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SISTEM STEINER S(5, 8, 24) DAN  

PENJANA OKTAD AJAIB 

 

ABSTRAK 

 

 Sistem Steiner S(l, m, n) terdiri daripada subset –subset m unsur bagi set n unsur 

 di mana setiap subset l unsur bagi set n unsur terkandung dalam hanya satu subset m 

unsur.  Sistem Steiner yang paling menarik perhatian ialah sistem Steiner yang 

mempunyai nilai l yang sebesar mungkin.  Tetapi hingga sekarang, hanya terdapat dua 

sahaja sistem Steiner di mana l > 4 yang diketahui.  Salah suatu daripada meraka ialah 

S(5, 8, 24). 

Ω

 

 Matlamat utama tesis ini adalah untuk memperlihatkan hubungan antara Penjana 

Oktad Ajaib (Miracle Octad Genarator) dengan sistem Steiner S(5, 8, 24).  Pada 

permulaannya, kami membuktikan kewujudan  sistem Steiner S(5, 8, 24).  Seterusnya, 

kami membuktikan keunikan sistem Steiner ini selepas melabel semula titik-titik dalam 

set yang mengandungi 24 unsur Ω .  Selanjutnya kami tunjukkan bahawa Penjana Oktad 

Ajaib dapat memberi kami semua unsur dalam sistem Steiner S(5, 8, 24).  Semua bahan 

yang diperlui telah dimasukan dalam tesis ini.  Perspektif tesis ini adalah secara 

kombinatorik tulen.   

 

 

 

 vii



 

ABSTRACT 

 

 A Steiner system S(l, m, n) is a collection of m-element subsets of an n-element 

set  such that every l-element subset of Ω Ω  lies in exactly one of the m-element sets.  

The most interesting Steiner systems are those with l as large as possible.  But only two 

systems are known with l > 4.  One of them is S(5, 8, 24). 

 

 The main objective of this thesis is to show the relevance of the Miracle Octad 

Generator (MOG) with Steiner system S(5, 8, 24).  First we show the existence of 

Steiner system S(5, 8, 24).  Next we show that Steiner system S(5, 8, 24) is unique up to 

relabelling the points of the 24-element set Ω .  Then we show that S(5, 8, 24) is given 

by the Miracle Octad Generator.  The treatment in this thesis is self – contained and 

purely combinatorial.   
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CHAPTER 1 - INTRODUCTION 

 

 In 1853, the Swiss geometer J. Steiner posed the following question: 

“ Given an N-element set such that every 2-element subset of N-element set lies in 

exactly one 3-element subset of N-element set.  Does this kind of N-element set exist ? ” 

If we write l, m and n instead of 2, 3 and N, respectively, then we have the following 

combinatorial structure that we called the Steiner system : A Steiner system S(l, m, n) is 

a finite set  of elements (called points ) with a family of subsets ( called blocks ) such 

that the following holds true: 

Ω

 

 1. There are exactly n points in Ω . 

 2.  Each block has exactly m points. 

 3. Any l distinct points belong to a unique block. 

 

 In order to avoid trivialities it is usually assumed that nml <<≤2 .  So Steiner 

asked for S(2, 3, n) systems.  As a matter of fact, T.P.Kirkman proved already in 1847 

that a Steiner system S(2, 3, n) exist if and only if n ≡1, 3 (mod 6) (see [17] ). 

 

 Let X be a v-set (i.e.a set with v elements) whose elements are called points.  A t-

design is a collection of distinct k-subsets (called blocks) of X with the property that any 

t-subset of X is contained in exactly λ  blocks.  This is also called a t-(v, k, λ ) design.  

If λ =1, a t-design is called a S(t, k, v) Steiner system.  In our case, we use l, m and n 

instead of t, k and v.  
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 There are only two Steiner systems when l = 5.  One of them is S(5, 6, 12) which 

is also called small Witt design .  It was firstly presented by E. Witt in his paper 

Uber Steinersche Systeme in 1938.  Another Steiner system is S(5, 8, 24) which is also 

called large Witt design .  It was due to R.D.Carmichael ( see [5] ).  Historically, the 

construction problems of designs was first handled by statisticians, since designs with 

the right parameters were needed in the design of experiments ( see [20] ).  

12W

24W

 

 A remarkable property of the two Steiner systems concerns their automorphism 

groups.  The automorphism groups of S(5, 6, 12) and S(5, 8, 24) act 5-transitively on 

their sets of points.  These automorphism groups are the Mathieu groups  and , 

respectively.  These two quintuply transitive permutation groups which act on twelve 

and twenty-four points respectively were discovered by the French mathematician Emil 

Mathieu in 1861 in his paper Memoire sur l’etude des functions de plusieurs quantites 

and 1873 in his another paper Sur la function cinq fois transitive de 24 quantites.  

12M 24M

 

  and  are early examples of sporadic finite simple groups.  Simple 

groups may be viewed as the atoms of finite group theory.  In one of the most 

remarkable achievements of human endeavor, the complete list of the finite simple 

groups was obtained in the early 1980s.  Gorenstein estimates that the full details of the 

classification occupy about 15,000 pages in research journals and that this work 

involved about 400 research mathematicians from many different countries.  A deeper 

account of  the classification can be obtained by consulting the book by Gorenstein ( see 

[16] ) or the book by Aschbacher ( see [2] ). 

12M 24M
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 With the classification of finite groups complete, we now know that any other 

quintuply transitive permutation group, on any number of points, must contain the 

corresponding alternating group.  Indeed, the only quintuply transitive groups, other 

than the alternating and symmetric groups, are in the point stabilizers in  and , 

which are denoted by  and  respectively.  To put it another way, the study of 

multiply ( ≥  4 fold) transitive groups now means the study of the symmetric groups and 

the Mathieu groups ( see [13] ).   

12M 24M

11M 23M

 

 Apart from their beauty and interest in their own right, the Mathieu groups are 

involved in many of the other sporadic simple groups ( see [8] ).  Thus a detailed 

understanding of the other exceptional groups necessitates an intimate knowledge of 

 and .  Since  and  are automorphism groups of S(5, 6, 12) and  

S(5,8,24)  respectively, those two Steiner systems are indeed remarkable combinatorial 

structures.  For many decades, S(5, 6, 12) and S(5, 8, 24) were the only known Steiner 

systems with parameter l = 5.  Until recently only finitely many Steiner system          

S(l, m, n) with l > 3 and none with l > 5 seem to be known ( see [3], [7], [19] ).  

12M 24M 12M 24M

  

 The Miracle Octad Generator (MOG) is a device invented by Robert Curtis ( see 

[12] ) for computing with the elements (called octads) of  the Steiner system S(5, 8, 24) 

and the permutations of the Mathieu group .  Usually, when one constructs a large 

group from some “simpler” object, the construction itself will have a smaller group of 

symmetries.  And one finds that elements inside this “visible subgroup” are “easy” to 

understand and the others “hard”.  It is a remarkable fact that the MOG construction 

manages to have several “visible groups”, each of them a maximal subgroup of . 

Chang Choi discussed the maximal subgroups of  without using the MOG in 1972 

24M

24M

24M
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(see [6] ).  In the same year, Curtis discussed the maximal subgroups of  by using 

the MOG ( see [15] ).  So it is always convenient to use MOG arrangement for vectors 

in  ( see also [9], [10] ).  This indicates that MOG is a device which has theoretical 

as well as practical value. 

24M

24ℜ

 

 Combinatorics is generally concerned with counting arrangements within a finite 

set.  One of the basic problems is to determine the number of possible configurations of 

a given kind.  Even when the rules specifying the configuration are relatively simple, 

the questions of existence and enumeration often present great difficulties.  Besides 

counting, combinatorics is also concerned with questions involving morphisms and 

uniqueness of these arrangements. 

 

  The main objective of this thesis is to show the relevance of the Miracle Octad 

Generator (MOG) with Steiner system S(5, 8, 24).  First we show the existence of     

S(5, 8, 24).  Next we show that S(5, 8, 24) is unique up to relabelling the points of the 

24-element set Ω .  Then we show that S(5, 8, 24) is given by the Miracle Octad 

Generator.  The treatment in this thesis is self – contained and purely combinatorial.  

Throughout the study of this subject, we refer to [12].   

 

Here we list our two main results. 

(1)  Corollary 4.4.1′  Corresponding to each four points of Ω , there is a unique 

partition of the twenty-four points into six tetrads with the property that the union of any 

two tetrads is an octad.  Such a configuration is called a sextet. 

(2)  Section 4.5 – Using the MOG to find sextet defined by a tetrad.  

 

 4



 5

 At this stage, we discuss the organization of the chapters in this thesis.  The 

material is divided into five chapters.  An introduction to the topics we are going to 

discuss is given in Chapter 1.  Chapter 2 serves as the prerequisites for Chapter 3.  Some 

properties of vector spaces and Steiner systems S(l, m, n) are stated in Chapter 2.  

Chapter 3 is devoted to the construction and existence of S(5, 8, 24).  Included in this 

chapter is the Leech Table.  There are five sections in Chapter 4.  Miracle Octad 

Generator (MOG) is discussed in the first section of Chapter 4.  Second section contains 

examples showing how to complete an octad of S(5, 8, 24) from any five given points.  

In the third section of Chapter 4, we discuss about intersection of octads.  A special 

configuration called sextet is discussed in the fourth section.  The method of how to use 

MOG to find sextet defined by a tetrad is included in the last section of Chapter 4.  The 

theme developed in Chapter 4 is then used in Chapter 5 to show the uniqueness of 

S(5,8,24) up to isomorphism. 



CHAPTER 2 - PREREQUISITES 

 

 In section 2.1, we list out all properties of vector spaces that we need.  In the 

later part of section 2.1, we talk about power set and symmetric difference.  Then in 

section 2.2, we define Steiner system S(l, m, n) and derive some basic facts concerning 

S(l, m, n).  Most of the materials in this chapter serve as prerequisites for proving the 

existence of S(5, 8, 24) in chapter 3.  Throughout section 2.1, we follow the treatment in 

[18].  While in section 2.2, we refer to [1].  

 

2.1 Vector spaces 

 

 First we give the definition of vector space over field K. 

 

Definition 2.1.1  Let K be a given field and let V be a non-empty set with rules of 

addition and scalar multiplication which assigns to any u, v∈V a sum u + v ∈  V and to 

any u ∈  V, k ∈  K a product ku ∈  V.  Then V is called a vector space over K (and the 

elements of V are called vectors) if the following axioms hold: 

A1. For any vectors u, v, w ∈  V, (u + v) + w = u + (v + w). 

A2. There is a vector in V, denoted by 0 and called the zero vector, for which           

 u + 0 = u for any vector u∈V. 

A3.  For each vector u V, there is a vector in V, denoted by −u, for which                    

 u + (−u) = 0. 

∈

A4. For any vectors u, v ∈  V, u + v = v + u. 

M1. For each scalar k ∈  K and any vectors u, v ∈  V, k (u + v) = ku + kv. 

M2. For any scalar a, b ∈  K and any vector u ∈  V, (a + b) u = au + bu. 
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M3. For any scalar a, b ∈  K and any vector u ∈  V, (ab)u = a(bu). 

M4. For 1 ∈  K, 1u = u for any vector u ∈  V. 

 

 The above axioms naturally split into two sets.  The first four are only concerned 

with the additive structure of V.  It follows that any sum of vectors of the form 

 requires no parenthesis and does not depend upon the order of the sum, 

the zero vector 0 is unique, the negative –u of each u is unique, and the cancellation law 

holds.  Also subtraction is defined by u – v = u + (−v).  On the other hand, the 

remaining four axioms are concerned with the “action” of the field K on V. 

mvvv +++ L21

 

 Let W be a subset of a vector space V over a field K.  W is called a subspace of V 

if W is itself a vector space over K with respect to the operations of vector addition and 

scalar multiplication of V.  Simple criteria for identifying subspaces follow. 

 

Theorem 2.1.2  W is a subspace of V if and only if   

(i) W is nonempty, 

(ii) W is closed under vector addition: v, w ∈  W implies v + w ∈  W, 

(iii)   W is closed under scalar multiplication: v ∈ W implies kv ∈  W for all k ∈  K.  

 

Proof.  See [18] Theorem 4.2. 

 

Corollary 2.1.3  W is a subspace of V if and only if (i) 0 ∈  W, and (ii) v, w ∈  W implies 

that av + bw ∈  W for every a, b ∈ K. 

 

Proof.  See [18] Corollary 4.3. 
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 Let V be a vector space over a field K and let  mvv ,,1 L ∈  V.  Any vector in V of 

the form  where the  mmvavava +++ L2211 ia ∈  K, is called a linear combination of 

.  The following theorem applies. mvv ,,1 L

 

Theorem 2.1.4  Let S  be a nonempty subset of V.  The set of all linear combinations of 

vectors in S, denoted by L(S), is a subspace of V containing S.  Furthermore, if W is any 

other subspace of V containing S, then L(S) W. ⊂

 

Proof.  See [18] Theorem 4.5. 

 

 In other word, L(S) is the smallest subspace of V containing S ; hence it is called 

the subspace spanned or generated by S.  For convenience, we define L(φ ) = {0}. 

 

 Let U and W be subspaces of a vector space V.  The sum of U and W, written 

U+W , consists of all sums u + w where u ∈ U and w ∈  W: 

  U + W = { u + w | u ∈ U, w ∈  W}. 

Note that 0 = 0 + 0 ∈ U + W, since 0 ∈  U, 0 ∈  W.  Furthermore, suppose  u + w and 

u′+ w′ belong to U + W with u, u′ ∈ U and w, w′ ∈  W.  Then  

   (u + w) + (u′ + w′) = (u +  u′) + (w + w′) ∈ U + W. 

And for any scalar k, k(u + w) = ku + kw ∈  U + W. 

Thus we have proven the following theorem. 

 

Theorem 2.1.5  The sum U + W of the subspaces U and W of V is also a subspace of V. 
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Let U and W be subspaces of a vector space V.  And let { } generates U and 

{ } generates W where i, j 

iu

jw ∈Z .  What is the vector space generated by { , }?  

We have the answer in the following theorem. 

+
iu jw

 

Theorem 2.1.6  Suppose U and W are subspaces of a vector space V, and that { } 

generates U and { } generates W.  Then { ,  } generates U+W. 

iu

jw iu jw

 

Proof.  See [18] Solved problem 4.35. 

 

Definition 2.1.7  The vector space V is said to be the direct sum of its subspaces U and 

W, denoted by V = U ⊕  W if every vector v ∈  V can be written in one and only one 

way as v = u + w where u ∈  U and w ∈  W. 

 

 The following theorem applies. 

 

Theorem 2.1.8  The vector space V is the direct sum of its subspaces U and W if and 

only if (i) V = U + W and (ii) U ∩  W = { 0 }. 

 

Proof.  See [18] Theorem 4.9. 

 

 Now we discuss a bit about basis and dimension.  We begin with a definition. 

 

Definition 2.1.9  A vector space V is said to be of finite dimension n or to be                

n-dimensional, written dim V = n, if there exist linearly independent vectors 
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nAAA ,,, 21 L  which span V.  The set { } is called a basis of V. nAAA ,,, 21 L

 The above definition of dimension is well defined in view of the following 

theorem. 

 

Theorem 2.1.10  Let V be finite dimensional vector space.  Then every basis of V has 

the same number of elements. 

 

Proof.  See [18] Theorem 5.3. 

 

 The vector space {0} is defined to have dimension 0.  ( In certain sense this 

agree with the above definition since, by definition, φ  is independent and generates 

{0}.)  When a vector space is not of finite dimensional, it is said to be of infinite 

dimension.  The following theorems give basic relationship between the dimension of a 

vector space and the dimension of a subspace. 

 

Theorem 2.1.11  Let W be a subspace of an n – dimensional vector space V.  Then 

dimW  n.  In particular if dim W = n, then W = V. ≤

 

Proof.  See [18] Theorem 5.7. 

 

Theorem 2.1.12  Let U and W be finite – dimensional subspaces of a vector space V.  

Then U + W has finite dimension and  

  dim (U + W) = dim U + dim W – dim (U∩W). 

 

Proof.  See [18] theorem 5.8. 
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 Now suppose V is the direct sum of U and W, i.e. V = U ⊕  W, then the 

following theorem applies. 

 

Theorem 2.1.13  Suppose V is the direct sum of its subspaces U and W, i.e. V=U ⊕  W.  

Then dim V = dim U + dim W. 

 

Proof.  See [18] Solved problem 5.48. 

 

 For a finite set Ω , subsets of Ω  which contain even number of elements are 

called even subsets of Ω .  Otherwise they are called odd subsets of Ω .  The following 

theorems are about the number of elements of a power set P(Ω ), and the relationship 

between even subsets and odd subsets of Ω .  Power set P(Ω ) is the set that contains all 

the subsets of . Ω

  

Theorem  2.1.14  Let Ω  be a set with n elements.  Then the power set of Ω , P(Ω ), 

contains  elements. n2

 

Proof.  See [1] section 2.5(9). 

 

Theorem 2.1.15  Let Ω  be a finite set.  The number of even subsets of Ω  is same as 

the number of odd subsets of Ω . 

 

Proof.  Refer to the proof of Theorem 2.1.14.   
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At this point, we pay attention to the idea of symmetric difference.  If A and B 

are two subsets of a set S, the symmetric difference, A + B, is defined to be the set of all 

elements of S which are in A or B but not both.  A + B is shaded as shown in          

Figure 2.1.1. 

 

B 
A 

    Figure 2.1.1 

 

Let A, B, C be subsets of set S.  Clearly it is always true that A + B = B + A.  

And the following are also easily verified : A + A = φ  ( the empty set) ; A + φ  = A;                   

A + (B + C) = (A + B) + C.  We have the following theorem after checking all the 

axioms in Definition 2.1.1. 

 

Theorem 2.1.16  The power set of Ω , P(Ω ), is a vector space over field  under 

addition defined as symmetric difference and scalar multiplication defined as  

2Z

⎩
⎨
⎧

=
=

=⋅
0,
1,

αφ
α

α
x

x    where 2Z∈α , x ∈  P(Ω ). 
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2.2 Steiner System S( l, m, n ) 

 

 We start with the definition of Steiner system S(l, m, n). 

 

Definition 2.2.1  A Steiner system S(l, m, n) is a collection of m-element subsets of an 

n-element set Ω  such that every l-element subset of Ω  lies in exactly one of the            

m-element sets.  The set  is called the base set. Ω

 

 The number of elements (m – element sets) of S(l, m, n) if it exist is given in the 

following theorem. 

 

Theorem 2.2.2  The number of m-element sets in S(l, m, n) is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l
m

l
n

. 

Proof.  There are l-element sets of n-element set ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l
n

Ω .  Each l-element set lies in 

exactly one of the m-element sets.  And each m-element set contains l-element sets.  

So = (number of m-element sets) .      

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l
m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l
m

Q.E.D. 

  

 Theorem 2.2.2 implies that if a Steiner system S(l, m, n) exist, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l
m

l
n

 must 

be  an  integer.  But  if ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l
m

l
n

is  an  integer,  it  does  not  necessary  implies  that  

S(l, m, n) exist.  Let us look at some examples. 
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Example 2.2.1  There does not exist a system S(5, 7, 13)since ⎟⎟
⎠

⎜⎜
⎝

⎟⎟
⎠⎝

⎛
5
7

5
13 ⎞⎛⎞
⎜⎜ is not an 

integer. 

 

 At this point, an interesting question is, if a Steiner system S(l, m, n) exist, can 

we find ‘smaller’ Steiner system from S(l, m, n) after removing some elements from 

base set and those m-element sets of S(l, m, n) containing them?  The answer is given in 

the following theorem. 

 

Theorem 2.2.3  Let x be an element of the base set Ω  of S(l, m, n).  The m-element sets 

of S(l, m, n) containing x, on the removal of x, form a Steiner system S(l-1, m-1, n-1). 

 

Proof.  If x is removed from those m-element sets of S(l, m, n) and the base set Ω , we 

have m-1 elements left in those m-element sets which contain x.  And the number of 

elements in base set now become n-1.  Thus a collection of (m-1)-element subsets of an 

(n-1)-element set is obtained.  But does each (l-1)-element subset lies in exactly one of 

the (m-1)-element set?  Assume that an (l-1)-element set lies in two different (m-1)-

element sets.  Each    (l-1)-element subsets, after adding back the x, is in a unique m-

element set.  If the assumption is true, then the (l-1)-element set, after adding x, lies in 

two different m-element sets.  This contradict with the definition of S(l, m, n).  Thus 

each (l-1)-element subset lies in a unique (m-1)-element set.  Hence a system             

S(l-1, m-1, n-1) is obtained. 

Q.E.D. 
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Corollary 2.2.4  If a Steiner system S(l, m, n) exist, the number of m-element sets 

containing an element of n-element set is given by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

1
1

1
1

l
m

l
n

. 

 

Proof.  From Theorem 2.2.3, those m-element sets containing a particular element x of 

the base set, on the removal of x, form a Steiner system S(l-1, m-1, n-1).  From Theorem 

2.2.2, the number of (m-1)-element sets in S(l-1, m-1, n-1) is  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

1
1

1
1

l
m

l
n

, which 

is same as the number of m-element sets containing x.    

         

Q.E.D. 

 

 The generalization of the above theorem is to consider the Steiner system after 

the removal of u elements where u < l.  We have the following theorem. 

 

Theorem 2.2.5  If a Steiner system S(l, m, n) exist, so does a Steiner system S(l-u, m-u, 

n-u) for each u < l. 

 

Proof.  From Theorem 2.2.3, if a Steiner system S(l, m, n) exist, so does a Steiner 

system S(l-1, m-1, n-1).  The (m-1)-element sets of S(l-1, m-1, n-1) containing an 

element y, on the removal of y, form a Steiner system S(l-2, m-2, n-2).  By applying the 

same procedure, the result follows.                 

Q.E.D. 
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  Theorem 2.2.5 gives more conditions on l, m, n since not only ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l
m

l
n

must 

be an integer, but so must ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− 11 ll

−− 11 mn
, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− 22 ll

−− 22 mn
,   ...   , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1

)1(
1

)1( lmln −−−−
.   

 

Example 2.2.2  S(5, 8, 24) is a Steiner system.  So does S(4, 7, 23), S(3, 6, 22),        

S(2, 5, 21) and S(1, 4, 20). 

 

Example 2.2.3  An S(2, n +1, ) Steiner system is called a projective plane of 

order n.  Now let us investigate this kind of Steiner system where n = 6.  Theorem 2.2.5 

does not exclude the possibility of the existence of S(2, 7, 43), since 

12 ++ nn

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
7

2
43

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
6

1
42

are integers. However such a system does not exist.  If 

Steiner system S(2, 7, 43) exist, any S(2, 7, 43) would be a finite projective plane of 

order 6.  But there is no finite projective plane of order 6 (see [1] Theorem 6.4). 

 

 At last we have the following corollary as the consequence of Theorem 2.2.5. 

 

Corollary 2.2.6  If a Steiner system S(l, m, n) exist, the number of m-element sets 

containing certain u elements of n-element set where u < l is given 

by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

ul
um

ul
un

. 
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Proof.  From Theorem 2.2.5, if a Steiner system S(l, m, n) exist, we know that           

S(l-u, m-u, n-u) exist.  And the number of (m-u)-element sets in S(l-u, m-u, n-u) which 

is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

ul
um

ul
un

, is also same as the number of m-element sets of S(l, m, n) 

containing certain u elements of n-element set.  

Q.E.D. 
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CHAPTER 3 - EXISTENCE OF S(5, 8, 24) 

 

 A Steiner system S(5, 8, 24) is a collection of 8-element subsets (called octads ) 

of a 24-element set, , with the property that any 5 elements of the 24 elements lie in a 

unique octad.  In Section 3.1, a special table called Leech Table is introduced.  For a 

particular octad, entry  from the table will give us the number of octads in           

S(5, 8, 24) containing j elements out of i elements from that fixed octad.  Section 3.2 is 

devoted to the construction and existence of Steiner system S(5, 8, 24).  Throughout 

Section 3.1 and Section 3.2, we follow the treatment in [12]. 

Ω

jiE ,

 

3.1 Introduction 

 

 From Theorem 2.2.2, the number of octads in S(5, 8, 24) is 759 (= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5
8

5
24

).   

According to Corollary 2.2.4, each element of Ω  lies in 253 (= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
4
7

4
23

) octads. 

 

 For each case of a given u-element subset of Ω  where 42 ≤≤ u , the number of 

octads containing certain u elements of Ω  is obtained by applying Corollary 2.2.6. 

Meanwhile each 5-element subset of Ω  or quintuple lies in exactly one octad.  Thus we 

have the following results. 

 

Theorem 3.1.1  Let  be a 24-element set.  In S(5, 8, 24), Ω

(a) the number of octads is 759, 

(b) each element of Ω  lies in 253 octads, 
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(c) each pair of elements lies in 77 octads, 

(d) each triple of elements  lies in 21 octads, 

(e) each 4-element subsets of Ω  (tetrad) lies in 5 octads, 

(f) each 5-element subsets of  (quintuple) lies in a unique octad. Ω

 

 Now we are going to introduce a table called Leech Table. 

 

Table 3.1.1 (Leech Table) 

 

 0 759 

 1 506 253 

 2 330 176 77 

 3 210 120 56 21 

Line(i) 4 130 80 40 16 5 

 5 78 52 28 12 4 1 

 6 46 32 20 8 4 0 1 

 7 30 16 16 4 4 0 0 1 

 8 30 0 16 0 4 0 0 0 1  

  0 1 2 3 4 5 6 7 8 

     Entry(j) 

     

 Fix a particular octad.  Let the j-th entry at the i-th line, , denote the number 

of octads in the S(5, 8, 24) containing j particular elements out of certain i elements 

from the fixed octad where 

jiE ,

ij ≤ .  For example,  = 77 and  = 8. 2,2E 3,6E
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 From Theorem 3.1.1(b), we know that among all 759 octads, there are 

253(= ) octads containing a given element of 1,1E Ω .  And there are 759 – 253 = 

506( ) octads which do not contain that given element.  77(= ) octads contain a 

given 2-element subset of Ω .  Let x, y be any two elements.  Among those 253 octads 

containing x, there are 253 – 77 = 176(= ) octads containing x but not y.  If the 

chosen element is y, then there are also 176 octads containing y but not x.  Thus among 

those 506 octads which do not contain a particular element, there are 506 – 176 = 

330(= ) octads which do not contain that particular element and another element of 

.  In general, we have 

0,1E

0,2E

2,2E

1,2E

1+Ω ,1,1 ++, +=ji jiji EEE  which will give us .  In 

this way, we get Table 3.1.1 (Leech Table).   

1,1, ++−= jiji EE,1+ jiE

 

Remark : The first six rows of Table 3.1.1 has a more general interpretation.   can 

mean the number of octads containing j elements out of any fixed i elements of Ω .  But 

for the last three rows of Table 3.1.1 where i = 6, 7 or 8,  only valid if the fixed i 

elements are chosen from an octad, since not every i element (where i = 6, 7 or 8) of 

jiE ,

jiE ,

Ω  

are contained in an octad. 

 

 In particular, from the bottom line of Table 3.1.1,  and  are 

nonzero integers.  It shows that a fixed octad intersects other octads(including itself) in 

0, 2, 4 or 8 elements.  For example  = 30 means for a chosen 8 element (from an 

octad, which itself is also an octad), there are 30 octads disjoint from this octad.  This 

will be discussed in detail in Section 4.3 of Chapter 4. 

4,82,80,8 ,, EEE 8,8E

0,8E
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3.2 Construction 

 

 Let Ω  be a 24-element set.  From Theorem 2.1.16, P(Ω ) is a vector space over 

the field Z  under addition defined as symmetric difference and scalar multiplication 

defined as  where 

2

⋅α
⎩
⎨
⎧

=
=

=
0,
1,

αφ
αx

x )(,2 Ω∈∈ PxZα .   

 

 We produce a subspace, C, of P(Ω ).  The subsets ( φ≠ ) of smallest size in this 

subspace have size eight.  Then we shall show that C contains just 759 of these subsets 

of size eight or octads.  No two distinct octads can have five points or more in common.  

Also any five points of Ω  must lie in an octad.  Thus the set of octads must form a 

Steiner system S(5, 8, 24). 

 

Theorem 3.2.1  There exists a Steiner System S(5, 8, 24). 

 

Proof.  Let Ω  be a 24-element set.  Let Λ be an 8-element subset of Ω .  P( ) is a 

vector space over the field  under addition and scalar multiplication defined as 

above.  We may think of  as a set containing 8 elements, say  

Λ

2Z

Λ

 

{ } and represent it as or   . 87654321 ,,,,,,, xxxxxxxx

x      x 
x      x 
x    x  
x      x 

1x 5x

2x 6x  

3x 7x

4x 8x

  

    
 

 

Consider the following two 3-dimensional subspaces P and L of P( ), whose members 

are all tetrads (4-element subsets) and P 

Λ

∩  L = O (or o).  There are 8 (= 2 3 ) tetrads in 

 21



each 3-dimensional subspace of P (Λ ).  For each member of P and L, we may use 

drawing to represent them as follow 

         

     O           A               B                C             D         E              F     G 
  
 
P   =    
  
   
  

 
 
 
 

 
 
x    x 
x    x 

      x 
      x 
      x 
      x 

 
x    x 
x    x 
 

 
x    x 
 
x    x 

      x 
      x  
x     
x     

      x 
x 
      x 
x     

      x 
x 
x     
      x 

   

                                                                                   

      o           a              b                c              d              e             f                   g                           

  
 
 
 

      x 
x    x 
      x 
 

      x 
 
x    x 
      x 

      x 
      x 
 
x    x 

      x 
x 
x     
x     

 
x 
      x 
x    x 

 
x    x 
x 
      x 

 
      x 
x    x 
x     

L  = 

 

 

Note that P is spanned by A, B and D while L is spanned by a, b and c. 

  

We want to show that any member of L (≠ o) defines a unique 2-dimensional 

subspace or line of P; namely the set of members of P that it cuts evenly at 0 or 2 points.  

For example, a of L defines a line of P which contains O, B, E and G. spans this 

2-dimensional subspace of P.  Note that G = B + E.  After checking all members of      

L ( o), we have the following observations. 

{ EB, }

≠

a of L cuts O, B, E and G evenly. 

b of L cuts O, C, E and F evenly. 

c of L cuts O, A, F and G evenly. 

d of L cuts O, A, B and C evenly. 

e of L cuts O, C, D and G evenly. 
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f of L cuts O, A, D and E evenly. 

g of L cuts O, B, D and F evenly. 

  

A member of L ( ) cuts exactly four members of P evenly.  However no two 

members of L(

O≠

≠ o) cut the same four members of P evenly.  On the other hand, we 

count the number of 2-dimensional subspaces or lines of P.  Any set of two non-empty 

elements of P can be the basis for a line of P.  But there are three different bases which 

span the same line.  So the number of lines of P is 7  ( = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
3

2
7

) which is the same 

as the number of members of L ( ≠ o).  Thus the members of L ( ) are in 1-1 

correspondence with the lines of P.  And we can say that any member of L ( o) defines 

a unique 2-dimensional subspace or line of P.  We call P the point-space and L the line-

space.   

O≠

≠

 

 

g 

f e 

d 
c 

b 

D 

A 

F 

C 

 
E B a G 

Figure 3.2.1 
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Let say Lc∈  corresponds to the line l of P.  By abuse of notation, we let cA∈  

to denote A is a point of l.  For B∉e, it means B is not on the line of e.  For X ∈  P and    

t ∈  L, if X ∈  t, then the cardinality of (X + t) is 4 since every member of L cuts evenly  

(0 or 2) at the members of P which correspond to it.  For those members of P which are 

not corresponding to t ∈  L, t cuts them oddly at 1 or 3 points.  Thus the cardinality of  

(X + t), if X ∉ t, is either 6 or 2 respectively.  According to the observations before, we 

show this correspondence in Figure 3.2.1.   

 

Here we are going to make a remark that we will need it later.  For distinct 

nonzero X, Y, Z in P, X + Y + Z = O (i.e. Z = X + Y) if and only if Z belongs to the line 

spanned by X and Y, if and only if X, Y, Z belong to the same line. 

 

Let the complement of X ∈  P be denoted X′.  Observe that set Q which is 

spanned by O′, A, B, D form a vector space of dimension four over  where addition 

and scalar multiplication are defined as above.  Notice that for X ∈  P and t ∈  L, if 

2Z

tX +  = 4, then t must also cut X′ evenly and so we have tX +'  = 4.  Else if t+X  = 2, 

t cuts those X oddly at 3 points.  Thus t must cut X′ at 1 point, and we have tX +'  = 6.  

And if tX +  = 6, then tX +'  = 2. 

 

Consider the vector space (Q + L).  From Theorem 2.1.8, (Q + L) is the direct 

sum of Q and L since Q L = O (or o).  And from Theorem 2.1.12, we know that 

dimension of (Q + L) is 7 (= 4 + 3 – 0).  So there are  elements in (Q + L).  From the 

above observations, all elements in (Q + L) are even subsets of 

∩

72

Λ .  On the other hand, 

from Theorem 2.1.15, there are even subsets of )2/2(2 87 = Λ .  Therefore it is 
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