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 SIFAT MORFOLOGI, MEKANIK DAN TERMA BAGI GAULAN 
KOPOLIESTER AMORFUS /POLIOKSIMETILENA 

 
ABSTRAK 

 
 

Kajian terhadap gaulan kopoliester amorfus/polioksimetilena (POM) yang telah 

dilaksanakan adalah terdiri daripada dua bahagian yang utama. Kajian bahagian 

pertama adalah berkaitan dengan kesan komposisi ke atas sifat-sifat morfologi, 

mekanik dan terma bagi gaulan kopoliester amorfus/POM. Kopoliester yang dipilihkan 

ialah poli(etilene glikol-ko-sikloheksena-1,4-dimetanol terephthalate) (PETG). Gaulan 

PETG/POM yang merangkumi keseluruhan siri komposis telah dihasilkan dengan 

menggunakan penyebatian leburan. Spesimen gaulan disediakan dengan kaedah 

pengacuan suntikan dan mampatan. Kebanyakan sifat-sifat bagi gaulan PETG/POM 

yang tidak serasi ini mematuhi peraturan penambahan sebagai fungsi komposisi, 

seperti indeks aliran leburan (MFI), ketumpatan, tensil dan kekakuan lenturan.  

Walaubagaimanapun sifat-sifat seperti pemanjangan pada takat putus, tenaga serapan 

untuk gagal, kekuatan lenturan, kekuatan hentaman Izod yang ditakukkan dan keliatan 

rekahan statik, Kc telah menunjukkan nilai yang lebih rendah daripada komponen asas 

gaulan. Ini disebabkan kelemahan pelekatan antaramuka antara PETG dan POM.  

Darjah penghabluran bagi gaulan PETG/POM menurun dengan peningkatan 

kandungan PETG. Ini adalah disebabkan oleh sifat amorfus PETG. Morfologi ‘co-

continuous’ telah ditentukan dengan menggabungkan ekstraksi pilihan dan mikroskopik 

elektron pengimbasan (SEM) bagi gaulan PETG/POM 60/40 dan 50/50 wt%/wt%. 

Permukaan rekahan tensil bagi gaulan 50/50 menunjukkan morfologi fibril yang 

diperoleh oleh pengacuan suntikan yang telah mengubahkan struktur fasa permulaan 

‘co-continuous’.  Pemanjangan pada takat putus, tenaga serapan untuk gagal,  

kekuatan hentaman Izod yang ditakukkan dan keliatan rekahan statik bagi gaulan ‘co-

continuous’ PETG/POM  lebih  tinggi daripada gaulan yang mempunyai struktur fasa 

berserakan. Tetapi nilainya masih rendah daripada PETG dan POM.    



 xviii

 Bahagian kedua dalam kajian ini telah melibatkan kajian terhadap penggunaan 

termoplastik poliuretana (TPU) sebagai bahan serasi dalam gaulan PETG/POM. Dua 

jenis TPU (iaitu berasaskan poliester dan polieter ) telah digunakan dalam sistem 

gaulan ini. Gaulan ‘co-continuous; PETG/POM (50/50 wt%/wt%) telah disediakan. Sifat 

mekanik bagi gaulan ‘co-continuous’ PETG/POM telah dikajikan dengan menggunakan 

ujian lenturan dan ‘single edge notch tensile test’ (SEN-T). Kekuatan lenturan gaulan 

PETG/POM telah menurun dengan  penambahan TPU. Ini disebabkan oleh TPU yang 

bersifat elastomer. Kesan penyerasian TPU telah dibuktikan dengan peningkatan 

dalam keliatan rekahan dan disokongkan oleh pemerhatian SEM. Permukaan rekahan 

SEN-T bagi gaulan yang ditambah kesan penyerasi menunjukkan lebih banyak alah 

ricih matriks jika dibandingkan dengan sistem tanpa penambahan bahan penyerasi. 

Nilai Kc bagi gaulan PETG/POM menurun dengan peningkatan kelajuan ujian. Kesan 

optimum  bagi keliatan rekahan telah didapati dalam gaulan PETG/POM yang telah 

diserasikan dengan penambahan TPU berasaskan polieter pada takat kelajuan ujian 

100mm/min. TPU berasaskan polieter menunjukkan bahan penyerasi yang lebih 

berkesan kerana jumlah kandungan yang diperlukan adalah 1/2 daripada TPU 

berasaskan poliester untuk mencapai nilai Kc yang sama.  Ini adalah disebabkan oleh 

sifat elastomer TPU berasaskan poliester. Sifat kelembutan semulajadi bagi TPU 

berasaskan polieter dapat memberikan kesan keliatan rekahan yang lebih baik 

daripada TPU berasaskan poliester disebabkan sifat yang lebih keras secara 

semulajadi.  
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MORPHOLOGICAL, MECHANICAL AND THERMAL PROPERTIES OF 
AMORPHOUS COPOLYESTER/POLYOXYMETHYLENE BLENDS 

 
ABSTRACT 

 
 

The research on amorphous copolyester/polyoxymethylene (POM) blends consists of 

two parts. The first part was to study the effects of blend composition on the 

morphological, mechanical and thermal properties of amorphous copolyester/POM 

blends. Poly(ethylene glycol-co-cyclohexane-1, 4-dimethanol terephthalate) (PETG) 

was selected as copolyester. PETG/POM blends were produced by melt blending 

covering the whole composition range. The specimens of the blends were prepared 

using injection and compression molding. Properties such as melt flow index (MFI), 

density, tensile and flexural stiffness of these incompatible PETG/POM blends followed 

the additivity rule as a function of composition. However, the elongation at break, 

energy absorbed until tensile failure, flexural strength, notched Izod impact strength 

and static fracture toughness, Kc showed lower values than either of the neat blend 

components. This was traced to the poor interfacial adhesion between PETG and 

POM. The degree of crystallinity of the PETG/POM blends decreased with increasing 

the PETG concentration. This was attributed to the amorphous nature of PETG. A co-

continuous morphology was ascertained by the combination of selective extraction and 

SEM for the blends PETG/POM 60/40 and 50/50 wt%/wt%. The tensile fracture surface 

of the 50/50 blend exhibited a fibrillar morphology owing to the injection molding-

induced distortion of the initial co-continuous phase structure. The elongation at break, 

energy to tensile failure, notched Izod impact strength and fracture toughness of the 

co-continuous PETG/POM blends were slightly higher than those blends with 

dispersed phase structure. However, the values were still below the corresponding 

values of the neat PETG and POM.  

 



 xx

The second part of the research involves the usage of thermoplastic 

polyurethane (TPU) as a compatibilizer in PETG/POM blends. Two types of TPU (i.e. 

polyester based and polyether based) were used to compatibilize the blends system. 

The co-continuous PETG/POM (50/50 wt%/wt%) blends were prepared. The 

mechanical properties of the co-continuous PETG/POM blends were studies through 

flexural and single-edge notch tensile test (SEN-T). The flexural strength of the 

PETG/POM blends was decreased in the presence of TPU. This was attributed to the 

elastomeric nature of the TPU. The compatibilizing effects of TPU on the PETG/POM 

blends were proven by moderate improvement in the fracture toughness and confirmed 

by the SEM observation. The SEN-T fractured surface of the compatibilized blends 

showed gross matrix shear yielding as compared to the uncompatibilized system. The 

Kc values of the PETG/POM blends decreased with the increasing of testing speed. 

The optimum toughening effect was observed in PETG/POM blends compatibilized 

with polyether based TPU at testing speed of 100mm/min. The polyether based TPU is 

a more efficient compatibilizer as the amount required being 1/2 to that of the polyester 

based counterpart to achieve the same Kc value. This was attributed to the elastomeric 

nature of the polyether based TPU.  The softer nature of polyether based TPU could 

provide better toughening effect than the polyester based TPU, which is relatively 

harder in nature. 
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CHAPTER 1 
INTRODUCTION 

 
 

1.1 Introduction 
 
Commodity plastics such as polyethylene (PE), polypropylene (PP), polystyrene 

(PS) and polyvinylchloride (PVC) make up a large proportion of total tonnage of 

plastics currently being used mainly for consumer products or non load bearing 

application. However, there is a high performance plastics also known as engineering 

plastics, which have been developed to provide the combinations of lightness, good 

balance of stiffness, toughness and over a wide range of temperature applications. The 

use of engineering plastic in the areas dominated by the use of metal and ceramics 

have been growing up day by day.  However, an individual engineering plastic 

frequently, does not meet the requirement of new applications. In order to develop a 

marketable product, development of new polymer has continued.   Nevertheless, the 

developments of a new polymer need a big amount of investment and have to spend a 

lot of time. Therefore, many plastics manufacturers are using blending polymers to 

develop new polymer, which is more economical, convenient and widely accepted. 

Polymer blending is growing importance today, because the blend can be tailored to 

meet the requirements of specific applications. In addition, since the properties of blend 

system are functions of the composition, the blend can be easily and quickly modified 

to meet performance and cost objectives required by new or changing markets [Mark et 

al., 1988b].  

 

Nowadays, polymer blends constitute over 30wt% of polymer consumption and 

the annual growth rate of about 9% in the past 12 year constantly and its continuously 

increases [Utracki, 1998]. Benefits of blending can be discussed from the perspective 

of properties and economies it can bring to the manufacturer. To date, blending can be 

used to gain economy by diluting expensive engineering plastic with commodity ones. 
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New blend systems are particularly attractive because the research and development 

costs are low. This allows the blend to be produced at a lower cost [Mark et al., 1988b].  

 

In 20th century, there are about 65% of polymer blends and alloys have being 

produced by polymer manufacturers, about 25% by compounding companies and other 

by the transformers. The advantages of the blending technology are listed below 

[Utracki, 1990]: 

 

• Better processability, so improved product uniformity and scrap reduction. 

• Product tailorability to specific customer needs, thus better customer 

satisfaction. 

• Quick formulation changes, so better plant flexibility and high productivity 

• Blending reduces the number of grades that need to be manufactured and 

stored, so savings space and capital investment.  

• Recyclability of blends achieved by control of morphology. 

 

Polymer blends are now a major field of research and development activity due 

to their vast potential in acknowledging today’s industrialized societies. There are wide 

applications of engineering plastics blends in the automotive, appliances, consumer 

applications and home electronics industry.  Improving mechanical properties such as 

toughness is one of the main reason to develop a novel thermoplastic blends. 

Polyoxymethylene (POM) is one of the major engineering thermoplastics that have very 

good mechanical properties, such as tensile strength, flexural modulus, high creep, and 

good fatigue endurance and deflection temperature. However, POM is notch sensitive 

materials. Incorporation of an amorphous polymer into POM for toughening purposes 

has been reported in many studies [Chiang & Huang, 1989; Chang et al., 1991; Erro et 

al., 1996].  Chiang and Huang [1989] reported on the effects of polyether- and 

polyester-based thermoplastic polyurethane (TPU) blended with POM. The POM/TPU 
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blends exhibited good impact strength, high strain and good elastic recovery. The 

above properties were strongly dependent on the composition ratio, processing 

conditions and resulting morphology. Chang et al [1991] studied the immiscible blends 

of polycarbonate (PC) and POM. Incorporation of PC into POM significantly increased 

the modulus and yield strength of the latter. In a more recent study, blends of POM with 

PP compatibilized with ethylene-vinyl alcohol (EVOH) copolymers were investigated by 

Huang et al [2003].  

 

Poly (ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG)  is 

a fully amorphous polymer with high toughness and clarity. Yu and co-worker [2002; 

2003] studied the compatibilization and toughening of PETG, PETG/thermoplastic 

elastomer (TPE) and PETG/ poly(ethylene terephthalate) (PET) with a maleated 

thermoplastic elastomer. The addition of maleic anhydride grafted TPE into PETG/TPE 

also improved the dispersion of the TPE in PETG. Papadopoulou and Kalfoglou 

[1997a; 1997b] investigated the compatibility behavior of blends of PETG with 

poly(butylene terephthalate) (PBT) and PET over complete composition range. Samios 

and Kalfoglou [2000] studied the phase behavior and solid-state properties to 

characterize the compatibility of PETG/bisphenol-A polycarbonate over the complete 

composition range. Samios and Kalfoglou also [2001] investigated the compatibilization 

effect of poly(ethylene-co-vinyl alcohol)/PETG blend by using acrylic-modified 

polyolefin ionomers as compatibilizers. The PETG/EVOH blends could be 

compatibilized using ethylene-acrylic type ionomers (i.e. sodium and zinc cations). 
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1.2  Problem statement 
 

POM is a crystalline polymer with a good combination of mechanical properties. 

It is particularly excellent in fatigue endurance and outstanding in friction/wear 

properties, chemical resistance, creep resistance, and dimensional stability. Besides 

that, POM exhibits a low absorption of water. POM is accepted as engineering 

materials competitive not only with the nylons but also with metals and ceramics [Mark 

et al., 1988a; Brydson, 1995b; Sabel et al., 1996]. With the excellent properties, POM 

is widely use in many areas, such as automotive, hardware, industrial, agricultural, 

plumbing and consumer products [Sinker, 1990]. However, an inferior impact 

resistance and extremely notch sensitive compared to that of other engineering plastics 

limits its applications. As other crystalline polymers, POM is rigid, brittle and chemically 

unreactive. POM shows outstanding resistance to organic solvents without stress 

cracking. POM is relatively impervious to neutral inorganic and organic chemicals 

including aliphatic and aromatic hydrocarbons, due to their highly crystalline nature 

[Brydson, 1995b]. 

 

PETG offered the best balance of properties such as high toughness, good melt 

strength and high glossiness. Amorphous copolyesters are resistant to whitening from 

internal crazing when physically stressed. However, PETG has poor solvent and 

chemical resistance.  Since it is an amorphous material, PETG offers a range of 

processing parameter broader than that of normal crystallizable polymers.  

 

The polymer blending can provide materials that possess unusual combination 

of properties. For instance, when amorphous and crystalline polymers are blended, due 

to their complementary properties, particularly varied combinations of the properties 

can be achieved [Erro et al., 1996]. POM and PETG blending was attempted to 

achieve improvement in mechanical and chemical properties, where PETG contribute 

fracture toughness properties and reduce the shrinkage rate of POM after molding, 
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while POM ensures good chemical resistant, stiffness and strength. In general, polymer 

blend morphologies can be divided into two types, dispersed phase/droplet and co-

continuous type [Yuan & Favis, 2004]. There is less than 100 papers have been 

devoted to study the blends with co-continuous morphologies.  The co-continuous 

blends have recently become the subject of intense study because one of the 

interesting features of these morphologies is that both the component, in all directions, 

can fully contribute to the properties of blends [Veenstra et al., 1999b; Riscanu et al., 

2004]. There are some literatures showing increases in impact strength in the case of 

co-continuous blends. Mamat et al [1997] investigated the impact properties nylon-6/ 

acrylonitrile-butadiene-styrene (ABS) blend. It was found that the co-continuous nylon-

6/ABS blend exhibited higher impact strength than other blend composition. It maybe 

expected that the fracture toughness of PETG/POM blend could be enhanced in the 

presence of co-continuous morphologies. 

 

POM is known to be difficult to compatibilize with other polymers due to the 

simplicity of its chains [Utracki, 1990]. Thus, it could be expected that the mechanical 

properties of the PETG/POM blend could be further enhanced via the incorporation of a 

suitable compatibilizer. TPU is a linear segmented block copolymer [Lu & Macosko, 

2004] was chosen because it has been found suitable to compatibilize the POM. The 

amine group in the TPU is expected to form hydrogen bonding with POM and this will 

increase the compatibility between PETG and POM [Utracki, 1990]. 
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1.3  Research Objective 

This study is concerned with PETG/POM blend. The primary objectives of these 

studies are divided into the following categories: 

 

• To explore the effect of blend compositions on the thermal, mechanical and 

morphologies properties of PETG/POM blends. 

 

• To identify the composition range, which co-continuity can occurs in 

PETG/POM blend. 

 

• To identify suitable compatibilizer for PETG and POM, in order to further 

enhance the compatibility between the components, and synergize the 

mechanical properties. 

 

• To study the effect of testing speed on the mechanical and morphology 

behavior of co-continuous PETG/POM blends.  
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CHAPTER 2 
LITERATURE REVIEW 

 
 
2.1  Thermoplastics 
 
 Thermoplastics are resins that repeatedly soften when heated and harden when 

cooled. Many are soluble in specific solvents and burn to some degree. Compared with 

thermosets, thermoplastics generally offer higher impact strength, easier processing 

and better adaptability to complex designs [Rosato, 1997]. The thermoplastic can be 

divided into two classes, commodity plastics (i.e. polyethylene (PE), polypropylene 

(PP), and polystyrene (PS)) and engineering plastics (i.e. polyoxymethylene (POM), 

polyamide (PA) and polycarbonate (PC)).  

 

2.2  Polyoxymethylene 

Polyoxymethylene or polyacetal became commercially available early 1960. 

POM has a good potential to replace metal because of it unique properties [Akin, 1962; 

Barker & Price, 1970; Sabel et al., 1996].  POM resins are crystalline polymers with a 

degree of crystallinity ranging from 58 to 77%. [Mark et al, 1988a; Forschirm & 

McAndrew, 1996] The POM has a good balance in their strength, stiffness and 

toughness. Beside that, POM performs remarkably well in applications where metals 

were historically used. The ability to predict the long term strength, toughness, creep, 

fatigue, chemical resistance, dimensional stability and wear resistance of POM in 

known environments of temperature, pressure and atmosphere allows engineers the 

freedom to design parts, which is lower in cost than metals in the final form [Sinker, 

1990; Brydson, 1995b]  

 

POM comprise homo- and copolymers of aldehydes and cyclic acetals whose 

characteristic building blocks –CHR–O– are arranged into essentially linear chains of 

alternating carbon and oxygen atoms POM has recurring unit of oxymethylene, (–CH2–
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O–). The homopolymeric POM can be obtained via polymerization of formaldehyde or 

cyclic oligomers such as trioxane or tetroxane. This is shown in Figure 2.1. The 

Hemiacetalic or hydroxyl end groups originate through transfer reactions of the 

polymerizing chains with water. If another polymerizable monomer or prepolymer 

having an acetal structure is present during the polymerization of formaldehyde or 

trioxane then it will be built into polymer chain according to its copolymerization 

parameter [Sabel et al., 1996]. This is shown in Figure 2.2. 

 

Figure 2.1: Polymerization of formaldehyde and trioxane to homo-polyoxymethylene. 
[Sabel et al., 1996] 

 

Figure 2.2: Polymerization of polyoxymethylene copolymer. [Sabel et al., 1996] 

 

In addition, POM is available in a broad range of molecular weights to meet the 

needs of the various plastics processing techniques [Salamone, 1996]. POM can be 

readily injection molded into parts that request no post processing, such as machining, 

deburring, riveting, welding or painting. POM can also be pigmented to any opaque 

color. POM is extremely resistant to a wide range of solvents and is not hygroscopic. 

They remain dimensionally stable in harsh environments. However, POM is prone to 

attack by strong acids and strong oxidizing agents such as hypochlorite and is not 

recommended for use in these environments [Sinker, 1990]. POM is generally 
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equivalent to nylons in their fatigue endurance, creep resistance, stiffness and water 

resistance but nylons are superior in impact toughness and abrasion resistance. 

[Brydson, 1995b] 

 

2.3  Amorphous copolyester 
 

Poly (ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG) is an 

amorphous thermoplastic copolyester. The “G” in the designation of PETG copolyester 

indicates a second glycol, 1,4-cyclohexanedimetanol, incorporated in the polymer. 

Figure 2.3 shows the repeating unit of the PETG. In contrast to the semicrystalline 

homopolyester poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) 

(PET), the PETG did not undergo crystallization on heating or on plasticization by the 

dissolved species. This is due to the comonomer, cyclohexanedimethanol is 

responsible for the completely amorphous nature of this polymer [Yu et al, 2002; Yu et 

al, 2003]. Amorphous copolyesters are transparent, even as thick parts, high 

toughness, low shrinkage and high stability in dimension. Moreover, the PETG offers a 

range of processing parameters broader than that of normal crystallizable polymers 

[Binsack, 1996; Yu et al., 2002]. In order to increase the glass transition temperature 

and thermostability, chain flexibility must be decreased. This can be accomplished, for 

example by increasing the aromatic part of the dicarboxylic acid, by stiffening 

cycloalophatic diols, by increasing the intermolecular forces with polar groups or by 

special heterocyclic diols [Binsack, 1996]. 

OCH2 CH2 O C C

O O

 

Figure 2.3: Repeating unit of PETG [Papadopoulou & Kalfoglou, 1997b] 
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2.4  Polymer blends 
 

Many plastics manufacturer and compounders are developing new blended 

products because they offer a convenient, less expensive alternative to developing a 

new product [Mark et al., 1988b]. Polymer blends are a mixture of at least two polymers 

or copolymers [Utracki, 1990]. Polymer blending is one of the effective ways to obtain 

materials with specific properties. Blending not only can improve mechanical 

properties, chemical properties, processibility but also the desire properties. Blending 

of high performance engineering plastics with a low cost polymer to develop a material 

with properties meeting the specification of customer. Moreover, polymer blending can 

form a high performance blend from synergistically interacting polymer. In recycling 

industry, blending with scrap plastics has high economy value and also reduces the 

environmental problem. According to Syed Jamaludin [2003], two or more polymers 

may be blended together to form a wide variety of random or structured morphologies 

to obtain products that potentially offer desirable combinations of characteristics. Figure 

2.4 shows the general relation of the polymer and copolymer blends.  

 

 

 

 

 

 

 

 

Figure 2.4: Interrelations in polymer blend nomenclature. [Utracki, 1990] 

 

Properties of the polymer blends are dependent on the miscibility of the blends. 

For the miscible polymer blends, the properties may be intermediate between those of 

the individual components. In this case we called additive behavior [Fried, 1995]. In 

POLYMERS COPOLYMERS 

POLYMER BLENDS 

MISCIBLE IMMISCIBLE 
(Compatible) 

Homogenous Heterogeneous 
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other cases, properties of the polymer blends may exhibit either positive or negative 

deviation from additivity as shown at Figure 2.5.   

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Compounding aims for synergistic effect [Rosato, 1997] 

 

2.5 Factors in miscibility and immiscibility 

The miscibility and immiscibility of polymer blends are dependent to on several 

factors [Utracki, 1990]. There are: 

 

(a) Polarity 

Polymers with a similar structure or similar polarity are less likely to repel each 

other, whereas more likely to form miscible blends [Gaylord, 1976; Paul, 1978]. 

Diverging polarities usually produce immiscibility.   

(b) Specific Group Attraction 

Polymer that are drawn to each other by hydrogen bonding, acid-base, charge 

transfer, ion-dipole and donor-acceptor adducts. When these attractions occur 

they are tends to produce miscibility [Deanin & Manion, 1999].  

 

 

Pr
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Additive behavior
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(c) Molecular Weight 

Normally, lower molecular weight permits greater randomization on mixing and 

therefore greater gain of entropy, which favors miscibility [Markham, 1991]. The 

polymers with similar molecular weights are more miscible, whereas polymers 

with different molecular weights may be immiscible, even if they both have the 

same composition.  

(d) Ratio 

Two polymers appear immiscible when high amounts of both components. 

However, it is possible that a small amount of one polymer may be soluble in a 

large amount of the other polymer, as understood in conventional phase rules. 

This consideration is very important in natural compatibility [Bonner & Hope, 

1993]. 

(e) Crystallinity 

In a polymer blend, when a polymer crystallizes, this adds another phase to the 

system. When both polymers in a blend crystallize, this will usually form two 

separate crystalline phases. It is quite rare for the two polymers to cocrystallize 

in a single crystalline phase [Chen & White, 1993]. 

 

2.6  Compatibilization in polymer blends 
 

Polymer blending is convenient route for the development of new polymeric 

materials, which combine the excellent properties of more than one existing polymer. 

Besides that, blends can be tailored to meet the requirements of specific applications. 

They can be developed much more quickly than new polymers and require much less 

capital investment. The properties of the blends are strongly depending on the 

compatibility of the system. However, most of the polymer blends are found to be 

incompatible. These incompatible blends are characterized by a two-phase 

morphology, narrow interphase, poor physical and chemical interactions across the 

phase boundaries and poor mechanical properties [George et al., 1995]. These 
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problems can be alleviated by the addition third component into the incompatible 

polymer blends to enhance the degree of compatibility between the constituent 

component [Bonner & Hope, 1993]. The third component is called compatibilizer. 

Compatibilizers are macromolecular species exhibiting interfacial activities in 

heterogeneous polymer blends. Usually the chains of a compatibilizer have a blocky 

structure, with one constitutive block miscible with one blend component and a second 

block miscible with the other blend component [Koning et al., 1998]. Many authors are 

using the term miscible and compatible casually and indiscriminately. Therefore, many 

of the literature are ambiguous or confusing. Generally, the term miscible will be used 

to describe polymer blends that have theoretical thermodynamic miscibility down to the 

segmental level. The term compatible will be used to describe polymer blends that 

have useful practical properties, regardless of whether they are theoretically miscible or 

immiscible [Deanin & Manion, 1999].  

 

The mechanical properties of a blend will be determined not only by the 

properties of its components, but also by the phase morphology and the interphase 

adhesion. The phase morphology and the interphase adhesion are important from the 

viewpoint of stress transfer [Bonner & Hope, 1993]. From a theoretical perspective, 

much can be learned about the nature of the compatibility and the expected properties 

of the blend by probing its morphology. Figure 2.6(a) shows a miscible polymer blend 

consists of a single phase. On the molecular level, the polymer A molecules is 

intermingle with polymer B. In addition, the miscible polymer blend has only one phase, 

it is much like a random copolymer in properties and processing. In order to be 

miscible, some attraction between the two polymers must present to partially overcome 

the intramolecular cohesive forces of the individual polymer. Interpolymer attractions 

are due to the specific interactions between functional groups on polymer A with 

different functional groups on polymer B. However, only few polymer blends are totally 

miscible [Mark et al., 1988b]. 
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Polymer A forms a separate phase from polymer B, as shown in Figure 2.6(b). 

This is a second possible morphology for polymer blend, immiscible blend. Immiscible 

blend is more common than one phase miscible blend. Generally, the polymer with 

lower concentration form a discontinuous or discrete phase, however the polymer with 

high concentration forms a continuous phase. The polymer blends are neither totally 

miscible nor totally immiscible, are called partially miscible. Partially miscible polymers 

may form completely miscible blends when each polymer is present in small amounts. 

However, as the ratios progress toward equality, the phases separate. Partially 

miscible blends are consisting of two phases, the phases may not have a well-defined 

boundary. Figure 2.6(c) shown that polymer A molecules can significantly penetrate 

into the polymer B phase and vice versa. The molecular mixing that occurs at the 

interface of a partially miscible two phases blend can stabilize the domains and 

improve interfacial adhesion, which explains why these two phase blends usually have 

good bulk properties [Mark et al., 1988b].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Morphologies of a blend of polymer A (Solid lines) and polymer B (dashed 
lines): (a) miscible, (b) immiscible, (c) partially miscible. [Mark et al., 1988b]. 

 

 

ba 
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2.6.1  Addition of block and grafted copolymer 
 

The emulsification of polymer blends has been proposed as the most efficient 

tool for obtaining a fine phase morphology and good mechanical properties. The best 

way to validate that concept is to tailor block and grafted copolymers and to investigate 

the beneficial effects that hey can have on immiscible polymer blends. During last 

decade, a large number of studies have reported that the addition of block or grafted 

copolymers is one of an effective way to compatibilize the immiscible blends [Duvall et 

al., 1994; Jeon et al., 2004]. However, block copolymers have been more frequently 

investigated than grafted copolymer. The block and grafted copolymers containing 

segments chemically identical to the blend components are obvious choices as 

compatibilizer, given that miscibility between the copolymers segments and the 

corresponding blend components is assured. Figure 2.7 shows how the block and 

grafted copolymer can penetrate both phases of an immiscible blend when mixed. A 

segment (white dot) and B segment (black dot) either block or grafted copolymers are 

identical to polymer A and polymer B. The working hypothesis is that segment A 

penetrates polymer A and segment B penetrates polymer B. The interfacial adhesion of 

the blend is improved due to the compatibilizer segments, which reside in separate 

phase, are linked covalently [Mark et al., 1988b; Koning et al., 1998].  

 

The efficiency of the compatibilization is influenced by the molecular weights of 

the segments in the block or grafted copolymers.  When the molecular weight of the 

compatibilizer segments is low, the depth of penetration into the domains by the 

compatibilizer is also low. This leads to the poor interfacial adhesion. The penetration 

may be high when the molecular weight of the compatibilizer segments is very high 

[Paul & Newman, 1978]. For example, Macaúbas & Demarquette [2001] added 

styrene–butadiene–styrene (SBS) and styrene–ethylene/butylene–styrene (SEBS) 

triblock copolymers as compatibilizers in polypropylene/polystyrene system. The 

addition of compatibilizers to the PS phase resulted in a reduction of interfacial tension 
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following an emulsion curve. It was shown that for both compatibilizers the 

concentration at which the interfacial tension essentially levels off is smaller than the 

concentration at which the average radius of the dispersed phase essentially levels off. 

The morphological, viscosity and interfacial tension results showed that SEBS is a 

better compatibilizer for the PP/PS blend than is SBS. Chen et al [2002] have 

investigated the compatibilization effect of triblock copolymers of poly[styrene-b-

(ethylene-co-butylene)-b-styrene] and the diblock copolymer of poly[styrene-b-

(ethylene-co-butylene)]  in high density polyethylene/synodiotactic polystyrene (sPS) 

blends. Morphology observation showed that phase size of the dispersed sPS particles 

was significantly reduced on addition of the copolymers and the interfacial adhesion 

between the two phases was dramatically enhanced. Tensile strength of the blends 

increased at lower copolymer content but decreased with increasing copolymer 

content. The elongation at break of the blends improved and sharply increased with 

increments of the copolymers. Papke and Karger-Kocsis [2001] have studied the 

compatibilizing effect of ethylene/propylene rubber grafted with glycidyl methacrylate 

(EPR-g-GMA) in the thermoplastics elastomers/ poly(ethylene terephthalate) blends. It 

was found that the blend compatibility with PET is strongly improved when the EPR-g-

GMA is used as compatibilizer in the blends. Table 2.1 lists various compatibilized 

systems that have been studied. 

 

2.6.2  Addition of functional polymers 
 

There are many published research papers relating to the addition of functional 

polymers as compatibilizers. Basically, a polymer chemically identical to one of the 

blend components is modified to contain functional or reactive units [Bonner & Hope, 

1993]. These functional units have some affinity for the second blend component, 

which have the ability to chemically react with the second blend component. However, 

there have other types of interaction such as ionic are also possible. The functional 

modification may be achieved in a reactor or via an extrusion modification process.  
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Figure 2.7. Penetration of block or grafted-copolymer compatilizers into the A and B 
phase of a heterogeneous polymer blend: (a) diblock; (b) triblock; (c) 
multigraft and (d) singlegraf. [Koning et al., 1998] 

 
 
 
Table 2.1 Compatibility by premade copolymers (Koning et al., 1998) 

Type of blend Major component Minor component Compatibilizer 

A/BA–B block PE or PS PS or PE HPB-b-PS, SEBS, SBS 

 PBT or PS PBT or PS PS-b-PBT or PS-b-PET 

A/B/A–C block PPO or PBT PPO or PBT PS-b-PET or PS-b-PBT 

 PS or PC PC or PS PS-b-PCL 

A/B/C–D block Phenoxy PPO PS-b-PMMA 

 PPO SAN PS-b-PMMA 

A/B/A–B graft EPDM PMMA EPDM-g-MMA 

 PBT PS PBT-g-PS 

Note:  PPO = poly(2,6-dimethyl-1,4-phenylene oxide) 
EPDM-g-MMA = ethylene-propylene-diene elastomer grafted with methyl methacrylate 

 PMMA = Poly(methyl methacrylate) 
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Functionalised polymers (usually maleic anhydride or acrylic acid grafted polyolefins) 

are commercially available at acceptable cost to be used as compatibilizers. For 

example, the grafting of maleic anhydride or similar compounds to polyolefins, result in 

the formation of pendant carboxyl group which have the ability to form a chemical 

bridge with polyamides via their terminal amino groups [Bonner & Hope, 1993]. 

Papadopoulou and Kalfoglou [2000] have studied the efficiency of maleic anhydride 

modified polyolefins on the PET/PP blend. Recently, Aravind et al [2004] have studied 

the compatibilizing effect of maleic anhydride grafted ethylene propylene rubber (EPM-

g-MA) in ethylene propylene diene rubber/ Poly(trimethylene terephthalate) (PPT) 

blends. It was found that the addition of EPM-g-MA reduces the domain size of the 

dispersed phase followed by a leveling off at higher concentrations of the 

compatibilizer.  The addition of EPM-g-MA to the blends tends to decrease the free 

volume showing its compatibilizing effect. Table 2.2 lists the polymer blends with 

addition of functional polymer. 

 

Table 2.2: Example of polymer blends with functional polymer 

Major component Minor component Compatibilizer References 

PPT EPDM EPM-g-MA Aravind et al., 2004 

iPP or PA66 PA66 or iPP IPP-g-MA Sacchi et al., 2004 

LDPE PA PE-g-MA Jiang et al., 2003 

PSF TLCP PSF-g-MA Zhang & He, 2002 

PP PA PP-g-MA 

PP-g-MA-co-POP 

Tseng et al., 2001 
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2.6.3  Reactive blending 
 

Addition block or grafted copolymer presents the best technical option for 

compatibilization. This is because of the effectiveness in reducing the interfacial 

tension and in improving the interfacial adhesion by making entanglements or bridging 

different polymer chains near the interface. However, these types of materials suffer a 

number of disadvantages; they are expensive, not commercially available and need to 

be tailor made for a particular blend. On the other hand, most of the block copolymers 

are in microphase separated state at mixing temperature, they are very high viscosities 

making it very hard to disperse them near the interface between two phases [Kim et al., 

1997]. A new technical method of producing compatible polymers blends is called 

reactive blending. This method is relies on the in situ formation of copolymers or 

interacting polymers. The in situ compatibilization is different with other 

compatibilization routes in that the blend components themselves are either chosen or 

modified so that the reaction occurs during melt mixing. Thus no addition of a separate 

compatibilizer is needed [Bonner & Hope, 1993]. In some cases, the reaction may be 

produced by adding a monomeric ingredient, which can serve as a catalyst, free radical 

initiator and coreactant in the reaction between the two polymers [Deanin & Manion, 

1999]. For example, Samios et al [2000] have investigated the in situ compatibilization 

of polyurethane (PU) with PET. The mechanical and thermal properties indicated good 

blend compatibility typical of a polymeric alloy. Morphology examination revealed good 

dispersion and strong interface adhesion of the PET/ thermoplastic polyurethane (TPU) 

blends. The effect was dependent on the treatment conditions. The reactive 

compatibilization of poly(2,6-dimethyl-1,4-phenylene ether) (PPE) and PBT was 

reported by Aert et al [2001]. PPE/PBT blends are incompatible, and the phase 

morphologies obtained during blending of these polymers. When PPE is functionalized 

selectively, in situ compatibilization during processing is feasible. Due to the formation 

of segmented copolymers, which act as compatibilizing agents, stabilization of the 

morphology obtained during blending. Oh et al [2003] have reported the preparation of 
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in situ compatibilization PP/natural rubber (NR) blends via twin-screw extruder and 

ultrasonically treated during the extrusion process. The improved interfacial adhesion, 

morphology and mechanical properties of the blends are believed to be due to the 

formation of in situ copolymer at the interface of two immiscible polymers caused by an 

ultrasonic treatment without the use of any chemicals. Recently, the blends of isotactic 

polypropylene (iPP) and uncured ethylene–propylene diene rubber (EPDM) treated by 

high power ultrasonic waves during extrusion have been investigated by Feng and 

Isayev [2004]. The yield strength, elongation at break, tensile strength, and toughness 

of ultrasonically treated PP/EPDM blends were improved at certain conditions of 

ultrasonic treatment compared to those of untreated blends.  

 

2.7  Polyoxymethylene blends 
 
 Numerous researchers have described the investigation on the 

polyoxymethylene blends. The blends of polyoxymethylene with polyurethane [Chiang 

& Huang, 1988; Chiang & Huang, 1989; Palanivelu et al., 2000; Mehrabzadeh & 

Rezaie, 2002], polypropylene [Brydson, 1995a; Utracki, 1998; Huang et al., 2003], 

polycarbonate [Utracki, 1998; Chang et al., 1991], phenoxy [Erro et al., 1996], 

ethylene-propylene-diene terpolymer [Chiang & Huang, 1993], poly(vinyl phenol) 

[Machado & French, 1992] have been reported.  

 

2.7.1  Polyoxymethylene/polyurethane blends 
 

POM has good mechanical properties and good resistance to crack initiation, 

whereas it is notch sensitive and poor resistance to crack propagation [Chiang & 

Huang, 1989]. The impact strength and toughness of POM can be improved by 

incorporation of dispersed rubber phase by reactive blending. The rubber particles 

dispersed in the rigid matrix may stop the craze growth, which can lead to the formation 

of failure cracks during impact. Furthermore, the rubber particles may act as a stress 

concentrator and forming a barrier to the extension of crazing [Mehrabzadeh & Rezaie, 
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2002]. POM toughened by TPU has been reported in many literatures [Chiang & 

Huang, 1988, Chiang & Huang, 1989, Palanivelu et al., 2000, Mehrabzadeh & Rezaie, 

2002].  

 

Chiang et al [1988; 1989] have investigated the mechanical, physical, thermal 

and dynamic mechanical properties, morphology and compatibility of POM/TPU 

blends. The ester based and ether based thermoplastic polyurethane were selected to 

blend with POM. It was reported that the tensile strength, modulus, density and 

crystallinity decreased by increasing the TPU concentration.  The elongation of blends 

reaches a maximum at 20wt% of TPU. The notched Izod impact strength of blend 

showed an improvement and reached a maximum at 10wt%. The ether based TPU 

showed better result than the ester based TPU. From the dynamic mechanical analysis  

results, when the TPU concentration increased, the height of the damping peak also 

increased. However, there is no transition temperature shift. The SEM micrographs 

showed that the blends exhibit a continuous morphology with domain size varying from 

4 to 10μm for TPU. However, at a concentration of 50wt% of TPU, the dispersed TPU 

particles tend to aggregate.  

 

Palanivelu and coworker [2000] focused on the investigation of the mechanical, 

morphological and rhelogical properties of POM/TPU blends. Four different blending 

ratio were selected, i.e. 90/10, 80/20, 70/30 and 60/40wt%. The tensile and flexural 

strength of the blends decreased with the increasing of TPU concentration. However, 

the notched impact strength increased with increasing of TPU concentration in blends. 

Based on the SEM investigation, the impact fractured surfaces shown droplet 

dispersion morphology. The melt flow curves of the POM/TPU showed lower melt 

viscosity than those of feedstocks in the major range of experimental shear rates. 
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Mehrabzadeh and Rezaie  [2002] have studied the impact modification of POM 

with ester based TPU and applied diphenylmethane diisocyanate (MDI) as modifier. 

The mechanical properties, thermal behavior and morphology of POM/TPU blends 

consisting of 5~50wt% of TPU were investigated. The maximum impact strength was 

achieved at POM/TPU 85/15 with 3phr of MDI. The later served as crosslinking agent 

and a compatibilizer. SEM micrographs of the fractured surfaces showed that the two 

phase morphology of the blends and that the TPU was dispersed in POM as a matrix 

phase. 

 

2.7.2  Polyoxymethylene/polypropylene blends 
 

 An immiscible blend of POM with semicrystalline PP has been reported,  

[Utracki, 1998]. As in other immiscible blends, a compatibilizer is needed to 

compatibilize the blends. PP/POM blends are usually compatibilized by addition of 

acidified or expoxidified polyalkenes, since POM can develop strong hydrogen bonding 

with acidic or epoxy groups [Utracki, 1998]. PP exhibits better flexibility and higher 

impact strength, but has relatively lower tensile strength and deflection temperature. 

Thus, blends of PP and POM may provide better impact resistance for POM and better 

flexural modulus for PP, combined with lower cost, compared with POM [Brydson, 

1995a].  

 

Huang et al [2003] compatibilized the PP/POM blends with ethylene vinyl 

alcohol (EVOH) copolymers. The ethylene group in the EVOH is partially miscible with 

PP, whereas the hydroxyl group in the EVOH can form hydrogen bonding with POM. 

The EVOH tends to reside along the interface and act as a surfactant to reduce the 

interfacial tension and increase the interfacial adhesion between PP and POM in 

blends. The addition of EVOH copolymer with 56wt% of vinyl alcohol in the blend 

disturbs the crystallization of PP and POM and resulted in a decrease in the crystallinity 

of the blend. The melt flow rate (MFR) of the uncompatibilizer blends showed higher 
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MFR value than the compatibilized blends. The impact strength of the PP/POM blends 

increased with increasing of PP concentration in blend.  However, the tensile strength 

and the tensile modulus reduced with the increasing of PP concentration. 

 

2.7.3  Polyoxymethylene/polycarbonate blends 
 

The PC and POM blends are immiscible and both resins require toughening. 

The addition of crystalline POM to the amorphous PC is to improve the solvent and 

chemical resistance [Utracki, 1998]. Chang et al [1991] investigated the morphology, 

mechanical and thermal properties of the immiscible PC/POM blends. The formation of 

a strong interpenetrating interface in PC/POM blends significantly increased the tensile 

yield strength, modulus and heat distortion temperature above the average values for 

the pure materials. The addition of TPU into the PC/POM blends does not improve the 

toughness of the blend. This is because of the elastomer distributes selectively in the 

PC phase. 

 

2.7.4  Polyoxymethylene/phenoxy blends 
 

When a crystalline polymer was blended with an amorphous polymer, due to 

their usually complementary properties, varied combinations of properties can be 

achieved. The poly(hydroxy ether of bisphenol-A) (phenoxy) is a fully amorphous 

polymer that gives rise to a number of miscible blends with other polymer. The 

transitions and mechanical properties of POM/phenoxy blends were studied by Erro et 

al [1996]. The POM/phenoxy blends are composed of two almost pure phases. 

Although the POM/phenoxy blends are fully immiscible they showed synergisms in the 

modulus of elasticity and mainly in ductility at phenoxy rich compositions. As expected 

the density and crystallinity of the blends decreased with the increasing of pheonxy 

concentration.  

 

 



 24

2.7.5  Polyoxymethylene/ethylene-propylene-diene terpolymer blends 
 

Chiang and Huang [1993] investigated the properties of POM and EPDM blends. 

The addition of EPDM into the POM matrix is to increase the toughness and elongation 

at break of POM. The major differences between the behaviors of the POM and EPDM 

are the higher value of Young modulus and tensile strength for POM and the higher 

values of elongation at break point and higher impact strength for EPDM. Tensile 

strength and tensile modulus showed negative deviations on the blend, as expected. It 

is known that the tensile strength of a toughened plastic decreases with the rubber 

content, while the elongation at break increases [Chiang & Huang, 1999]. The impact 

strength of the POM/EPDM blends increased with the increasing of EPDM. The EPDM 

being a soft rubbery phase has improved the impact resistance by inducing crazing of 

POM and absorbing more energy during impact fracture.  

 

2.7.6  Polyoxymethylene/poly(vinyl phenol) blends 
 

Machado and French [1992] focused on the investigation of the dynamic 

mechanical behavior, melting behavior, density and morphology of POM/poly (vinyl 

phenol) blends.  POM/poly(vinyl phenol) blend system shows a single glass transition 

temperature, which indicates the miscibility of POM/ poly(vinyl phenol) blends. Analysis 

of the melting point depression yielded an approximate interaction parameter, which 

was in excellent agreement with that obtained from the calorimetric mixing of chemical 

analogs. The observation of a significant negative volume of mixing supported the 

miscibility.  
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