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MENINGKATKAN EFFICIENTNET-YOLOV4 UNTUK PENGESANAN 

LITAR BERSEPADU PADA PAPAN LITAR BERCETAK 

ABSTRAK 

Pemeriksaan visual automatik papan litar bercetak (PCB) adalah penting untuk 

memastikan kualiti dan fungsi PCB sepanjang proses pembuatan. Mengesan litar 

bersepadu pada PCB dengan tepat merupakan cabaran yang signifikan dalam 

pemeriksaan automatik kerana pelbagai saiz dan jenis komponen, serta pelbagai 

cetakan dan tanda pada PCB yang menyukarkan pengesanan objek. Tesis ini 

menangani kerumitan ini dengan mencadangkan algoritma yang dipertingkatkan, 

EfficientNet-YOLOv4. Metodologi penyelidikan menggabungkan keupayaan 

pengekstrakan ciri unggul EfficientNet sebagai rangkaian tulang belakang dengan 

keupayaan penyetempatan objek yang tepat dari YOLOv4—gabungan dua kelebihan 

yang unik berbanding kaedah lain yang mungkin bergantung pada algoritma 

penyetempatan yang kurang canggih. Untuk memastikan keupayaan generalisasi 

model, pelbagai teknik augmentasi data, seperti kabur, penyimpangan grid, dan 

pelarasan kecerahan rawak, telah digunakan untuk mensimulasikan variasi dunia 

sebenar. Eksperimen dan penilaian yang meluas menunjukkan keberkesanan dan 

ketahanan algoritma yang dicadangkan dalam susun atur PCB yang kompleks, serta 

keupayaannya untuk menyesuaikan diri dengan variasi warna dan kecerahan yang 

rawak, mengatasi prestasi model pemeriksaan PCB yang lain. Kaedah yang 

dicadangkan, EfficientNetv2-L-YOLOv4, berjaya mencapai skor F1 yang tinggi iaitu 

99.22 dengan kelajuan inferens 0.135 saat. Algoritma ini juga melebihi prestasi 

EfficientNet-B7-FasterRCNN dan YOLOv4 asal, mencapai skor F1 sebanyak 98.96 

dan kelajuan inferens 0.102 saat apabila dilatih dengan saiz kelompok 4. Penemuan 
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penyelidikan ini menekankan kepentingan rangkaian pengekstrakan ciri yang berkesan 

dalam pengesanan objek dengan menggunakan teknik penskalaan yang canggih. 

Pembangunan algoritma EfficientNet-YOLOv4 yang dibentangkan dalam tesis ini 

bukan sahaja menangani cabaran segera pengesanan litar bersepadu pada PCB tetapi 

juga menyumbang kepada bidang penglihatan komputer dan pengesanan objek yang 

lebih luas. Integrasi berjaya algoritma EfficientNet-YOLOv4 yang dipertingkatkan 

(EfficientNetv2-L-YOLOv4) dalam senario pembuatan sebenar berpotensi untuk 

membolehkan proses pemeriksaan komponen automatik sepenuhnya dan 

mengurangkan campur tangan manusia semasa proses pengesanan. 



 

 

xvi 

ENHANCING EFFICIENTNET-YOLOV4 FOR INTEGRATED 

CIRCUIT DETECTION ON PRINTED CIRCUIT BOARDS 

ABSTRACT 

Automated visual inspection of printed circuit boards (PCBs) is vital for 

ensuring the quality and functionality of PCBs throughout the manufacturing process. 

Accurately detecting integrated circuits (ICs) on PCBs presents a significant challenge 

in automated inspection due to the wide range of component sizes and types, as well 

as various printing and markings on the PCB, which complicate object detection. This 

thesis addresses these intricacies by proposing an improved algorithm, EfficientNet-

YOLOv4. The research methodology combines the high-performance feature 

extraction capabilities of EfficientNet as the backbone network with the precise object 

localisation capabilities of YOLOv4, a dual advantage unique compared to other 

methods that may rely on less sophisticated localisation algorithms. To ensure the 

model's generalisation ability, various data augmentation techniques, such as blur, grid 

distortion, and random brightness adjustments, were employed to simulate real-world 

variations. Extensive experiments and evaluations demonstrate the proposed 

algorithm's effectiveness and robustness in complex PCB layouts, as well as its 

adaptability to varying colour and brightness randomness, surpassing the performance 

of other PCB inspection models. The proposed method, EfficientNetv2-L-YOLOv4, 

successfully achieves a high F1-score of 99.22 with an inference speed of 0.135 

seconds. The algorithm also surpasses EfficientNet-B7-FasterRCNN and the original 

YOLOv4, achieving an F1-score of 98.96 and an inference speed of 0.102 seconds 

when trained with batch size 4. The research findings emphasise the significance of 

effective feature extraction networks in object detection by utilising advanced scaling 
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techniques. The development of the EfficientNet-YOLOv4 algorithm presented in this 

thesis not only addresses the immediate challenges of IC detection on PCB but also 

contributes to the broader field of computer vision and object detection. The successful 

integration of the improved EfficientNet-YOLOv4 algorithm (EfficientNetv2-L-

YOLOv4) in real manufacturing scenarios has the potential to enable a fully automated 

component inspection process and reduce human intervention during the detection 

process. 
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CHAPTER 1  
 

INTRODUCTION 

This chapter provides an overview of the research, including the background 

of printed circuit board (PCB) inspection in manufacturing and related object detection 

techniques. It explains the motivation, problem statement, and objectives of the 

research. Contributions to realising the expectations are stated, and the scope and 

process for conducting this study are also included. Finally, a brief overview of the 

structure of this paper is given. 

1.1 Background 

Since 2016, the world has entered the fourth industrial revolution, "Industry 

4.0", which focuses on interconnection through the Internet of Things (IoT), 

automation, machine learning, and real-time data to provide more comprehensive and 

more innovative products, processes, and factories (Sharma et al., 2021). In Industry 

4.0, smart technologies such as Internet of Things (IoT) and artificial intelligence (AI) 

are revolutionising the automation and inspection of supply chains (Jahani et al., 

2021). Manufacturing is one of the major industries best positioned to leverage 

artificial intelligence and machine learning technologies to drive the growth of global 

supply and value chains. Furthermore, it can help the digital transformation of factories 

by streamlining machine supervision and automating industrial processing tasks that 

previously had to be handled by human workers. The main idea of Industry 4.0 

manufacturing is to develop autonomous and automated industrial processing, which 

requires high-quality, precise, and reliable electronic production equipment. 

Product quality standards serve as the benchmarks to satisfy the high 

consumption demand for electronic components, with visual inspection playing a 
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crucial role in maintaining product quality throughout the electronics manufacturing 

process. Machine vision is widely used in electronics manufacturing, mainly embodied 

in four aspects: measurement, inspection, identification, and positioning, especially 

printed circuit board inspection based on intelligent vision technology (J. Li et al., 

2019). Printed circuit boards are the heart of electronics; they are circuit boards with 

lines, copper or gold tracks connected electronically to electronic components. A PCB 

with mounted components is called an assembled PCB, and its manufacturing process 

is known as PCB assembly or PCBA (Sasmita, 2018). The two main types of modern 

PCB assembly technologies are Surface Mount Technology (SMT) and Through-Hole 

Technology (THT), where SMT is considered more reliable than THT (J. He et al., 

2021). Figure 1.1 shows a typical process flow of PCBA.  

 

Figure 1.1 Typical Process Flow of PCBA (Khasawneh, 2019). 

Various inspection methods, including manual, automatic optical, and X-ray 

inspection, are employed to check for errors and misalignments (Sasmita, 2018). 

Traditional manual visual inspection of PCBs is usually performed by human 

operators. However, this method is inherently inefficient, time-consuming, and 

susceptible to operator error due to the restrictions imposed by chronic weariness and 

eye strain limitations; human visual examination can only approximate actual quality 

levels (Zakaria et al., 2020). Electronic industries need non-contact automation 

methods to replace traditional manual visual inspection, especially for PCBA (Fan et 

al., 2021). Therefore, most electronics industries are applying automatic optical 
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inspection systems (AOIs), an application of machine vision for quality inspection to 

reduce the false selection of defects in production lines.  

Automated visual PCB inspection can solve the difficulties of manual 

inspection and ensure the functionality and quality of PCBs during the manufacturing 

process because the performance and reliability of PCBs depend on the quality of the 

fabrication and assembly of boards. AOI is an inspection method suitable for large 

batches of PCBs. During the inspection and quality control stage, AOI machines can 

process a high quantity of PCBs at high speed in a relatively short time by using a 

series of high-powered cameras arranged at different angles to capture PCB images 

and view solder connections (Singh et al., 2019). 

Component detection is essential in PCB automated production monitoring (J. 

Li et al., 2019). During the pick-and-place process of SMT, there may be issues such 

as component shifting or missing components, and the mounted components may 

deviate from the ideal or designed position on the wet solder paste (Cao et al., 2019). 

These issues are typical manufacturing defects faced by PCB assemblers. Therefore, 

there is a need to enhance automated PCB inspection tools to maximise efficiency and 

enable fast and accurate early fault detection at all stages of production. Identifying 

the actual location of the component can also be used to identify the characters marked 

on the PCB component and for PCB recycling. Detecting fine-pitch integrated circuits 

on PCBs is always challenging due to the increasing complexity of PCB boards 

containing various semiconductors with traces, vias, and markings. Numerous state-

of-the-art techniques for automated PCB detection have been developed using 

computer vision, image processing, machine learning, and deep learning across the 

visual spectrum (Mallaiyan Sathiaseelan et al., 2021). 
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The image processing technique is a straightforward computer vision method 

for detection, but it may easily be affected by the image quality and background. 

Referential comparison methods such as template matching and image subtraction 

often require golden or reference samples for accurate feature comparison. With the 

advent of the Industry 4.0 era, the AOI algorithms have been further enhanced by 

combining machine learning and deep learning techniques, which can significantly 

improve the results and speed of the inspection process (Abd Al Rahman & Mousavi, 

2020). Computer vision with machine learning enables higher levels of understanding 

based on image information and automates analysis. Deep learning is a sub-field of 

machine learning that encompasses multilayer neural network architectures. Deep 

learning can use its characteristics to extract deep-level features of objects and identify 

and locate objects based on these features (Shen et al., 2020). Deep learning has 

demonstrated excellent performance in research areas such as object detection and 

character recognition. 

Object detection is a fundamental computer vision application that leverages 

machine learning or deep learning techniques to extract meaningful information from 

images. It consists of two main parts: image classification (identifying objects in 

images) and image localisation (determining the precise location of those objects). 

This localisation capability is particularly relevant in PCB component positioning 

detection tasks. Deep learning employs supervised learning to train and learn from 

large amounts of labelled data, allowing it to predict labels without requiring manual 

feature extraction. Deep learning offers several advantages in PCB component defect 

detection, with fast detection speed, high accuracy, and strong adaptability (Shen et 

al., 2020). Another key advantage of using neural network models is that they will 

continue improving when training data increases. However, a significant challenge lies 
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in creating a sufficiently large and annotated training database, as mentioned in the 

work by Dai et al. (2018). Convolutional Neural Networks (CNNs) are among the most 

popular deep neural networks, comprising multiple convolutional, non-linear, and 

pooling layers, with feature extraction processes embedded in the hidden layers. 

Examples of neural network-based object detection algorithms: You Only Look Once 

(YOLO), Single Shot Detector (SSD), Region-Based Convolutional Neural Networks 

(R-CNN), Faster R-CNN, and Region-based Fully Convolutional Network (R-FCN). 

These algorithms leverage the power of neural networks to detect and localise objects 

accurately in images, enabling efficient and effective object detection in various 

applications, including PCB inspection. 

Most object detection techniques employed in PCB assembly are mainly used 

to identify and classify various electrical components (resistors, capacitors, integrated 

circuits) or to detect and localise common defects: soldering defects (open circuits, 

excess solder), component defects (missing component, misaligned component) on the 

printed circuit board (Houdek & Design, 2016). This research focuses on detecting the 

integrated circuit on the PCB. The primary purpose is to find the region of the chip 

components but not include their pins or soldering parts. Deep learning is well-

established in industrial production, but its application in PCB detection is relatively 

rare (Shen et al., 2020). Therefore, researching and improving deep learning 

algorithms applied to PCB inspection in industrial production has great scientific and 

industrial value. 

1.2 Motivation 

The implementation of artificial intelligence in manufacturing facilities is 

gaining popularity. According to the 2020 MIT Technology Review Insights Survey, 
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approximately 58% of manufacturers adopt AI for quality control to increase speed 

and visibility across the supply chain and create more efficient or innovative 

manufacturing processes (Denis et al., 2020). The optimisation of PCB design and 

manufacturing is essential to meet the requirements of Industry 4.0 facilities. In the 

industry, optical inspection technology can be subdivided into manual inspection 

performed by human inspectors and automated optical inspection systems (Abd Al 

Rahman & Mousavi, 2020). However, manual inspection methods are time-consuming 

and error prone. Therefore, the electronics industry combines artificial intelligence to 

develop automated printed circuit board inspection systems. Currently, Western 

Digital-SanDisk Storage Malaysia is also working on using artificial intelligence to 

enhance AOI for PCB inspection. They need a region-finding algorithm to pinpoint 

the component of interest that could be judged, filtering out adjacent PCB prints and 

landmarks. 

Automated inspection systems have shown promise in improving inspection 

speed and accuracy. However, there is still room for improvement, particularly in 

detecting integrated circuits on PCBs. Most of the target objects have a fixed shape in 

the manufacturing environment. So, it can develop a neural network to find regions of 

interest and segregate the images automatically. Implementing neural networks for 

object detection has become an essential trend with excellent success rates in robotic 

vision and surveillance. Object detection uses object localisation and classification to 

localise the presence of objects with bounding boxes and the type or class of localised 

objects in images applicable to IC detection tasks. 

The complexity and component density of PCBs have increased significantly, 

making manual inspection methods error-prone. The motivation behind this paper is 

to develop an advanced autonomous inspection technique specially designed for PCBs 
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to detect ICs accurately. This paper explores deep learning techniques to tackle the 

detection task for semiconductors in PCB manufacturing. The study of integrated 

circuit detection has practical significance in industrial production because the 

production of PCB requires precise detection of electronic substrates to ensure quality. 

Identifying the position of the integrated circuit facilitates the improvement of 

inspection machines to identify defects and determine the polarity of chip components 

in printed circuit boards. Additionally, it can help develop applications that recognise 

and inspect characters printed on components connected to the PCBs (Gang et al., 

2021). By leveraging deep learning approaches and state-of-the-art object detection 

algorithms, the aim is to improve detection accuracy, reduce false positives, and 

increase the efficiency of autonomous PCB inspections. 

1.3 Problem Statement 

Accurate detection and localisation of integrated circuits (ICs) on PCBs remain 

critical challenges within automated inspection systems due to the intricate variability 

in component sizes, orientations, and layouts. Existing object detection models 

encounter limitations in precisely localising these components, impacting detection 

precision and reliability. The field of object detection in PCB inspection faces 

substantial scope for improvement. Crucial object detection components, such as 

feature learning, backbone architecture, and proposal generation, demand focused 

attention (X. Wu et al., 2020). Challenges persist in handling feature scale issues and 

mastering multi-scale feature learning, which is essential for accurately identifying 

diverse ICs (X. Wu et al., 2020). Techniques such as Spatial Pyramid Pooling (SPP) 

or adaptive pooling facilitate analysis at multiple scales, enabling diverse object size 

and aspect ratio capture for object detection. 
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In industrial applications, where both speed and precision are crucial, one-stage 

detectors like YOLO offer significant processing speed advantages. However, this 

speed often comes at the expense of accuracy, especially compared to two-stage 

detectors (Cazorla & Hussain, 2024; Yao et al., 2021). YOLOv4, a popular one-stage 

detector, struggles to balance speed and precision in high-demand environments due 

to its traditional feature extractor, which loses spatial information as the resolution 

decreases, leading to inaccuracies in target localisation (H. Zhao et al., 2021). As a 

result, YOLOv4's trade-offs may not meet the stringent accuracy and efficiency 

requirements of modern industrial applications, highlighting the need to explore 

alternative backbone architectures to improve detection performance. 

Pursuing a detection-aware backbone architecture that is learned directly from 

datasets becomes a compelling research avenue, particularly in addressing the 

inefficiency of current feature extraction networks in capturing the intricate details of 

ICs across diverse PCBs (X. Wu et al., 2020). The backbone network acts as the 

fundamental feature extractor for object detection, significantly influencing the 

model's performance (Jiao et al., 2019). However, the intricacies of identifying an ideal 

backbone architecture specifically tailored for object detection within the PCB datasets 

pose a critical challenge. Achieving an optimal equilibrium between speed and 

accuracy requires adaptive multi-level features and a well-designed backbone 

architecture (Jiao et al., 2019). The design of an optimal backbone architecture yields 

substantial enhancements in results but demands substantial engineering effort (X. Wu 

et al., 2020).  

Exploration of strategies focusing on optimising backbone architectures 

represents a pivotal avenue in the quest for superior neural network designs tailored 

explicitly for distinct object detection tasks. Techniques such as Neural Architecture 
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Search (NAS), a fundamental aspect of Automated Machine Learning (AutoML), or 

adapting existing architectures, exemplified by models like EfficientNet, offer 

promising prospects in automating the search for optimal network structures. 

However, despite the efficiency-driven design of EfficientNet models, larger variants, 

while achieving higher accuracy, require increased memory and computational 

resources, leading to slower training processes (Tan & Le, 2021). This challenge 

underscores the need for developing models that strike a better balance between 

accuracy and computational efficiency, ensuring both high-performance and practical 

applicability in real-world scenarios. 

Object detectors leveraging AutoML techniques have become a significant 

research focus, promising to streamline model development by automating processes 

like architecture search, hyperparameter optimisation, and feature engineering 

(Masood & Sherif, 2021; X. Wu et al., 2020). Hyperparameter settings significantly 

influence machine learning models' behaviour, complexity, and efficiency, requiring 

careful selection for optimal performance (Bischl et al., 2023; Pannakkong et al., 

2022). However, iteratively fine-tuning these configurations, involving adjusting 

parameters like loss functions, anchor sizes, and other relevant techniques within the 

proposed methodology, remains an ongoing challenge. The lack of research on 

hyperparameter tuning leads to unexplored dimensions in machine learning and a 

notable absence of systematic analysis on parameter tuning practices in research 

papers (Simon et al., 2023). Many studies in machine learning overlook or omit 

explicit reporting on hyperparameter tuning, neglecting the fundamental role these 

settings play in shaping model performance across diverse datasets and tasks.  

Factors contributing to this lack of emphasis on tuning may include the absence 

of suitable experimental setups, limited understanding of specific hyperparameters' 
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effects, time constraints, or knowledge gaps. Moreover, the computational demands 

inherent in training and tuning large-scale machine learning models pose additional 

challenges (Simon et al., 2023). This gap in comprehensive understanding and 

systematic exploration hinders the full realisation of machine learning algorithms' 

potential. Therefore, there is a need for systematic exploration and refinement of these 

configurations to improve object detection models' accuracy, robustness, and 

computational efficiency, particularly when applied to PCB datasets. 

Exploration of advanced algorithms and techniques is essential to accurately 

locate and classify integrated circuits in challenging environments. Additionally, 

emphasis should be placed on creating diverse datasets, establishing standardised 

evaluation protocols, and exploring novel techniques to bolster the robustness and 

efficiency of detection models. 

1.4 Research Questions 

These research questions aim to uncover difficulties that need to be addressed 

to improve neural network-based object detection performance. These questions 

include: 

1. Which backbone architecture with object detector yields the highest accuracy for 

chip detection within Printed Circuit Board (PCB)? 

2. What model configurations within the identified backbone architecture maximise 

object detection performance for integrated circuits (ICs) on PCBs? 

1.5 Research Objectives 

This research focuses on designing a chip finder to detect components on a 

printed circuit board. Evaluating the system's robustness is another critical aspect of 
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assessing the proposed algorithm. To achieve this, here are the objectives to achieve 

it: 

1. To enhance the YOLOv4 architecture's feature extraction capability by integrating 

the best-performing EfficientNet as the backbone network, aiming to achieve 

superior accuracy, precision, and recall compared to the baseline model in 

detecting integrated circuits (ICs) within printed circuit boards (PCBs). 

2. To optimise the proposed model’s configurations, including variations in loss 

functions, anchor sizes, and other pertinent techniques, aiming for improved 

performance metrics such as accuracy, precision, and recall. 

1.6 Expected Contributions 

This research significantly enhances object detection performance, particularly 

for ICs on printed circuit boards, by gaining valuable insights into architecture 

development and selection. Existing object detector architectures are modified and 

enhanced by building a deeper and more efficient feature extraction network. This 

achievement leverages EfficientNet, a neural network architecture developed through 

NAS, known for its ability to deliver optimal performance and efficiency. The 

evaluation and analysis of various backbone architectures integrated into the YOLOv4 

framework for object detection within PCB datasets identify the most efficient variant 

of the EfficientNet backbone architecture. This identification contributes to the 

development of optimised architectures tailored specifically for IC detection tasks 

within PCB inspection. 

Furthermore, the research iteratively optimises various model configurations, 

encompassing loss function variations and training techniques. This systematic 

refinement process develops a comprehensive understanding of fine-tuning strategies, 
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explicitly targeting the achievement of heightened accuracy and robustness in object 

detection tasks. Consequently, these efforts contribute to advancing efficient and 

reliable neural network-based object detection models within PCB datasets. 

Finally, a comparative evaluation between the proposed method and existing 

PCB inspection algorithms or object detection frameworks is conducted. This 

evaluation, employing metrics such as F1-score, mean Average Precision (mAP), and 

inference speed, aims to discern the strengths and weaknesses of the proposed method. 

The findings provide valuable insights into the performance and efficacy of the 

developed approach within the context of PCB inspection. 

1.7 Scope of the Study 

This research explores the application of computer vision in artificial 

intelligence. The scope of this research covers object detection algorithms using a deep 

learning approach and delves into how to improve the performance of deep neural 

networks. The theories of neural networks and image processing techniques are studied 

and discussed to select appropriate methods for further development and improvement. 

Implementing the feature extraction network is the focus of this research, and fine-

tuning the training setting aims to improve the accuracy of object detectors further. 

Image augmentation techniques for increasing data variability are also covered. Two 

types of datasets were trained—one collected from the PCB industry, and one 

transformed from the former. During the evaluation phase, several methods associated 

with PCB detection are employed to compare their performance with the proposed 

approach. The evaluation phase also uses two types of test data—one split from the 

original dataset and one separated from a different set of part numbers not seen by the 

model. 
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1.8 Thesis Organisation 

This study is organised as follows. The next chapter reviews the relevant 

literature on object detection algorithms, particularly those applied to PCB inspection 

and electronic component detection. CHAPTER 3 describes the research 

methodology, including the data collection process and the selection and modification 

of the proposed algorithm. CHAPTER 4 describes the experimental setup and presents 

the results obtained from the evaluation process. The final chapter summarises the 

main findings of this study and presents recommendations and future work. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction 

This chapter explores numerous state-of-the-art electronic inspection techniques 

in computer vision, covering PCB components and defect detection, as well as 

inspection methods for non-PCB electrical components. The primary objective is to 

identify suitable algorithms for the present study. The chapter is organised as follows: 

Section 2.2 provides an overview of various PCB inspection methods employed in the 

industry. Section 2.3 discusses PCB inspection algorithms that leverage machine 

learning techniques, focusing on methods employing neural networks. Figure 2.1 and 

Figure 2.2 visually represent the fields and areas of literature covered. Section 2.4 

compiles available datasets related to PCBs, while Section 2.5 delves into the key 

findings of the literature review chapter, emphasising insights gained for further 

research in PCB component detection. The chapter concludes with a summary in 

Section 2.6. 

 

Figure 2.1 Overview of Literature Reviewed. 
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Figure 2.2 Overall Covered State-Of-The-Art Methods. 

2.2 Overview of PCB Inspection and IC Detection 

PCB inspection is employed to identify any potential defects or abnormalities in 

the assembly process of PCBs. Missing or misplaced components or incorrect 

component orientation affect the quality of the final product (D. Li et al., 2020). 

Integrated circuit detection involves the identification and localisation of ICs on a PCB. 

This process helps verify that the correct ICs are present on the PCB according to the 

design specifications to avoid faulty and malfunctioning circuitry. Moreover, 

identifying the ICs or labels on them can provide a record of the ICs used in a PCB 

assembly. They can also be utilised to automate PCB recycling processes, where 

identifying and extracting reusable components from discarded PCBs is essential for 

resource recovery and environmental sustainability (Mir & Dhawan, 2022). 

Machine learning is a subfield of artificial intelligence that has evolved 

significantly from traditional pattern recognition and image processing methods to more 

advanced image understanding techniques (Khan & Al-Habsi, 2020). Modern advances 

in computer vision rely heavily on deep learning, a subfield of machine learning that 
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utilises multilayer artificial neural networks (ANNs). Deep learning algorithms, also 

known as deep neural networks, form the foundation for processing and analysing 

complex visual data. The subsequent section delves into the detection of PCBs through 

neural network-based approaches, specifically emphasising deep learning techniques. 

The focus of the reviewed techniques and algorithms had predominantly centred 

around component detection, leveraging the capabilities of machine learning 

approaches. However, work dedicated to PCB component inspection had been 

relatively limited; therefore, this review also covered studies on PCB defect detection 

and common electrical component inspection to provide a more comprehensive 

understanding of PCB inspection. 

2.3 Neural Network Approach 

Machine learning algorithms, particularly those based on neural networks like 

deep learning, have the advantage of not requiring explicit programming with specific 

rules to define input expectations. Object detection is a common application in computer 

vision that leverages machine learning or deep learning to extract meaningful 

information from images. Object detection is crucial in determining the precise location 

and type of target objects, making it especially relevant for PCB component positioning 

detection. This section explores various types of deep learning-based object detectors 

and other neural network-based methods used in PCB inspection. 

2.3.1 Deep Learning-based Object Detectors 

Popular categories of deep learning-based object detectors included two-stage 

methods and one-stage methods. Two-stage methods tended to be precise in their 

predictions; they could be relatively slow due to the additional step of identifying 

regions of interest before classification (Reza et al., 2020). On the other hand, one-stage 
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methods performed object detection in a single step (Dave et al., 2016). These methods 

directly predicted the class labels and bounding box coordinates for all potential objects 

in the image without the need for explicit region proposal generation, which offered 

advantages in terms of speed and memory efficiency (J. Li et al., 2019).  

2.3.1(a) One-Stage Detector: YOLO 

The YOLO method, leveraging CNNs, is extensively employed in PCB 

assembly to facilitate real-time predictions. Lin et al. (2018) presented the YOLOv2 

architecture, which enabled the automatic and rapid localisation of capacitors and the 

identification of their types in captured images. Most electronic component detections 

in PCB assembly preferred YOLOv3 over YOLOv2 as the object detector due to its 

Feature Pyramid Network (FPN) architecture, enabling multi-scale prediction and 

effective detection of small objects (R. Huang et al., 2019). YOLOv3 demonstrated the 

highest recognition rate of 92.2% compared to SSD, R-CNN, and RetinaNet in PCB 

component recognition (K. Zhang, 2023). Detecting PCB assemblies is crucial for 

recycling and defect inspection purposes. Silva et al. (2021) utilised a pre-trained 

YOLOv3 model, fine-tuned with the PCB DSLR dataset by Pramerdorfer and Kampel 

(2015), to detect ICs in waste PCBs for recycling.  

Missing components were often an issue that needed to be addressed in PCB 

assembly. Khare et al. (2020) proposed a solution involving object detection 

(YOLOv3), image subtraction, and pixel manipulation, which achieved an accuracy of 

75.48% in solving the problem of missing components in PCBs. To improve the 

YOLOv3 algorithm's capability of detecting small surface-mounted device (SMD) 

components on PCBs, a small target-sensitive YOLO output layer could be added (J. Li 

et al., 2019). This addition helped prevent the loss of feature information. However, it 

still exhibited weaknesses when the variance within the same category was significant.  
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In YOLOv3, the bounding box predictions rely on the anchor box concept (J. Li 

et al., 2021). However, mismatches between anchor and target sizes can impact 

performance. K-means clustering could address this by generating more suitable 

anchors based on the bounding boxes in the training dataset (S. H. Chen & Tsai, 2021). 

J. Li et al. (2019) applied k-means clustering to generate 12 anchor boxes for an 

improved YOLOv3 model in PCB detection. Another approach that focused on the 

anchor box concept, also presented by J. Li et al. (2021), was ERFAM-YOLOv3 

(Effective Receptive Field Size and Anchor Size Matching in YOLOv3), designed for 

real-time electronic component detection. This method involves clustering, effective 

receptive field (ERF) calculation, modular design, and anchor-ERF matching. 

However, this method faces challenges, especially in effectively matching ERF and 

anchor size for thin and long items (J. Li et al., 2021). 

A backbone network is a pre-trained neural network architecture that serves as 

the core feature extractor in tasks like image classification, object detection, and 

segmentation. In object detection, the effectiveness of backbone networks is critical, as 

they are responsible for accurately identifying objects within an image. For instance, in 

defect inspection for SMD LED chips, S. H. Chen and Tsai (2021) replaced the Darknet-

53 backbone of YOLOv3 with DenseNet-121. DenseNet exhibited superior feature 

learning capabilities compared to Darknet-53, particularly regarding feature 

propagation and alleviating the problem of gradient disappearance (S. H. Chen & Tsai, 

2021). Another proposed network architecture for electronic component recognition 

incorporating changes in the backbone network was YOLOv3-MobileNet, which 

replaced the original Darknet-53 with MobileNet (R. Huang et al., 2019). The 

MobileNet architecture simplified the network layers by dividing the convolution layer 

into depthwise and pointwise convolutions, thereby enhancing efficiency.  
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A study unrelated to PCBs utilised YOLOv3 and the Super-Resolution 

Convolutional Neural Network (SRCNN) model to accurately detect the location and 

condition of electrical components, particularly insulators, in diverse scenarios (H. 

Chen et al., 2019). Figure 2.3 illustrates the steps of SRCNN with YOLOv3. Super-

resolution models are effective pre-processing tools, significantly enhancing the feature 

extraction process. Another super-resolution model was Enhanced Deep Residual 

Networks for Single Image Super-Resolution (EDSR), specifically designed to obtain 

high-resolution component images to learn fine-grained details and efficiently perceive 

features (Makwana et al., 2023).  

 

Figure 2.3 Overall Process of SRCNN with YOLOv3 (H. Chen et al., 2019). 

The evolution of object detection algorithms has made YOLOv4 a preferred 

choice for PCB detection, surpassing its predecessor, YOLOv3. While YOLOv3 

employed DarkNet53 as its backbone, YOLOv4 integrates CSPDarknet-53, which 

enhances feature extraction through residual blocks (Bochkovskiy et al., 2020). The 

incorporation of Cross-Stage Partial (CSP) connections within CSPDarknet-53 

improves feature representation while reducing computational complexity (Xin et al., 

2021). These optimisations make YOLOv4 particularly effective for tasks such as 

detecting solder joint defects in PCB assembly lines, as demonstrated by Caliskan and 

Gurkan (2021). Additionally, YOLOv4 was enhanced and applied in methods for 

detecting PCB electronic component defects, focusing on small object detection, 
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making it ideal for identifying small electrical components (Xin et al., 2021). An 

enhanced version, YOLOv4-MNS, improves efficiency by replacing the original 

backbone with the lightweight MobileNetv3 and refining the activation function within 

the prediction network, specifically for PCB surface defect detection (Liao et al., 2021). 

Incorporating an attention mechanism into object detection allows neural 

networks to prioritise and focus on relevant information (objects) rather than irrelevant 

background details. This concept was integrated with the YOLOv4-tiny algorithm and 

a Multiscale Attention Module (MAM) to enhance its accuracy as an electronic 

component detector (Guo et al., 2021). However, this method focuses on inspecting 

common electronic components rather than specifically on PCB detection. 

Transformers and attention mechanisms are closely related concepts. Transformer is a 

specific type of neural network architecture that utilises self-attention mechanisms to 

capture long-range dependencies and extract intrinsic features (Han et al., 2022). A 

variant of the YOLOv5 model combined with a transformer was introduced as an end-

to-end deep-learning framework to detect and classify PCB manufacturing defect types 

(Bhattacharya & Cloutier, 2022). 

The loss function is responsible for measuring the difference between the 

predicted and ground truth values and assessing the proximity or dissimilarity of these 

values. In object detection, the loss function typically comprises three components: 

classification loss, confidence loss, and bounding box regression loss. The bounding 

box regression loss aims to refine the localisation accuracy of the detected objects. For 

instance, the Generalized Intersection over Union (GIoU), as described by Fan et al. 

(2021), was employed as the bounding-box regression loss to address the issue of non-

optimal solutions caused by disjoint predictions and ground truths in solder joint defects 
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and component detection. Another regression loss function, Gaussian Intersection over 

Union (GsIoU), which used a Gaussian function to merge boxes across different 

anchors, was integrated into YOLOv4 for detecting for detecting electronic components 

on PCBs (X. Liu et al., 2022). 

𝐺𝑠𝐼𝑜𝑈 =
1

√2𝜋𝛽
ⅇ𝑥𝑝(−

(1 − 𝐼𝑜𝑈)2

2𝛽
) 

(1) 

where β represents the variance for each predicted box with an Intersection over Union 

(IoU) value that exceeds the specified threshold. Besides, Reza et al. (2020) introduced 

a novel loss function technique called "Loss Boosting (LB)" incorporated into the 

YOLOv2 regression model to enhance the detection performance specifically for small 

integrated circuits. The loss function used the formula below: 

𝑙𝑜𝑠𝑠 = 𝑒+ ∑(𝑙𝑜𝑠𝑠𝑜𝑏𝑗 + 𝑙𝑜𝑠𝑠𝑐𝑜𝑜𝑟𝑑 + 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠)

𝑛

𝑖=1

+ 𝑒− ∑ (𝑙𝑜𝑠𝑠𝑜𝑏𝑗 + 𝑙𝑜𝑠𝑠𝑐𝑜𝑜𝑟𝑑 + 𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠)

𝑚−𝑛

𝑖=1

 

(2) 

The symbols e+/e− represent additional coefficients either greater than or less than 1, 

m is the total number of objects in the image, while n represents the number of predicted 

boxes whose IoU is less than the threshold, lossobj, losscoord, and lossclass represent the 

objectness loss, coordinates loss, and classification loss, respectively (Reza et al., 2020).  

In a separate study, the classification loss employed in the YOLOv4-tiny model 

is based on Binary Cross-Entropy (BCE) (Guo et al., 2021). The BCE formula is 

presented in equation (3), while the classification loss is detailed in equation (4). 

𝐵𝐶𝐸(𝑃𝑥) = −(1 − 𝑃𝑥)𝛾 ∗  log𝑃𝑥  (3) 
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𝑙𝑜𝑠𝑠𝑐𝑙𝑎𝑠𝑠 = − ∑ 1𝑖𝑗
𝑜𝑏𝑗

𝑆∗𝑆

𝑖=0

∑ [(𝑃̂𝑖(𝑡)𝛾𝑃𝑖(𝑡) 𝑙𝑜𝑔 𝑃̂𝑖(𝑡) + (1

𝑡 ∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

−  𝑃̂𝑖(𝑡)𝛾(1 − 𝑃̂𝑖(𝑡) 𝑙𝑜𝑔(1 −  𝑃̂𝑖(𝑡)] 

(4) 

𝑃𝑥 denotes the probability for class x, S*S represents the grid points, 1𝑖𝑗
𝑜𝑏𝑗

 indicates if a target 

exists in the grid, and 𝑃̂ is the predicted value. The parameter 𝛾 is set to 1.5. The final 

loss function was composed by summing the classification loss function, the Complete 

Intersection over Union (CIoU) loss, and the confidence loss (Guo et al., 2021). 

2.3.1(b) One-Stage Detector: SSD 

SSD is an object detection framework that combines the regression concept from 

YOLO and the anchoring mechanism from Faster R-CNN. A study to identify the 

electronic components proposed an enhanced SSD version by incorporating a feature 

fusion strategy and introducing visual reasoning techniques (X. Sun et al., 2020). By 

replacing Visual Geometry Group (VGG) with ResNet-50, the proposed SSD model 

benefited from improved handling of degradation issues. Moreover, it facilitated two-

way information transmission within the network (X. Sun et al., 2020). 

2.3.1(c) One-stage Detector: RetinaNet 

Mahalingam et al. (2019) evaluated various PCB analysis methods, including 

YOLOv3, RetinaNet-50, and Faster R-CNN. RetinaNet, which employed focal loss for 

classification, featured a unified network with two subnets—one for classification and 

another for box regression tasks (Mahalingam et al., 2019). Although RetinaNet 

exhibited strong performance, it faced challenges distinguishing components 

resembling ICs, highlighting the necessity for improved differentiation in PCB analysis 

tasks. A modified RetinaNet, PCBDet, excelled in detecting PCB components (B. Li et 

al., 2023). It employed a self-attention design influenced by RetinaNet's bounding box 
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prediction structure and integrated AttendNeXt, a double-condensing attention 

condenser backbone architecture, to bolster its feature extraction abilities. 

2.3.1(d) Two-Stage Detector 

Different variants of two-stage object detection networks are available and have 

been compared based on their speed and accuracy in inspecting electronic components. 

Mallaiyan Sathiaseelan et al. (2021) developed the Electronic Component Localization 

and Detection Network (ECLAD-Net) tailored for PCB assembly counterfeit and defect 

detection. ECLAD-Net involved two stages: the Region Proposal Network (RPN), 

responsible for suggesting regions, and the Similarity Prediction Network (SPN), 

functioning as the classifier, distinguishing resistors and capacitors (Mallaiyan 

Sathiaseelan et al., 2021). In another approach, Kuo et al. (2019) proposed a three-stage 

object detection pipeline that involved identifying potential components using bounding 

boxes by the RPN while the SPN addressed imbalanced distribution among different 

PCB component types (Kuo et al., 2019).  

Several methodologies based on Faster R-CNN have been developed for PCB 

inspection. A comparative study by Chen Yang (2020) explored various electronic 

component detection and localisation methods. Yang discovered that k-means coupled 

with CNN classification outperformed Faster R-CNN (Yang, 2020). Additionally, a 

specific variant of Faster R-CNN Inception-v2 demonstrated promising performance in 

localising PCB components, particularly in identifying absent resistors (Cheong et al., 

2019). Furthermore, in the field of PCB defect detection, a Tiny Defect Detection 

Network (TDD-Net) was introduced to identify minor defects like missing holes and 

mouse bites. This TDD-Net followed the Faster R-CNN paradigm, adopted FPN to form 

a multi-scale feature fusion pyramid, and utilised the ResNet-101 as the backbone. It 

achieved 98.90% mAP, showcasing its exceptional ability to identify these defects in 
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PCBs (Ding et al., 2019). Shen et al. (2020) established LD-PCB, a lightweight object 

detection model for defect detection on PCBs, which enhanced small object detection 

accuracy by replacing the ROI pooling layer with Context-aware ROI (CAROI) pooling 

within the Faster R-CNN framework. 

Further innovations in PCB defect detection include the development of 

Efficient Faster R-CNN, introduced by Fan et al. (2021). This algorithm improves the 

accuracy of detecting solder joint defects and components on PCBs by replacing the 

original VGG-16 backbone with EfficientNet-B7. In another PCB defect detection 

study, the EfficientNetv2-M, was integrated into Faster R-CNN with an optimised FPN, 

leading to an increase in mAP at IoU=0.50 from 99.58% to 99.66% (Bochkovskiy et 

al., 2020). The versatility of EfficientNet has also made it a valuable tool in various 

PCB-related applications. For instance, EfficientNet-B3 was employed to develop a 

robust classification system for PCB recycling (Soomro et al., 2022).  

Beyond defect detection, PCB assembly examination serves various purposes, 

including identifying recyclable components and generating a crucial bill of materials 

(BoM) for manufacturers. Mehta et al. (2020) presented an automatic bill of materials 

(AutoBoM) for PCB component detection. The paper encompassed traditional image 

analysis employing colour thresholding and a deep learning-based method utilising a 

Mask Region-based Convolutional Neural Network (Mask R-CNN). Mask R-CNN, an 

extension of the Faster R-CNN architecture, integrated a mask prediction branch to 

produce pixel-level segmentation masks (K. He et al., 2017). The experiment identified 

critical factors influencing accuracy, including board colour, texture/material, lighting 

conditions, and component density (Mehta et al., 2020). Figure 2.4 shows the disparity 

in detection processes between conventional and deep learning-based methods. 




