0-7803-8482-2t 04 t$20.00 02004 | EE E.

. Secure.Data for SQL iierver 2000 - which is
transparent to application and brings together some
enorrnous functionalify such as its key management
capabilities for selectively encrypting, securing and
controlling access to database information. [6]

o The RSA security soluti,ln -offers a full range of
security services ranging from providing sfong user
authentication, to delil ering Web-based access
control. In addition, it is also a high-performing and
simplified encryption appl cation [2].

Figure 2. Hybrid Protocol of Database
Encryption

3. Design Methodology

3.1. Hybrid Protocol For Image Data

The main objective of designing this hybrid solution
is to boost up the performance of a database engine
when image data encryptiorr is requisite. As discussed
earlier, the hybrid protocol that we are going to propose
here is actually a combinatic,n of encrypting data-at-rest
and data-in-motion. Image dzLta is protected in both cases

- while statically staying at rr:st, and being transmitted.
As illustrated in Figure !:, the methodology that we

propose is application-integrrrted: all cryptographic tasks
are neither performed at the database seryer nor
additional cryptography sener, but at the authenticated
clients that intend to acc:ss image data from the
protected database. Image c.ata are being encrypted at
client side before storing into database. In other words,
the responsibility of the database server is just to store
those unintelligible image data that have been encrypted
at client side.

Figure 3. Usage of Master Key and Local Key

With image data encrypted at client side, the
requirement for having a secure SSL connection could
be eliminated. This is because image data is already in
an encrypted form before sending out from the client.
Hence, even if the image data is eavesdropped during its
transmission to or from the database server, it is still
unreadable and meaningless to other party without
knowing local and master key of that particular image
data.

Each client that connected to the database server is
allocated with a "Master Key", which is a public key
shared among a group of clients. Besides, there is a
randomly generated "Local Key" (by client who first
insert the image data) for each sensitive record. Client
uses local keys to perform encryption and decryption for
the corresponding image data. The local key will then
encrypted by master key and stored at database server
along with the sensitive data. For safety reason, master
key is stored at client side, separated away from the
encrypted image data and local keys that are stored at
database server.

Figure 3 depicts the storage pattern of local key with
their corresponding image data in a protected database.
The relationship of local key and master key along with
their usage is shown in Figure 3 as well. As we can see
from the figure, the responsibility of master key is to
encrypt or decrypt the local key of each image data.

Because the local key is stored in database in
encrypted form (for security reason), it needs to be
decrypted by the master key while arrives at client. Only
after then the processing of image data (encryption or
decryption) can be carried out. The details of client side
encryption and decryption will be further discussed in
Section 3.2. Incidentally, we will not go into depth in
discussion of key management throughout this paper,
since it is of another research area that is out of our
scope.

Theoretically, we would like to conclude that
practicing our hybrid approach offers great advantage to
the database server itself. Without extra processins of

Protected Database

Fn.ru^rd I Mal k.v

Ali {55 XXXX XXXXXX

,,,,,,,,,oecrvindiiia"""',,,,,,,,,,,,,,XOR ..-
OOemtions

*

ffit'"0"o",u

Dffryption .-fl
I rur"sr6,

sffi;it
Local Key

Client

t:1::::::::::::l
-''-

i11.0100110 rrrrrrra

0l 110001 .

I Encrypted

llmage Data
l

.&

I
m

Raw lmage Data

I

0-7803-8482-2t 04 t$2C,.00 @2004 | E E E.

encryption and decryption t.tat are time-consuming, the
database server is proficienr. to operate efficiently with
optimal performance. In addition, even without the
existence of secure networ.(connection through SSL,
encrypt data at client sid,: prevent data at risk of
enclosure while being transnrit to the database server.

More to the point, the elinination of SSL connection
enhances further the overall system performance besides
keeping data away from unwanted threats.

3.2. Image Encryption

For better security l.eason, we replace the
conventional encryption and decryption method with our
new option, which is designed specially for image data
that is normally huge in size.

Huge data always causr: performance degradation
while standard encryption o: decryption operations like
DES were to carry out. The operations are time-
consuming, as encryption of huge data will not complete
with a single round of encrlpting operation. Applying
block-chaining method (such as ECB, CBC, CFB, OFB,
counter mode etc.), the da:a is split into blocks and
encryption is performed onto each of these blocks.

Similarly, our solution srlits huge binary data into
blocks. The only different is: encryption or decryption is
only executed onto first bltck of each data, with the
data's local key. Output frorn the first block encryption
will be XOR-ed to the seconcl block. Likewise. this result
will be used to XOR-ed, to the following block. The

operation continues until all ofthe blocks are completely
worked on. Figure 4 summarizes the operations during
an encryption process.

With replacement of XOR operations, the encryption
and decryption processes involve are decreased. We
believe that this solution is capable to enhance the
overall system performance, while offering equal
security as provided by conventional database
encryption solutions.

4. Implementation

For experimental pu{pose, this project is
implementing on a database engine called MySeL,
which delivers a fast, multi-users, and robust SeL
database server. The MySQL database engine that we
used for this project is of version 4.0.13-max-nt. It is
written in C and C++. The main reason why this
database engine is chosen is the availability of its open
sources, and its portability in multiple platforms, such as
Solaris. Linux and Windows.

Throughout this project, implementation is carried out
on Windows platform (Microsoft Windows Xp). Sample
results shown later in this section is obtained based on
the following hardware specihcations:

System Microsoft Windows XP
Home Edition (Version 2002)

Proessor Mobile Intel Pentium lll 1.2 GHz

RAM 256 MB

lmage data

Split into
blocks of
equal length

Enayptfttst
block with
local key

XOR output
wfth nert
block

s
Loc:Ll
Key

Enoypted
dab to be
send to
dabbase

xxxxxxxxixxxxxxxxkxxxxxxxkxxxxxxxixxxxxxxixxx

xxxxxxxx XXXXXXXX XXXXXXXX xxxxxxxx

?.????7??

' .r:rrrr

??????7?

Figure 4. Hybrid Protocol: Encryption of lmage Data Performed at Client Side

0-7803-8482-21 041$2Cr.00 @2004 | EE E.

4.1. Encrypting Data_r\t_Rest

AES (Advanced Encryption Standard) is chosen as the
data,encryption algorithm, r,ihich is operating inside the
database server. As describerl earlier, iata ar! encrypted
at the database server during its insertion, and decrypted
at the database server upor retrieval. Because of the
block-based nature of AES encryption, large image datais forced to be processed block_by_bloc-k recu"rsrvely
until all blocks operations are completed. padding rs
used whenever a block is uneyen.

We have carried out sonle expenments to observe
how much time elapsed when encryption as well as
decryption is performed insid: the database server. TableI records the execution timr: for AES encryption and
decryption operations with lri-bytes key. The Lxecution
time is proportional to the inrage size. Figure 5 depicts
the comparison between errcryption un-d d..ryptron,
where decryption of image dlta is relatively faster than
encryption. This phenomenon happens because
encryption involves a new rmdom key generation for
each data during insertion, whilst de-cryption just
performs key retrieval from the database server.

4.2. The hybrid protocol

Next, we would like to nrake a simple comparison
between the conventional ,a.ES encryption wiih our
hybrid protocol performed on:o same image data. Table
2 shows the results of the cperations performed with
different key length.

Table 1. Encryption And Decnrption Of lmage With
Different Size

ooo

oo

E
o
E
i=

lmage size,(kb) iln
Encrvol

18.4
58.2 0.71
102.0 1.40
191.0 2.32
254.0 5.0

. Taking 16 bytes key as semple, Figure 6 makes a
simple comparison betwee:r a server_side AES
encryption operation and a client-side XOR oDeratlon
performed onto same length of image data.

As illustrated, client-side hyltrid protocol proved to be
able to reduce the total execrrtion time oi encrypting
data-at-rest about 10-40%, depending to the image size.
The method is less time-conriuming compared to the
conventional database encryption approach, while
providing greater security to sensitive data (able to
protect data while statically stay at rest as well as while
the data is being transmitted).

\s.[5g] 1o1 \9\ 16[

lmage size (kb)

Figure 5. Time Elapsed During Encryption and
Decryption of lmage Data

Table 2. Hybrid protocol Apptied To lmage With
Different Size

tmage size (kb)

Figure 6. Comparison of Server_Side Encryption
and Client-Side Hvbrid

5. Discussion

Before ending this paper, we would like to emphasize
that all the proposed frameworks are restricted to imase
data (or other binary data) encryption. The main r.asJn
for this limitation is because of the varying access
pattern of a binary data and a normal field placed in
database server. Consider a table containing thiee fields

oqtq
!t
0)6
o.
.g()
o
c
tr

''",nn"oio"
xe-v tensrh (bytest-

16 24 32
18.4 U.J / 0.43 0.41
58.2 0.s0 0.45 o.47
102.0 0.89 0.62 0.60
191.0 't.92 1.86 1.82
254.0 4.64 4.43 4.42

\$.4 6$3 1s? \9\ a6l

0-7803-848 2-2t 04 | $20. OO 02004 r E EE.

7f . fame, ImageID, and ImageData. For instant,database user can write selecr statJmenisls roito*,
Select * From Tablel Where uo*) J:;;;;;""':
Select * From Tablel Where t*os"IO Li[""iiOn,As ImageData is of birrary ait O,pr,

"..t
Lvat ofrecords from this table couid orly b;'j;;"iil* uyName or by ImageID, but not by ImageData- We woufOlike to categorize them as fields mut"corr-f-a t"'iicludedfor recordset binding. These fields are r",iriour" ," u"implemented witl

methodorogy. R;;;ir g:t 9jJ"t""',",1, #"ffi:;encrypted local key at dar,abase togJther- witfr tneencrypted data. If Name.is encrypted ,ii,t, ,tir'rn.tfroO,
problems may occur during retriev"r. s..;;Iirr" l,encrypted and unreadable, we need to or..ypiii tut tt.problem is - we do not know which local trvio-U. ur.ofor that particular data. Const:qu.rUv, ,"f".i ,iuit.n*
as shown above are no longer valiA. in ,rro.t,-ii. onrvprotectable column is the binary 1z ageDatai:.

, Another strong point *. g.i t orn"the experiment thathave been carried out is --cnnvenrin."; :;::::,
much more trme-consuiinri"ilill:Ttt;,:'H:',"';:
include time taken for transmittin g data securely(through secure SSL connection). We cin irnugl* io*

"database server is heavily loaoed when a."rii.
"i0""9e 11

query for processing if securing data_at_rest anddata-in-motion are intended.

6. Conclusion

Throughout the experiments that have been carried
out, cryptographic tasks that ar: performed at client sideis proved capable to reduce ,rorkloads of a database
server. We would like to corLclude that the p.ofosed

hybrid protocol could successfully provide an alternative
lecurity solution for image Outa to U.-'ra..O irr"database.

7. References

tl] Application Security, Inc. Encryption of Data at Rest _Database Encryption_. white paplr. (j o6zj-t2l RSASecurity,inc. Securing Diro oi R"st, D"u"loptng aDatabase Encrvotion
-Strariglt. Whirrp"p"; i;;;)t3l Thomas ranghzinel. uragEnrryptlorir"iii" or*Storage in Mobite o"1"0^i'sirii.". ,r"rir,

"rMathematics and Informatic., Uniu"rJry' i-ri"o.i"f,_
Schiller: Jena, German. (September, 200tt,t4l NCIPHER, rnc. Dataiasi ;;;;p-,;;' secured byHqrdware. nCipher Solution S.i"f, I*r" O*.(December,200l)

t5] Eruces, Inc. Securing Data Storage: protecting Data atResl. Issue Four. (20-01 I
e - -'-"o r

t6l Protegdty, Inc. protegyity Secure.Data for SeL Server
2000. (October,2002l

I7l William Stallings.
'Advanced

Encryption Srandard.
9l"pl": 5 in cryptography and NA;o* Jlr*ryPrinciples and practices. Internationai ffri.a Joi,ion.
Prentice Hall: United Srates of Ameri*. tiOOll

"t
t8l Oracle Corporation. protecting ioi-trtni, tn"

Datab as e. Oracle gi segurity Ovei..view, n"f .ur"
-i'11

Z;,part Number A96582_01. liOot; evaitaU; fi;;,-llllP{/}\ryw.csis.svsu.e fbloraclet;;work.9
20/a965iJ2/nr otdata.htm

t9J Jennifer Vesperman. Introduction to Securing Datd in
Transit. e.002)

t10l Peter Nilsson. Getting up to Speed with DataEncryption. Business Briefing: CtoUat trrfu iecu.rty.(2002\

6
0-7803-8482-2t}4t$20.00 o2oo4 IEEE.

