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MENINGKATKAN EFFICIENTNET-YOLOV4 UNTUK PENGESANAN

LITAR BERSEPADU PADA PAPAN LITAR BERCETAK

ABSTRAK

Pemeriksaan visual automatik papan litar bercetak (PCB) adalah penting untuk
memastikan kualiti dan fungsi PCB sepanjang proses pembuatan. Mengesan litar
bersepadu pada PCB dengan tepat merupakan cabaran yang signifikan dalam
pemeriksaan automatik kerana pelbagai saiz dan jenis komponen, serta pelbagai
cetakan dan tanda pada PCB yang menyukarkan pengesanan objek. Tesis ini
menangani kerumitan ini dengan mencadangkan algoritma yang dipertingkatkan,
EfficientNet-YOLOv4. Metodologi penyelidikan menggabungkan keupayaan
pengekstrakan ciri unggul EfficientNet sebagai rangkaian tulang belakang dengan
keupayaan penyetempatan objek yang tepat dari YOLOv4—gabungan dua kelebihan
yang unik berbanding kaedah lain yang mungkin bergantung pada algoritma
penyetempatan yang kurang canggih. Untuk memastikan keupayaan generalisasi
model, pelbagai teknik augmentasi data, seperti kabur, penyimpangan grid, dan
pelarasan kecerahan rawak, telah digunakan untuk mensimulasikan variasi dunia
sebenar. Eksperimen dan penilaian yang meluas menunjukkan keberkesanan dan
ketahanan algoritma yang dicadangkan dalam susun atur PCB yang kompleks, serta
keupayaannya untuk menyesuaikan diri dengan variasi warna dan kecerahan yang
rawak, mengatasi prestasi model pemeriksaan PCB yang lain. Kaedah yang
dicadangkan, EfficientNetv2-L-YOLOv4, berjaya mencapai skor F1 yang tinggi iaitu
99.22 dengan kelajuan inferens 0.135 saat. Algoritma ini juga melebihi prestasi
EfficientNet-B7-FasterRCNN dan YOLOvV4 asal, mencapai skor F1 sebanyak 98.96

dan kelajuan inferens 0.102 saat apabila dilatih dengan saiz kelompok 4. Penemuan

Xiv



penyelidikan ini menekankan kepentingan rangkaian pengekstrakan ciri yang berkesan
dalam pengesanan objek dengan menggunakan teknik penskalaan yang canggih.
Pembangunan algoritma EfficientNet-YOLOv4 yang dibentangkan dalam tesis ini
bukan sahaja menangani cabaran segera pengesanan litar bersepadu pada PCB tetapi
juga menyumbang kepada bidang penglihatan komputer dan pengesanan objek yang
lebih luas. Integrasi berjaya algoritma EfficientNet-YOLOv4 yang dipertingkatkan
(EfficientNetv2-L-YOLOv4) dalam senario pembuatan sebenar berpotensi untuk
membolehkan proses pemeriksaan komponen automatik sepenuhnya dan

mengurangkan campur tangan manusia semasa proses pengesanan.
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ENHANCING EFFICIENTNET-YOLOV4 FOR INTEGRATED

CIRCUIT DETECTION ON PRINTED CIRCUIT BOARDS

ABSTRACT

Automated visual inspection of printed circuit boards (PCBs) is vital for
ensuring the quality and functionality of PCBs throughout the manufacturing process.
Accurately detecting integrated circuits (ICs) on PCBs presents a significant challenge
in automated inspection due to the wide range of component sizes and types, as well
as various printing and markings on the PCB, which complicate object detection. This
thesis addresses these intricacies by proposing an improved algorithm, EfficientNet-
YOLOv4. The research methodology combines the high-performance feature
extraction capabilities of EfficientNet as the backbone network with the precise object
localisation capabilities of YOLOv4, a dual advantage unique compared to other
methods that may rely on less sophisticated localisation algorithms. To ensure the
model's generalisation ability, various data augmentation techniques, such as blur, grid
distortion, and random brightness adjustments, were employed to simulate real-world
variations. Extensive experiments and evaluations demonstrate the proposed
algorithm's effectiveness and robustness in complex PCB layouts, as well as its
adaptability to varying colour and brightness randomness, surpassing the performance
of other PCB inspection models. The proposed method, EfficientNetv2-L-YOLOv4,
successfully achieves a high Fl-score of 99.22 with an inference speed of 0.135
seconds. The algorithm also surpasses EfficientNet-B7-FasterRCNN and the original
YOLOv4, achieving an F1-score of 98.96 and an inference speed of 0.102 seconds
when trained with batch size 4. The research findings emphasise the significance of

effective feature extraction networks in object detection by utilising advanced scaling

XVi



techniques. The development of the EfficientNet-YOLOv4 algorithm presented in this
thesis not only addresses the immediate challenges of IC detection on PCB but also
contributes to the broader field of computer vision and object detection. The successful
integration of the improved EfficientNet-YOLOv4 algorithm (EfficientNetv2-L-
YOLOV4) in real manufacturing scenarios has the potential to enable a fully automated
component inspection process and reduce human intervention during the detection

process.
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CHAPTER 1

INTRODUCTION

This chapter provides an overview of the research, including the background
of printed circuit board (PCB) inspection in manufacturing and related object detection
techniques. It explains the motivation, problem statement, and objectives of the
research. Contributions to realising the expectations are stated, and the scope and
process for conducting this study are also included. Finally, a brief overview of the

structure of this paper is given.

1.1  Background

Since 2016, the world has entered the fourth industrial revolution, "Industry
4.0", which focuses on interconnection through the Internet of Things (loT),
automation, machine learning, and real-time data to provide more comprehensive and
more innovative products, processes, and factories (Sharma et al., 2021). In Industry
4.0, smart technologies such as Internet of Things (IoT) and artificial intelligence (Al)
are revolutionising the automation and inspection of supply chains (Jahani et al.,
2021). Manufacturing is one of the major industries best positioned to leverage
artificial intelligence and machine learning technologies to drive the growth of global
supply and value chains. Furthermore, it can help the digital transformation of factories
by streamlining machine supervision and automating industrial processing tasks that
previously had to be handled by human workers. The main idea of Industry 4.0
manufacturing is to develop autonomous and automated industrial processing, which
requires high-quality, precise, and reliable electronic production equipment.

Product quality standards serve as the benchmarks to satisfy the high

consumption demand for electronic components, with visual inspection playing a



crucial role in maintaining product quality throughout the electronics manufacturing
process. Machine vision is widely used in electronics manufacturing, mainly embodied
in four aspects: measurement, inspection, identification, and positioning, especially
printed circuit board inspection based on intelligent vision technology (J. Li et al.,
2019). Printed circuit boards are the heart of electronics; they are circuit boards with
lines, copper or gold tracks connected electronically to electronic components. A PCB
with mounted components is called an assembled PCB, and its manufacturing process
is known as PCB assembly or PCBA (Sasmita, 2018). The two main types of modern
PCB assembly technologies are Surface Mount Technology (SMT) and Through-Hole
Technology (THT), where SMT is considered more reliable than THT (J. He et al.,

2021). Figure 1.1 shows a typical process flow of PCBA.

Surface mount technology (SMT)

Screen Solder Pgste Pick and Reflow Inspe;ctmn and
Print | Inspection = lace 1 solderin quality control
rinter (SPD) P g aon

Figure 1.1 Typical Process Flow of PCBA (Khasawneh, 2019).

Various inspection methods, including manual, automatic optical, and X-ray
inspection, are employed to check for errors and misalignments (Sasmita, 2018).
Traditional manual visual inspection of PCBs is usually performed by human
operators. However, this method is inherently inefficient, time-consuming, and
susceptible to operator error due to the restrictions imposed by chronic weariness and
eye strain limitations; human visual examination can only approximate actual quality
levels (Zakaria et al., 2020). Electronic industries need non-contact automation
methods to replace traditional manual visual inspection, especially for PCBA (Fan et

al., 2021). Therefore, most electronics industries are applying automatic optical



inspection systems (AOIls), an application of machine vision for quality inspection to

reduce the false selection of defects in production lines.

Automated visual PCB inspection can solve the difficulties of manual
inspection and ensure the functionality and quality of PCBs during the manufacturing
process because the performance and reliability of PCBs depend on the quality of the
fabrication and assembly of boards. AOI is an inspection method suitable for large
batches of PCBs. During the inspection and quality control stage, AOI machines can
process a high quantity of PCBs at high speed in a relatively short time by using a
series of high-powered cameras arranged at different angles to capture PCB images
and view solder connections (Singh et al., 2019).

Component detection is essential in PCB automated production monitoring (J.
Li et al., 2019). During the pick-and-place process of SMT, there may be issues such
as component shifting or missing components, and the mounted components may
deviate from the ideal or designed position on the wet solder paste (Cao et al., 2019).
These issues are typical manufacturing defects faced by PCB assemblers. Therefore,
there is a need to enhance automated PCB inspection tools to maximise efficiency and
enable fast and accurate early fault detection at all stages of production. Identifying
the actual location of the component can also be used to identify the characters marked
on the PCB component and for PCB recycling. Detecting fine-pitch integrated circuits
on PCBs is always challenging due to the increasing complexity of PCB boards
containing various semiconductors with traces, vias, and markings. Numerous state-
of-the-art techniques for automated PCB detection have been developed using
computer vision, image processing, machine learning, and deep learning across the

visual spectrum (Mallaiyan Sathiaseelan et al., 2021).



The image processing technique is a straightforward computer vision method
for detection, but it may easily be affected by the image quality and background.
Referential comparison methods such as template matching and image subtraction
often require golden or reference samples for accurate feature comparison. With the
advent of the Industry 4.0 era, the AOI algorithms have been further enhanced by
combining machine learning and deep learning techniques, which can significantly
improve the results and speed of the inspection process (Abd Al Rahman & Mousavi,
2020). Computer vision with machine learning enables higher levels of understanding
based on image information and automates analysis. Deep learning is a sub-field of
machine learning that encompasses multilayer neural network architectures. Deep
learning can use its characteristics to extract deep-level features of objects and identify
and locate objects based on these features (Shen et al., 2020). Deep learning has
demonstrated excellent performance in research areas such as object detection and
character recognition.

Object detection is a fundamental computer vision application that leverages
machine learning or deep learning techniques to extract meaningful information from
images. It consists of two main parts: image classification (identifying objects in
images) and image localisation (determining the precise location of those objects).
This localisation capability is particularly relevant in PCB component positioning
detection tasks. Deep learning employs supervised learning to train and learn from
large amounts of labelled data, allowing it to predict labels without requiring manual
feature extraction. Deep learning offers several advantages in PCB component defect
detection, with fast detection speed, high accuracy, and strong adaptability (Shen et
al., 2020). Another key advantage of using neural network models is that they will

continue improving when training data increases. However, a significant challenge lies



in creating a sufficiently large and annotated training database, as mentioned in the
work by Dai et al. (2018). Convolutional Neural Networks (CNNs) are among the most
popular deep neural networks, comprising multiple convolutional, non-linear, and
pooling layers, with feature extraction processes embedded in the hidden layers.
Examples of neural network-based object detection algorithms: You Only Look Once
(YOLO), Single Shot Detector (SSD), Region-Based Convolutional Neural Networks
(R-CNN), Faster R-CNN, and Region-based Fully Convolutional Network (R-FCN).
These algorithms leverage the power of neural networks to detect and localise objects
accurately in images, enabling efficient and effective object detection in various
applications, including PCB inspection.

Most object detection techniques employed in PCB assembly are mainly used
to identify and classify various electrical components (resistors, capacitors, integrated
circuits) or to detect and localise common defects: soldering defects (open circuits,
excess solder), component defects (missing component, misaligned component) on the
printed circuit board (Houdek & Design, 2016). This research focuses on detecting the
integrated circuit on the PCB. The primary purpose is to find the region of the chip
components but not include their pins or soldering parts. Deep learning is well-
established in industrial production, but its application in PCB detection is relatively
rare (Shen et al., 2020). Therefore, researching and improving deep learning
algorithms applied to PCB inspection in industrial production has great scientific and

industrial value.

1.2 Motivation
The implementation of artificial intelligence in manufacturing facilities is

gaining popularity. According to the 2020 MIT Technology Review Insights Survey,



approximately 58% of manufacturers adopt Al for quality control to increase speed
and visibility across the supply chain and create more efficient or innovative
manufacturing processes (Denis et al., 2020). The optimisation of PCB design and
manufacturing is essential to meet the requirements of Industry 4.0 facilities. In the
industry, optical inspection technology can be subdivided into manual inspection
performed by human inspectors and automated optical inspection systems (Abd Al
Rahman & Mousavi, 2020). However, manual inspection methods are time-consuming
and error prone. Therefore, the electronics industry combines artificial intelligence to
develop automated printed circuit board inspection systems. Currently, Western
Digital-SanDisk Storage Malaysia is also working on using artificial intelligence to
enhance AOI for PCB inspection. They need a region-finding algorithm to pinpoint
the component of interest that could be judged, filtering out adjacent PCB prints and
landmarks.

Automated inspection systems have shown promise in improving inspection
speed and accuracy. However, there is still room for improvement, particularly in
detecting integrated circuits on PCBs. Most of the target objects have a fixed shape in
the manufacturing environment. So, it can develop a neural network to find regions of
interest and segregate the images automatically. Implementing neural networks for
object detection has become an essential trend with excellent success rates in robotic
vision and surveillance. Object detection uses object localisation and classification to
localise the presence of objects with bounding boxes and the type or class of localised
objects in images applicable to IC detection tasks.

The complexity and component density of PCBs have increased significantly,
making manual inspection methods error-prone. The motivation behind this paper is

to develop an advanced autonomous inspection technique specially designed for PCBs



to detect ICs accurately. This paper explores deep learning techniques to tackle the
detection task for semiconductors in PCB manufacturing. The study of integrated
circuit detection has practical significance in industrial production because the
production of PCB requires precise detection of electronic substrates to ensure quality.
Identifying the position of the integrated circuit facilitates the improvement of
inspection machines to identify defects and determine the polarity of chip components
in printed circuit boards. Additionally, it can help develop applications that recognise
and inspect characters printed on components connected to the PCBs (Gang et al.,
2021). By leveraging deep learning approaches and state-of-the-art object detection
algorithms, the aim is to improve detection accuracy, reduce false positives, and

increase the efficiency of autonomous PCB inspections.

1.3  Problem Statement

Accurate detection and localisation of integrated circuits (ICs) on PCBs remain
critical challenges within automated inspection systems due to the intricate variability
in component sizes, orientations, and layouts. Existing object detection models
encounter limitations in precisely localising these components, impacting detection
precision and reliability. The field of object detection in PCB inspection faces
substantial scope for improvement. Crucial object detection components, such as
feature learning, backbone architecture, and proposal generation, demand focused
attention (X. Wu et al., 2020). Challenges persist in handling feature scale issues and
mastering multi-scale feature learning, which is essential for accurately identifying
diverse ICs (X. Wu et al., 2020). Techniques such as Spatial Pyramid Pooling (SPP)
or adaptive pooling facilitate analysis at multiple scales, enabling diverse object size

and aspect ratio capture for object detection.



In industrial applications, where both speed and precision are crucial, one-stage
detectors like YOLO offer significant processing speed advantages. However, this
speed often comes at the expense of accuracy, especially compared to two-stage
detectors (Cazorla & Hussain, 2024; Yao et al., 2021). YOLOv4, a popular one-stage
detector, struggles to balance speed and precision in high-demand environments due
to its traditional feature extractor, which loses spatial information as the resolution
decreases, leading to inaccuracies in target localisation (H. Zhao et al., 2021). As a
result, YOLOv4's trade-offs may not meet the stringent accuracy and efficiency
requirements of modern industrial applications, highlighting the need to explore
alternative backbone architectures to improve detection performance.

Pursuing a detection-aware backbone architecture that is learned directly from
datasets becomes a compelling research avenue, particularly in addressing the
inefficiency of current feature extraction networks in capturing the intricate details of
ICs across diverse PCBs (X. Wu et al., 2020). The backbone network acts as the
fundamental feature extractor for object detection, significantly influencing the
model's performance (Jiao et al., 2019). However, the intricacies of identifying an ideal
backbone architecture specifically tailored for object detection within the PCB datasets
pose a critical challenge. Achieving an optimal equilibrium between speed and
accuracy requires adaptive multi-level features and a well-designed backbone
architecture (Jiao et al., 2019). The design of an optimal backbone architecture yields
substantial enhancements in results but demands substantial engineering effort (X. Wu
et al., 2020).

Exploration of strategies focusing on optimising backbone architectures
represents a pivotal avenue in the quest for superior neural network designs tailored

explicitly for distinct object detection tasks. Techniques such as Neural Architecture



Search (NAS), a fundamental aspect of Automated Machine Learning (AutoML), or
adapting existing architectures, exemplified by models like EfficientNet, offer
promising prospects in automating the search for optimal network structures.
However, despite the efficiency-driven design of EfficientNet models, larger variants,
while achieving higher accuracy, require increased memory and computational
resources, leading to slower training processes (Tan & Le, 2021). This challenge
underscores the need for developing models that strike a better balance between
accuracy and computational efficiency, ensuring both high-performance and practical
applicability in real-world scenarios.

Object detectors leveraging AutoML techniques have become a significant
research focus, promising to streamline model development by automating processes
like architecture search, hyperparameter optimisation, and feature engineering
(Masood & Sherif, 2021; X. Wu et al., 2020). Hyperparameter settings significantly
influence machine learning models' behaviour, complexity, and efficiency, requiring
careful selection for optimal performance (Bischl et al., 2023; Pannakkong et al.,
2022). However, iteratively fine-tuning these configurations, involving adjusting
parameters like loss functions, anchor sizes, and other relevant techniques within the
proposed methodology, remains an ongoing challenge. The lack of research on
hyperparameter tuning leads to unexplored dimensions in machine learning and a
notable absence of systematic analysis on parameter tuning practices in research
papers (Simon et al., 2023). Many studies in machine learning overlook or omit
explicit reporting on hyperparameter tuning, neglecting the fundamental role these
settings play in shaping model performance across diverse datasets and tasks.

Factors contributing to this lack of emphasis on tuning may include the absence

of suitable experimental setups, limited understanding of specific hyperparameters'



effects, time constraints, or knowledge gaps. Moreover, the computational demands
inherent in training and tuning large-scale machine learning models pose additional
challenges (Simon et al., 2023). This gap in comprehensive understanding and
systematic exploration hinders the full realisation of machine learning algorithms'
potential. Therefore, there is a need for systematic exploration and refinement of these
configurations to improve object detection models' accuracy, robustness, and
computational efficiency, particularly when applied to PCB datasets.

Exploration of advanced algorithms and techniques is essential to accurately
locate and classify integrated circuits in challenging environments. Additionally,
emphasis should be placed on creating diverse datasets, establishing standardised
evaluation protocols, and exploring novel techniques to bolster the robustness and

efficiency of detection models.

1.4 Research Questions
These research questions aim to uncover difficulties that need to be addressed
to improve neural network-based object detection performance. These questions
include:
1. Which backbone architecture with object detector yields the highest accuracy for
chip detection within Printed Circuit Board (PCB)?
2. What model configurations within the identified backbone architecture maximise

object detection performance for integrated circuits (ICs) on PCBs?

1.5 Research Objectives
This research focuses on designing a chip finder to detect components on a

printed circuit board. Evaluating the system's robustness is another critical aspect of
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assessing the proposed algorithm. To achieve this, here are the objectives to achieve

it:

1. To enhance the YOLOV4 architecture's feature extraction capability by integrating
the best-performing EfficientNet as the backbone network, aiming to achieve
superior accuracy, precision, and recall compared to the baseline model in
detecting integrated circuits (ICs) within printed circuit boards (PCBs).

2. To optimise the proposed model’s configurations, including variations in loss
functions, anchor sizes, and other pertinent techniques, aiming for improved

performance metrics such as accuracy, precision, and recall.

1.6 Expected Contributions

This research significantly enhances object detection performance, particularly
for 1Cs on printed circuit boards, by gaining valuable insights into architecture
development and selection. Existing object detector architectures are modified and
enhanced by building a deeper and more efficient feature extraction network. This
achievement leverages EfficientNet, a neural network architecture developed through
NAS, known for its ability to deliver optimal performance and efficiency. The
evaluation and analysis of various backbone architectures integrated into the YOLOv4
framework for object detection within PCB datasets identify the most efficient variant
of the EfficientNet backbone architecture. This identification contributes to the
development of optimised architectures tailored specifically for IC detection tasks
within PCB inspection.

Furthermore, the research iteratively optimises various model configurations,
encompassing loss function variations and training techniques. This systematic

refinement process develops a comprehensive understanding of fine-tuning strategies,
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explicitly targeting the achievement of heightened accuracy and robustness in object
detection tasks. Consequently, these efforts contribute to advancing efficient and
reliable neural network-based object detection models within PCB datasets.

Finally, a comparative evaluation between the proposed method and existing
PCB inspection algorithms or object detection frameworks is conducted. This
evaluation, employing metrics such as F1-score, mean Average Precision (mAP), and
inference speed, aims to discern the strengths and weaknesses of the proposed method.
The findings provide valuable insights into the performance and efficacy of the

developed approach within the context of PCB inspection.

1.7  Scope of the Study

This research explores the application of computer vision in artificial
intelligence. The scope of this research covers object detection algorithms using a deep
learning approach and delves into how to improve the performance of deep neural
networks. The theories of neural networks and image processing techniques are studied
and discussed to select appropriate methods for further development and improvement.
Implementing the feature extraction network is the focus of this research, and fine-
tuning the training setting aims to improve the accuracy of object detectors further.
Image augmentation techniques for increasing data variability are also covered. Two
types of datasets were trained—one collected from the PCB industry, and one
transformed from the former. During the evaluation phase, several methods associated
with PCB detection are employed to compare their performance with the proposed
approach. The evaluation phase also uses two types of test data—one split from the
original dataset and one separated from a different set of part numbers not seen by the

model.
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1.8  Thesis Organisation

This study is organised as follows. The next chapter reviews the relevant
literature on object detection algorithms, particularly those applied to PCB inspection
and electronic component detection. CHAPTER 3 describes the research
methodology, including the data collection process and the selection and modification
of the proposed algorithm. CHAPTER 4 describes the experimental setup and presents
the results obtained from the evaluation process. The final chapter summarises the

main findings of this study and presents recommendations and future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter explores numerous state-of-the-art electronic inspection techniques
in computer vision, covering PCB components and defect detection, as well as
inspection methods for non-PCB electrical components. The primary objective is to
identify suitable algorithms for the present study. The chapter is organised as follows:
Section 2.2 provides an overview of various PCB inspection methods employed in the
industry. Section 2.3 discusses PCB inspection algorithms that leverage machine
learning techniques, focusing on methods employing neural networks. Figure 2.1 and
Figure 2.2 visually represent the fields and areas of literature covered. Section 2.4
compiles available datasets related to PCBs, while Section 2.5 delves into the key
findings of the literature review chapter, emphasising insights gained for further
research in PCB component detection. The chapter concludes with a summary in

Section 2.6.

Overview of Literature
Reviewed

Electrical Component
Detection

PCB Components PCB Defects

X Detection
Detection
Component Defects  Defects Type
Component Types Localization Classification
Localization Classification/ /Detection
Detection

Figure 2.1 Overview of Literature Reviewed.
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2.2 Overview of PCB Inspection and IC Detection

PCB inspection is employed to identify any potential defects or abnormalities in
the assembly process of PCBs. Missing or misplaced components or incorrect
component orientation affect the quality of the final product (D. Li et al., 2020).
Integrated circuit detection involves the identification and localisation of ICs on a PCB.
This process helps verify that the correct ICs are present on the PCB according to the
design specifications to avoid faulty and malfunctioning circuitry. Moreover,
identifying the ICs or labels on them can provide a record of the ICs used in a PCB
assembly. They can also be utilised to automate PCB recycling processes, where
identifying and extracting reusable components from discarded PCBs is essential for
resource recovery and environmental sustainability (Mir & Dhawan, 2022).

Machine learning is a subfield of artificial intelligence that has evolved
significantly from traditional pattern recognition and image processing methods to more
advanced image understanding techniques (Khan & Al-Habsi, 2020). Modern advances

in computer vision rely heavily on deep learning, a subfield of machine learning that
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utilises multilayer artificial neural networks (ANNSs). Deep learning algorithms, also
known as deep neural networks, form the foundation for processing and analysing
complex visual data. The subsequent section delves into the detection of PCBs through
neural network-based approaches, specifically emphasising deep learning techniques.
The focus of the reviewed techniques and algorithms had predominantly centred
around component detection, leveraging the capabilities of machine learning
approaches. However, work dedicated to PCB component inspection had been
relatively limited; therefore, this review also covered studies on PCB defect detection
and common electrical component inspection to provide a more comprehensive

understanding of PCB inspection.

2.3 Neural Network Approach

Machine learning algorithms, particularly those based on neural networks like
deep learning, have the advantage of not requiring explicit programming with specific
rules to define input expectations. Object detection is a common application in computer
vision that leverages machine learning or deep learning to extract meaningful
information from images. Object detection is crucial in determining the precise location
and type of target objects, making it especially relevant for PCB component positioning
detection. This section explores various types of deep learning-based object detectors

and other neural network-based methods used in PCB inspection.

2.3.1 Deep Learning-based Object Detectors

Popular categories of deep learning-based object detectors included two-stage
methods and one-stage methods. Two-stage methods tended to be precise in their
predictions; they could be relatively slow due to the additional step of identifying

regions of interest before classification (Reza et al., 2020). On the other hand, one-stage
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methods performed object detection in a single step (Dave et al., 2016). These methods
directly predicted the class labels and bounding box coordinates for all potential objects
in the image without the need for explicit region proposal generation, which offered

advantages in terms of speed and memory efficiency (J. Li et al., 2019).

2.3.1(a) One-Stage Detector: YOLO

The YOLO method, leveraging CNNs, is extensively employed in PCB
assembly to facilitate real-time predictions. Lin et al. (2018) presented the YOLOvV2
architecture, which enabled the automatic and rapid localisation of capacitors and the
identification of their types in captured images. Most electronic component detections
in PCB assembly preferred YOLOvV3 over YOLOV2 as the object detector due to its
Feature Pyramid Network (FPN) architecture, enabling multi-scale prediction and
effective detection of small objects (R. Huang et al., 2019). YOLOv3 demonstrated the
highest recognition rate of 92.2% compared to SSD, R-CNN, and RetinaNet in PCB
component recognition (K. Zhang, 2023). Detecting PCB assemblies is crucial for
recycling and defect inspection purposes. Silva et al. (2021) utilised a pre-trained
YOLOv3 model, fine-tuned with the PCB DSLR dataset by Pramerdorfer and Kampel

(2015), to detect ICs in waste PCBs for recycling.

Missing components were often an issue that needed to be addressed in PCB
assembly. Khare et al. (2020) proposed a solution involving object detection
(YOLOV3), image subtraction, and pixel manipulation, which achieved an accuracy of
75.48% in solving the problem of missing components in PCBs. To improve the
YOLOv3 algorithm's capability of detecting small surface-mounted device (SMD)
components on PCBs, a small target-sensitive YOLO output layer could be added (J. Li
et al., 2019). This addition helped prevent the loss of feature information. However, it

still exhibited weaknesses when the variance within the same category was significant.
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In YOLOV3, the bounding box predictions rely on the anchor box concept (J. Li
et al., 2021). However, mismatches between anchor and target sizes can impact
performance. K-means clustering could address this by generating more suitable
anchors based on the bounding boxes in the training dataset (S. H. Chen & Tsai, 2021).
J. Li et al. (2019) applied k-means clustering to generate 12 anchor boxes for an
improved YOLOv3 model in PCB detection. Another approach that focused on the
anchor box concept, also presented by J. Li et al. (2021), was ERFAM-YOLOv3
(Effective Receptive Field Size and Anchor Size Matching in YOLOv3), designed for
real-time electronic component detection. This method involves clustering, effective
receptive field (ERF) calculation, modular design, and anchor-ERF matching.
However, this method faces challenges, especially in effectively matching ERF and

anchor size for thin and long items (J. Li et al., 2021).

A backbone network is a pre-trained neural network architecture that serves as
the core feature extractor in tasks like image classification, object detection, and
segmentation. In object detection, the effectiveness of backbone networks is critical, as
they are responsible for accurately identifying objects within an image. For instance, in
defect inspection for SMD LED chips, S. H. Chen and Tsai (2021) replaced the Darknet-
53 backbone of YOLOv3 with DenseNet-121. DenseNet exhibited superior feature
learning capabilities compared to Darknet-53, particularly regarding feature
propagation and alleviating the problem of gradient disappearance (S. H. Chen & Tsali,
2021). Another proposed network architecture for electronic component recognition
incorporating changes in the backbone network was YOLOv3-MobileNet, which
replaced the original Darknet-53 with MobileNet (R. Huang et al., 2019). The
MobileNet architecture simplified the network layers by dividing the convolution layer

into depthwise and pointwise convolutions, thereby enhancing efficiency.
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A study unrelated to PCBs utilised YOLOv3 and the Super-Resolution
Convolutional Neural Network (SRCNN) model to accurately detect the location and
condition of electrical components, particularly insulators, in diverse scenarios (H.
Chen et al., 2019). Figure 2.3 illustrates the steps of SRCNN with YOLOvV3. Super-
resolution models are effective pre-processing tools, significantly enhancing the feature
extraction process. Another super-resolution model was Enhanced Deep Residual
Networks for Single Image Super-Resolution (EDSR), specifically designed to obtain
high-resolution component images to learn fine-grained details and efficiently perceive

features (Makwana et al., 2023).

Image pre-processing
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Figure 2.3 Overall Process of SRCNN with YOLOv3 (H. Chen et al., 2019).

The evolution of object detection algorithms has made YOLOv4 a preferred
choice for PCB detection, surpassing its predecessor, YOLOv3. While YOLOv3
employed DarkNet53 as its backbone, YOLOvV4 integrates CSPDarknet-53, which
enhances feature extraction through residual blocks (Bochkovskiy et al., 2020). The
incorporation of Cross-Stage Partial (CSP) connections within CSPDarknet-53
improves feature representation while reducing computational complexity (Xin et al.,
2021). These optimisations make YOLOv4 particularly effective for tasks such as
detecting solder joint defects in PCB assembly lines, as demonstrated by Caliskan and
Gurkan (2021). Additionally, YOLOv4 was enhanced and applied in methods for

detecting PCB electronic component defects, focusing on small object detection,
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making it ideal for identifying small electrical components (Xin et al., 2021). An
enhanced version, YOLOv4-MNS, improves efficiency by replacing the original
backbone with the lightweight MobileNetv3 and refining the activation function within

the prediction network, specifically for PCB surface defect detection (Liao et al., 2021).

Incorporating an attention mechanism into object detection allows neural
networks to prioritise and focus on relevant information (objects) rather than irrelevant
background details. This concept was integrated with the YOLOv4-tiny algorithm and
a Multiscale Attention Module (MAM) to enhance its accuracy as an electronic
component detector (Guo et al., 2021). However, this method focuses on inspecting
common electronic components rather than specifically on PCB detection.
Transformers and attention mechanisms are closely related concepts. Transformer is a
specific type of neural network architecture that utilises self-attention mechanisms to
capture long-range dependencies and extract intrinsic features (Han et al., 2022). A
variant of the YOLOV5 model combined with a transformer was introduced as an end-
to-end deep-learning framework to detect and classify PCB manufacturing defect types

(Bhattacharya & Cloutier, 2022).

The loss function is responsible for measuring the difference between the
predicted and ground truth values and assessing the proximity or dissimilarity of these
values. In object detection, the loss function typically comprises three components:
classification loss, confidence loss, and bounding box regression loss. The bounding
box regression loss aims to refine the localisation accuracy of the detected objects. For
instance, the Generalized Intersection over Union (GloU), as described by Fan et al.
(2021), was employed as the bounding-box regression loss to address the issue of non-

optimal solutions caused by disjoint predictions and ground truths in solder joint defects
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and component detection. Another regression loss function, Gaussian Intersection over
Union (GsloU), which used a Gaussian function to merge boxes across different
anchors, was integrated into YOLOVA4 for detecting for detecting electronic components

on PCBs (X. Liu et al., 2022).

GsloU = ! ex (—w) @)
_,/271,6‘ P 2p

where S represents the variance for each predicted box with an Intersection over Union
(loV) value that exceeds the specified threshold. Besides, Reza et al. (2020) introduced
a novel loss function technique called "Loss Boosting (LB)" incorporated into the
YOLOV2 regression model to enhance the detection performance specifically for small

integrated circuits. The loss function used the formula below:

S )
loss =e* Z(lossobj + 10SSc00ra + 0SS 1ass)
i=1
m-—-n
+e” Z (lossopj + L0SScoora + 10SScigss)
i=1

The symbols e+/e— represent additional coefficients either greater than or less than 1,
m is the total number of objects in the image, while n represents the number of predicted
boxes whose 10U is less than the threshold, 10SSobj, 10SScoord, @and 10SSciass represent the
objectness loss, coordinates loss, and classification loss, respectively (Reza et al., 2020).

In a separate study, the classification loss employed in the YOLOv4-tiny model
is based on Binary Cross-Entropy (BCE) (Guo et al., 2021). The BCE formula is

presented in equation (3), while the classification loss is detailed in equation (4).

BCE(Px) = —(1 — Px)Y * logPx )
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Px denotes the probability for class x, S*S represents the grid points, 1?1.bj indicates if a target

exists in the grid, and P is the predicted value. The parameter y is set to 1.5. The final
loss function was composed by summing the classification loss function, the Complete

Intersection over Union (CloU) loss, and the confidence loss (Guo et al., 2021).

2.3.1(b)  One-Stage Detector: SSD

SSD is an object detection framework that combines the regression concept from
YOLO and the anchoring mechanism from Faster R-CNN. A study to identify the
electronic components proposed an enhanced SSD version by incorporating a feature
fusion strategy and introducing visual reasoning techniques (X. Sun et al., 2020). By
replacing Visual Geometry Group (VGG) with ResNet-50, the proposed SSD model
benefited from improved handling of degradation issues. Moreover, it facilitated two-

way information transmission within the network (X. Sun et al., 2020).

2.3.1(c)  One-stage Detector: RetinaNet

Mahalingam et al. (2019) evaluated various PCB analysis methods, including
YOLOvV3, RetinaNet-50, and Faster R-CNN. RetinaNet, which employed focal loss for
classification, featured a unified network with two subnets—one for classification and
another for box regression tasks (Mahalingam et al., 2019). Although RetinaNet
exhibited strong performance, it faced challenges distinguishing components
resembling ICs, highlighting the necessity for improved differentiation in PCB analysis
tasks. A modified RetinaNet, PCBDet, excelled in detecting PCB components (B. Li et

al., 2023). It employed a self-attention design influenced by RetinaNet's bounding box
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prediction structure and integrated AttendNeXt, a double-condensing attention

condenser backbone architecture, to bolster its feature extraction abilities.

2.3.1(d)  Two-Stage Detector

Different variants of two-stage object detection networks are available and have
been compared based on their speed and accuracy in inspecting electronic components.
Mallaiyan Sathiaseelan et al. (2021) developed the Electronic Component Localization
and Detection Network (ECLAD-Net) tailored for PCB assembly counterfeit and defect
detection. ECLAD-Net involved two stages: the Region Proposal Network (RPN),
responsible for suggesting regions, and the Similarity Prediction Network (SPN),
functioning as the classifier, distinguishing resistors and capacitors (Mallaiyan
Sathiaseelan et al., 2021). In another approach, Kuo et al. (2019) proposed a three-stage
object detection pipeline that involved identifying potential components using bounding
boxes by the RPN while the SPN addressed imbalanced distribution among different

PCB component types (Kuo et al., 2019).

Several methodologies based on Faster R-CNN have been developed for PCB
inspection. A comparative study by Chen Yang (2020) explored various electronic
component detection and localisation methods. Yang discovered that k-means coupled
with CNN classification outperformed Faster R-CNN (Yang, 2020). Additionally, a
specific variant of Faster R-CNN Inception-v2 demonstrated promising performance in
localising PCB components, particularly in identifying absent resistors (Cheong et al.,
2019). Furthermore, in the field of PCB defect detection, a Tiny Defect Detection
Network (TDD-Net) was introduced to identify minor defects like missing holes and
mouse bites. This TDD-Net followed the Faster R-CNN paradigm, adopted FPN to form
a multi-scale feature fusion pyramid, and utilised the ResNet-101 as the backbone. It

achieved 98.90% mAP, showcasing its exceptional ability to identify these defects in
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PCBs (Ding et al., 2019). Shen et al. (2020) established LD-PCB, a lightweight object
detection model for defect detection on PCBs, which enhanced small object detection
accuracy by replacing the ROI pooling layer with Context-aware ROI (CAROI) pooling

within the Faster R-CNN framework.

Further innovations in PCB defect detection include the development of
Efficient Faster R-CNN, introduced by Fan et al. (2021). This algorithm improves the
accuracy of detecting solder joint defects and components on PCBs by replacing the
original VGG-16 backbone with EfficientNet-B7. In another PCB defect detection
study, the EfficientNetv2-M, was integrated into Faster R-CNN with an optimised FPN,
leading to an increase in MAP at 1oU=0.50 from 99.58% to 99.66% (Bochkovskiy et
al., 2020). The versatility of EfficientNet has also made it a valuable tool in various
PCB-related applications. For instance, EfficientNet-B3 was employed to develop a

robust classification system for PCB recycling (Soomro et al., 2022).

Beyond defect detection, PCB assembly examination serves various purposes,
including identifying recyclable components and generating a crucial bill of materials
(BoM) for manufacturers. Mehta et al. (2020) presented an automatic bill of materials
(AutoBoM) for PCB component detection. The paper encompassed traditional image
analysis employing colour thresholding and a deep learning-based method utilising a
Mask Region-based Convolutional Neural Network (Mask R-CNN). Mask R-CNN, an
extension of the Faster R-CNN architecture, integrated a mask prediction branch to
produce pixel-level segmentation masks (K. He et al., 2017). The experiment identified
critical factors influencing accuracy, including board colour, texture/material, lighting
conditions, and component density (Mehta et al., 2020). Figure 2.4 shows the disparity

in detection processes between conventional and deep learning-based methods.
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