NUMERICAL SOLUTION OF THE GOURSAT PROBLEM
Ahmad Izani Md. Ismail¹, Mohd. Agos Salim Nasir¹, Abdullah Zawawi Talib²
¹School of Mathematical Sciences
²School of Computer Sciences
Universiti Sains Malaysia
11800 USM Penang, Malaysia

Abstract
The Goursat problem, associated with hyperbolic partial differential equations, arises in several areas of applications. Several finite difference schemes have been proposed to solve the Goursat problem. Amongst these schemes is a scheme which implements harmonic mean averaging of function values. A comparative study which has been carried out concluded that harmonic mean averaging yielded more accurate results than arithmetic mean averaging. However, there seemed to be discrepancies between the conclusions and the displayed results. In this paper, we present the results of a comparative study which we have conducted on three Goursat problems over a range of grid sizes. Our results indicate that arithmetic mean averaging is more accurate than harmonic mean averaging. We also show that arithmetic mean averaging has an advantage when applied to linear Goursat problems.

Key Words
Goursat problem, finite difference schemes, arithmetic mean, harmonic mean

1. Introduction
Many mathematical models in science and engineering necessitate the solution of a partial differential equation. As analytical solutions are often difficult to obtain, numerical methods (such as the finite difference or finite element method) are frequently used.

The Goursat problem, associated with hyperbolic partial differential equations, arises in several areas of physics and engineering. Frisch and Chao [1], Cheung [2], Kaup and Newell [3], An and Hua [4], Hillion [5], McClauughlin et al. [6], Chen and Li [7], Kaup and Steudel [8] describe in detail areas of applications where a Goursat problem arises. Several finite difference schemes have been proposed to solve the Goursat problem. Amongst these schemes is a scheme which implements harmonic mean averaging of function values. A comparative study which has been carried out [9] concluded that this approach yielded more accurate results compared with the use of the standard method of arithmetic mean averaging.

In this paper we study the accuracy of a finite difference scheme based on harmonic mean averaging and a finite difference scheme based on arithmetic mean averaging when applied to three (one linear, one nonlinear and one with a derivative term) Goursat problems.

2. The Goursat Problem and Finite Difference Schemes
The Goursat problem is of the form [9]:
\[u_{xy} = f(x, y, u_t u_x, u_y) \]
\[u(x, 0) = \phi(x), u(0, y) = \psi(y), \phi(0) = \psi(0) \] \hspace{0.5cm} (1)
\[0 \leq x \leq a, 0 \leq y \leq b \]

The established finite difference scheme is based on arithmetic mean (AM) averaging of function values and is given by (Wazwaz, 1993):
\[u_{i+1,j+1} + u_{i,j} - u_{i+1,j} - u_{i,j+1} \]
\[\frac{h^2}{h} = \frac{1}{4}(f_{i-1,j+1} + f_{i,j} + f_{i+1,j} + f_{i,j+1}) \] \hspace{0.5cm} (2)

Wazwaz (1993) presented a new scheme for the Goursat problem. This scheme is based on harmonic mean averaging of function values and is given by:
\[u_{i+1,j+1} + u_{i,j} - u_{i+1,j} - u_{i,j+1} \]
\[\frac{h^2}{h} = \frac{4f_{i-1,j+1}f_{i,j} + f_{i+1,j}f_{i,j+1} + f_{i+1,j+1}}{f_{i+1,j+1}f_{i,j} + f_{i+1,j+1}f_{i,j} + f_{i,j}} \] \hspace{0.5cm} (3)

\[\frac{f_{i-1,j+1}f_{i,j} + f_{i,j}f_{i+1,j+1} + f_{i,j+1}}{f_{i+1,j+1}f_{i,j} + f_{i+1,j+1}f_{i,j} + f_{i,j}} \]
Henceforth, we shall refer to the finite difference scheme (4) as the HM scheme. The harmonic mean (HM) of any two real numbers \(a\) and \(b\) is \(\frac{2ab}{a+b}\). The function value at location \((i+1/2, j+1/2)\), i.e. the r.h.s of equation (4), is obtained from:

\[
\text{HM(HM of } f_{i,j+1} \text{ and } f_{i-1,j} \text{; HM of } f_{i-1,j+1} \text{ and } f_{i,j})
\]

(5)

Wazwaz [9] stated that he investigated the application of the AM and HM scheme over a wide range of examples and concluded that the HM scheme appears to give better results (in terms of accuracy). However, results were only presented for the non-linear Goursat problem (with \(h=0.05\)):

\[
\begin{align*}
\frac{\partial u}{\partial y} &= u \\
\frac{\partial u}{\partial x} &= e^x \\
\frac{\partial u}{\partial y} &= -1 + y + u \\
\end{align*}
\]

(6)

\[
\begin{align*}
\frac{\partial u}{\partial t} &= 1 + y + u \\
\frac{\partial u}{\partial y} &= -1 + y + u \\
0 \leq x \leq 2, 0 \leq y \leq 2 \\
0 \leq x \leq 2.4, 0 \leq y \leq 4
\end{align*}
\]

(7)

(8)

In this way we hope to draw firmer conclusions regarding the accuracy of the AM and HM schemes. Analytical solutions for (6), (7) and (8) can be found in Wazwaz [10].

3. Numerical Experiments

Computer programs for problems (6), (7) and (8) were developed. For the non-linear Goursat problem (6) with \(h = 0.05\), we obtained:

| Table 1: Relative errors for the AM scheme, \(h=0.05\) |
|---|---|---|---|
| \(y\) | 1.0 | 2.0 | 3.0 | 4.0 |
| 1.0 | 7.2890713e-005 | 9.707691e-005 | 6.497523e-005 | 4.0385671e-005 |
| 2.0 | 7.290791e-005 | 9.707691e-005 | 6.497523e-005 | 4.0385671e-005 |
| 3.0 | 6.497523e-005 | 3.4128209e-004 | 8.0424181e-004 | 9.5132232e-004 |
| 4.0 | 4.0385671e-005 | 2.5890833e-004 | 9.5132232e-004 | 2.1149666e-003 |
Table 2: Relative errors for the HM scheme, h=0.05

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>9.0306034e-005</td>
<td>1.8110830e-004</td>
<td>2.0081184e-004</td>
<td>1.7570651e-004</td>
</tr>
<tr>
<td>2.0</td>
<td>1.8110830e-004</td>
<td>5.3529258e-004</td>
<td>7.9519142e-004</td>
<td>7.6182887e-004</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>2.0081184e-004</td>
<td>7.9519142e-004</td>
<td>1.9192810e-003</td>
<td>2.5539158e-003</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>1.7570651e-004</td>
<td>7.6182887e-004</td>
<td>5.3529258e-004</td>
<td>7.9519142e-004</td>
<td></td>
</tr>
</tbody>
</table>

We also computed that the:

Number of grid points where the AM scheme is superior = 6400

Number of grid points where the HM scheme is superior = 0

Average relative error of the AM scheme = 2.5268253e-004

Average relative error of the HM scheme = 6.2442268e-004

For grid sizes h = 0.025, 0.1, we obtained the following results:

Table 3: Results for Problem (6) with h= 0.025, 0.1

<table>
<thead>
<tr>
<th>h = 0.025</th>
<th>h = 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of grid points for which AM scheme is superior</td>
<td>25600</td>
</tr>
<tr>
<td>No. of grid points for which HM scheme is superior</td>
<td>0</td>
</tr>
<tr>
<td>Average relative error of the AM scheme</td>
<td>6.2298718e-005</td>
</tr>
<tr>
<td>Average relative error of the HM scheme</td>
<td>1.5377398e-004</td>
</tr>
</tbody>
</table>

For the linear Goursat problem (7), we obtained the following results:

Table 4: Results for Problem (7) with h=0.025, 0.05, 0.1

<table>
<thead>
<tr>
<th>h = 0.025</th>
<th>h = 0.05</th>
<th>h = 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of grid points for which the AM scheme is superior</td>
<td>6400</td>
<td>1600</td>
</tr>
<tr>
<td>No. of grid points for which the HM scheme is superior</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average relative error of the AM scheme</td>
<td>4.3506679e-005</td>
<td>1.7771664e-004</td>
</tr>
<tr>
<td>Average relative error of the HM scheme</td>
<td>8.6977635e-005</td>
<td>3.5484552e-004</td>
</tr>
</tbody>
</table>

For the Goursat problem (8), we obtained the following results:

Table 5: Results for Problem (8) with h = 0.003, 0.006, 0.03

<table>
<thead>
<tr>
<th>h = 0.003</th>
<th>h = 0.006</th>
<th>h = 0.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of grid points for which the AM scheme is superior</td>
<td>637647</td>
<td>158706</td>
</tr>
<tr>
<td>No. of grid points for which the HM scheme is superior</td>
<td>2353</td>
<td>1294</td>
</tr>
<tr>
<td>Average relative error of the AM scheme</td>
<td>1.0024714e-3</td>
<td>2.0028735e-3</td>
</tr>
<tr>
<td>Average relative error of the HM scheme</td>
<td>5.1360557e-2</td>
<td>5.1946317e-2</td>
</tr>
</tbody>
</table>

From the above results (and the results for h values not displayed in this paper) it is clear that the AM scheme is more accurate than the HM scheme.
4. Implementation Aspects

Consider the linear Goursat problem (7) as an example. If the AM scheme is used, we obtain the finite difference scheme:

\[u_{i+1,j} = \frac{1}{4} (u_{i+1,j+1} + u_{i,j} + u_{i-1,j} + u_{i,j-1}) \] \hspace{1cm} (9)

Equation (7) is a linear equation which can easily be solved for the unknown \(u_{i+1,j} \).

If the harmonic mean scheme is used we obtain:

\[u_{i+1,j} = \frac{1}{h^2} \left(\frac{4u_{i+1,j-1}u_{i,j}u_{i,j+1}u_{i+1,j}}{u_{i+1,j}u_{i,j} + u_{i,j-1} + u_{i+1,j-1} + u_{i,j+1}} \right) \] \hspace{1cm} (10)

This is a non-linear equation in the unknown \(u_{i+1,j} \) and would require iteration, with its associated computational costs, for its solution. We thus see that the AM scheme has an advantage in that it preserves the linearity of a linear Goursat problem and consequently the straightforward solution procedure.

5. Conclusions

In this paper we have studied the AM and HM finite difference schemes for the solution of the Goursat problem. A previous comparative study concluded that the HM scheme was more accurate. However, the displayed results indicated otherwise. Our investigations, involving the computation of the number of points at which one scheme was more accurate than the other and the comparison of the average relative error for three Goursat problems, have found that the AM scheme is more accurate. We further make the observation that for linear problems the AM scheme has an advantage in that it preserves the linearity of linear Goursat problems.

Acknowledgements

We acknowledge the financial support of an FRGS research grant.

References

TABLE OF CONTENTS

POWER AND ENERGY SYSTEMS I

443-002: A Thermodynamics Method of Online Calculation Steam Turbine Exhaust Enthalpy with Improved Flügel Formula
Z. Han and K. Yang .. 1

443-023: The Application of the Diesel Engine Simulator for the Diagnostic Training
S. Kluj .. 7

443-157: Control of Combustion based on Neuro-fuzzy Model
Z. Himer, G. Dévényi, J. Kovács, and U. Kortela 13

443-161: PEM Fuel Cell Model for System Simulation and Optimisation
S.S.H.U. Gamoge, P.R. Palmer, and B. Lakeman 18

443-095: A Model Regarding Electrical Contacts in Advanced Degradation
C.G. Aronis, C.P. Psomopoulos, C.G. Karagiannopoulos, and P.D. Bourkas 23

443-084: Harmonic Amplitudes and Harmonic Phase Angles Monitored in an Electrified Subway System during Rush-Hours Traffic
R. Lamedica, M. Marinotto, and A. Pendaris 29

443-185: Simulator for Training Operators in Hydroelectric Minipower Stations
A.M. Macarulla-Arena,a, J.I. García-Quintanilla, J.L. López-Guimitiñas, and E. Pinacho-Alonso 35

443-080: Modelling, Simulation and Identifications of Synchronous Generator Transfer Functions
E. Ceuca, S. Lungu, and M.I. Achim 41

443-094: Influence of the Temperature on the UC3842 Current Mode PWM Controller
J. Zarębski and K. Górecki ... 47

COMPUTATIONAL INTELLIGENCE

443-013: On the Use of Soft Computing Calculation for Estimation and Prediction of Time to Disruption in Tokamak Reactors
A. Greco, F.C. Morabito, and M. Versaci 59

443-061: Sulphur Recovery Unit Modelling via Stacked Neural Network
M.G. Xibilia and N. Barbalace 65

443-068: Comparison between Physical Modelling and Neural Network Modelling of a Solar Power Plant
C. Ionescu, B. Wyns, M. Sbarciog, L. Boullart, and R. De Keyser .. 71

443-102: The Optimal Structure of Recurrent Neural Networks for Forecasting
S. Patamavorakun and H.N. Phien 77

443-153: Managing Crude Oil Price Risk using Artificial Neural Networks
H. Najafi, R. Rahgozar, and B. Champlin 83

443-184: Automatic Generation of Neural Network Structures for Modeling the Highly Nonlinear Processes
M. Špišiak and Š. Kočák ... 91

443-049: GA based Trajectory Planner for Robot Manipulators Sharing a Common Workspace
E.A. Merchán-Cruz and A.S. Morris 96

443-203: Hybrid Techniques for Improving ICA Algorithms
J.M. Görrez ... 102

443-052: Feature-based Product Form Design using a Hybrid Genetic Fuzzy Neural Network Algorithm
S.-W. Hsiao and H.-C. Tsai 108

443-081: Fuzzy Hierarchical Models Designed using Data
R. Šindelár ... 114

443-057: Modelling and Simulation of Fuzzy-Rule based Systems
W.-M. Lippe ... 120
ENVIRONMENTAL MODELLING

443-050: Discrete Simulation Model to Study Heterotrophic Microbial Activity in Soil
A. Gras and M. Ginovart .. 125

443-051: Burgers Equation for Water Dynamics in Soils on Eroding Hillslopes
N. Su ... 131

443-059: Information Technology for Cleaner Water
S. Vranes, A. Lodolo, and S. Miertsu 137

443-189: Weather Sensitivity of Physically Based Models of Residential Air-Conditioners for Direct Load Control: A Case Study
S. El-Férik, S.A. Hussain, and F.M. Al-Sunni 189

443-155: Numerical Identification of Parameters for Dynamic Analysis of Single-Cage Induction Motors Starting from Data-Sheet Quantities
C. Bruzzi, F. Corti, E. Nisticò, and E. Santini 195

443-158: Closed-loop Identification of a Chemical Reactor
J. Mikle, L. Čirka, and M. Fikar 201

443-046: Modeling and Multicriteria Parametrical Identification of the Parafoil-Load Delivery System
O.A. Yakimenko and R.B. Statnikov 207

443-017: Modelling and Controlling Decentralized Logistics Networks
W. Dangelmaier, H. Franke, B. Klöpfer, and P. Scheideler .. 214

M. Ouhrouche, R. Beguenane, and M. Dubé-Dalaires 220

443-060: Real-time Emulation of Induction Motor in FPGA using Floating Point Representation
R. Jastrzębski, O. Laakkonen, K. Rauma, J. Luukko, H. Sarén, and O. Pyrhönen 226

MATHEMATICAL MODELLING AND SIMULATION METHODOLOGY

443-029: Differential Transformation Method for Buckling Behaviour of a Nonlinear Beam
C.-L. Chen, W.-Z. Yeh, and M.-J. Jang 232

443-053: RST Simulator – An Advanced Tool for Control Education
J. Kovács, I. Benyó, and G. Lipovszki 238

443-056: Numerical Solution of the Goursat Problem
A.I.M. Ismail, M.A.S. Nasir, and A.Z. Talib 243

443-107: The Reuse of Free-Form Surface Features: A Wavelet Approach
G. Amati, A. Liverani, and G. Caligiana 247

443-109: Analysis of Dry-type Smoothing Reactors using FEM: Application to Air Gap Length Calculation
J.A. Giemes Alonso .. 253

443-174: Dimensional Error Prediction of Cold Formed Components in Backward Extrusion using Finite Element Analysis
H. Long and P.G. Maropoulos 259