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PENDEKATAN BERASASKAN ANAK GELOMBANG UNTUK

PENYELESAIAN ANALISIS BAGI PERSAMAAN PEMBEZAAN PECAHAN

DAN PENYELESAIAN BERANGKA BAGI PERSAMAAN KAMIRAN

PECAHAN

ABSTRAK

Berikutan kebangkitan model tertib pecahan dan akibatnya, persamaan pentadbi-

ran pecahan, kaedah analisis dan berangka baharu telah dibangunkan dan dipelajari

secara meluas. Walau bagaimanapun, dalam pelbagai kaedah jelmaan kamiran, belum

terdapat kajian yang dibuat mengenai aplikasi jelmaan anak gelombang selanjar dalam

menyelesaikan persamaan pembezaan pecahan secara analisis. Bagi mengisi jurang

tersebut, disertasi ini menerbitkan kaedah analisis berdasarkan jelmaan kamiran ini

dengan mengaplikasikannya pada kamiran dan terbitan Riemann-Liouville, dan terbitan

Caputo. Dengan bantuan teorem dan teknik dalam kalkulus dan kalkulus pecahan

berserta keputusan yang penting dalam analisis fungsian dan sifat jelmaan anak gelom-

bang selanjar, ia adalah didapati bahawa jelmaan anak gelombang Poisson berperingkat

n = 1 berupaya menghasil keputusan bermakna yang sesuai untuk menyelesaikan per-

samaan tertib pecahan. Untuk mendemonstrasikannya, skema ini diaplikasikan untuk

menyelesaikan dua persamaan pembezaan pecahan yang ditakrifkan berdasarkan setiap

terbitan pecahan yang disebutkan di atas, yang mana penyelesaian tepat berjaya diperoleh.

Sebaliknya, kebanyakan analisis berangka bagi persamaan pecahan ditumpukan pada

persamaan pembezaan dan oleh demikian, algoritma untuk persamaan kamiran pecahan

didapati tidak mencukupi. Didorong oleh kebolehan anak gelombang Legendre dalam

menyelesaikan persamaan pembezaan pecahan secara berangka, tesis ini berusaha untuk

membina skema berangka berdasarkan anak gelombang ini untuk persamaan kamiran

pecahan. Dengan aplikasi analisis berbilang resolusi dan teori penghampiran, kaedah

kolokasi menggunakan anak gelombang Legendre telah dibangunkan untuk mengham-

piri penyelesaian persamaan kamiran pecahan. Perisian MATLAB digunakan untuk

membantu dalam proses pengiraan dan penyediaan grafik. Suatu analisis penumpuan

xiii



juga disertakan untuk memastikan hampiran yang dihasilkan memang menumpu kepada

penyelesaian sebenar. Sebagai akibatnya, algoritma ini ditunjukkan untuk mempunyai

ketepatan yang lebih tinggi berbanding kaedah anak gelombang Haar apabila digunakan

untuk menyelesaikan persamaan kamiran pecahan Volterra jenis kedua, dan juga mampu

menghasilkan hampiran bagi persamaan kamiran pecahan dengan penyelesaian yang

tidak diketahui.
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A WAVELET-BASED APPROACH FOR THE ANALYTICAL SOLUTIONS

OF FRACTIONAL DIFFERENTIAL EQUATIONS AND THE NUMERICAL

SOLUTIONS OF FRACTIONAL INTEGRAL EQUATIONS

ABSTRACT

Following the rise of fractional-order models and consequently, their fractional

governing equations, new analytical and numerical methods have been developed and

studied extensively. However, amidst the multitude of integral transform methods, there

have been no research done on the application of the continuous wavelet transform to

analytically solve fractional differential equations. To fill this gap, the present dissertation

derives an analytical method based on this integral transform by applying it to the

Riemann-Liouville integral and derivative, and the Caputo derivative. With the help

of theorems and techniques in calculus and fractional calculus, important results in

functional analysis and properties of the continuous wavelet transform, it is found that

Poisson wavelet transform of order n = 1 is able to yield meaningful results, suitable

for solving fractional-order equations. To demonstrate this, the scheme is applied to

solve two fractional differential equations, defined based on each of the aforementioned

fractional derivatives, wherein the exact solutions were successfully obtained. On the

other hand, much of the numerical analysis of fractional equations have been focused

on that of differential equations and thus, algorithms for fractional integral equations

have been found wanting. Motivated by the prowess of the Legendre wavelet in solving

fractional differential equations numerically, this thesis strives to construct a numerical

scheme based on this wavelet for fractional integral equations. By the application

of multiresolution analysis and approximation theory, a collocation method using the

Legendre wavelet was developed to approximate the solutions of fractional integral

equations. The software MATLAB was used to help with computation and graphics.

This was also accompanied by a convergence analysis to ensure that the approximation

produced indeed converges to the actual solution. As a result, the algorithm was shown

to have greater accuracy than the Haar wavelet method when applied to solve fractional

xv



Volterra integral equations of the second kind, and is also able to produce approximations

for fractional integral equations with unknown solutions.

xvi



CHAPTER 1

INTRODUCTION

1.1 Motivation

. . . fractional calculus can be viewed nowadays as the probability theory be-

fore 1933, the year in which Kolmogorov laid the foundations of probability

theory by his three axioms.

Such was a depiction of modern fractional calculus by [78]. Indeed, in its current

fractured state, this extension of traditional calculus is not blessed with unification.

Where, in other corners of mathematics, definitions serve as an unambiguous description

of an object or concept, definitions of fractional derivatives and integrals take many

names and forms, each with their own faces and characteristics. Yet despite its shattered

nature, fractional calculus has garnered the attention of many researchers and forthwith,

the cogs of fractional-order differential and integral equations were set into motion.

Among the many revelations brought forth to the field of fractional calculus by math-

ematicians, scientists and engineers, the first of its applications to real world problems

was the integral equation due to Abel in solving the tautochrone problem in 1823 [4, 48].

So monumental was his research that [149] attributed it to have laid a “complete frame-

work for fractional-order calculus”. In the years following this publication leading up to

the present day, many more studies have been done to explore fractional-order models;

yet beyond what was contributed by Abel, these models have simply been extensions of

integer-order to fractional. However, one should not exclaim the current state of affairs

as disappointing, as the differential and integral equations of fractional calculus has led

to a great many discoveries and improvements to existing models. This could be seen in

areas involving viscoelasticity [27, 195], medical and health sciences [105, 168], signal

processing and control [46, 123], as well as solid mechanics, fluid dynamics and image

processing [53]. Within the realm of physics, this also led to new possibilities in the

modelling of certain systems and processes, such as electromagnetism [64], fractional

quantum mechanics [110] and even the fractional Brownian motion [140].
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As the application of fractional calculus to real world problems increases, so too

does the need to solve these fractional differential and integral equations. To this end,

researchers strode tirelessly to develop algorithms both analytical and numerical. In

an effort to circumvent the difficulty of computing fractional integrals and derivatives

(in most cases), mathematicians developed analytical schemes centered around integral

transforms, allowing for one to bypass this obstacle altogether [98]. These methods were

developed for several transformations, among which are notably the Laplace transform

and the Fourier transform. This provided an inspiration to probe deeper and investigate

whether such results hold similarly for other integral transforms that were hitherto

unexplored. This led to our encounter with the continuous wavelet transform and

wavelet theory, wherein a further curiosity was aroused – the extent of the applicability

of wavelets in both analytical and numerical methods concerning fractional differential

equations (FDEs) and fractional integral equations (FIEs).

1.2 Problem Statement

Integral transform methods have left an undeniable mark in fractional calculus, par-

ticularly on obtaining the exact analytical solutions of FDEs. This interested many

researchers to study the limits of these transforms in the aforementioned area, leading

to a multitude of advancements in this direction. This is evident in the recent works

surrounding the application of integral transforms to FDEs, for instance the Fourier

transform in [121, 188] and the Laplace transform in [20, 32]. Yet amidst the various

results established by mathematicians, we were not able to find any account related to

the continuous wavelet transform (CWT). This propelled the question of whether we

can obtain results that are useful in solving FDEs by applying the CWT to fractional

derivatives of functions and hence, provide a new avenue for obtaining the analytical

solutions to FDEs.

On the other hand, although the literature for fractional calculus has grown richer

over time, further examination transpired that, while a decent amount of work has been

done to obtain the solutions of FDEs, research on solving FIEs is much more lacking
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in comparison, even numerically. Nonetheless, wavelet-based numerical methods have

been applied by numerical analysts to solve these equations, with the Haar wavelet

being a particularly popular wavelet basis (see, for example, [3, 191]). Many of these

algorithms also incorporated other techniques from numerical analysis, such as the

pseudospectral method in [49] and operational matrix in [96]. Still, the problem of

inadequacy remains. Thus in our effort to contribute to the (wavelet-based) numerical

analysis of FIEs, we beg the question: how can we construct a numerical scheme to

accurately approximate the solutions of FIEs by utilizing wavelet bases?

1.3 Research Objectives

1. To obtain the continuous wavelet transform of the Riemann-Liouville fractional

integral with order α > 0.

2. To formulate expressions pertaining to the continuous wavelet transform of the

Riemann-Liouville and Caputo fractional derivatives.

3. To apply the results obtained from the previous objectives to analytically solve a

fractional differential equation.

4. To develop a numerical algorithm based on orthogonal wavelet bases and mul-

tiresolution analysis, and apply it for the numerical solution of fractional Volterra

integral equations.

5. To analyze the convergence of the solution approximated by the wavelet-based

algorithm to the actual solution of the FIE.

1.4 Research Scope

It is foremost to mention that in the current thesis, only wavelet-based methods will be

considered, wherein only those wavelets and orthogonal wavelet bases that already exist

will be used. While it is definitely possible to construct new wavelets, orthogonal or not,

we believe it best to first exhaust established avenues before turning to the construction of

3



new ones, so as to not bloat the pool of wavelets with unnecessary inventions. Particularly

for the results concerning the CWT of fractional operators, an analysis on the suitability

(or lack thereof) of certain wavelets will accompany the findings of our study. This, as

one will come to find out, leads to only the Poisson wavelet transform being applied in

our research. On the other hand, the wavelet-based numerical algorithm will consider

only the Legendre wavelet due to its notability in the solution of FDEs. The scheme

will be performed in MATLAB and so, all limitations and inaccuracies of said program

will apply to our computations and approximations. We will provide an account for all

such failings encountered in the relevant chapter.

We end this section by highlighting two further limitations:

1. All considerations in our research will be confined to the one-dimensional case.

2. We will consider only fractional derivatives and integrals of real order α > 0.

1.5 Significance of the Study

The present study will establish a new method of solving FDEs by applying the CWT

and, in turn, fill the gap in the application of integral transforms in fractional calculus.

As this develops a new-found purpose for the wavelet transform, it could motivate

the construction of new wavelets or wavelet-like functions that are more effective in

achieving this goal. Thus, this wavelet transform method, and what spawns of its

extensions and/or generalizations, could lead to the exact solutions of FDEs that are

hitherto unknown. This purpose proves to be important due to the usefulness of FDEs

in modeling physical and engineering systems [121]. Moreover, this application of the

CWT to solve systems governed by fractional calculus operators also partially answers

the question posed by [88], especially when taking into account the freedom in the

choice of wavelets.

In addition, our research will also devise a wavelet-based numerical algorithm that

yields better accuracy that some other published methods, yet is more straightforward

to implement comparatively to approximate solutions of FIEs whose exact solutions

are “inaccessible” [19]. Perhaps more importantly, however, is its contribution to the

4



numerical analysis of FIEs in wavelet bases, which has seen significantly less attention

than its differential equivalent. This study aspires to attract more research in this direction

by demonstrating that simpler methods could also yield desirable approximations.

1.6 Thesis Organization

This dissertation investigates the application of wavelet analysis in fractional calculus in

an effort to establish further linkage between the two. This thesis is organized as follows.

Foremost, the present chapter discusses the motivation and outlines the direction of this

research. Subsequently, Chapter 2 serves as exposition to the concepts and theories

necessary for the reader to understand the remainder of this thesis, with particular

emphasis placed on important definitions in Fourier analysis, the CWT, multiresolution

analysis (MRA), and an introduction to fractional calculus and some of its operators.

Chapter 3 then serves as an appetizer to the main course of this thesis by providing a

comprehensive literature review on published works and studies surrounding the this

research’s interests. The next two chapters contain the main results of this thesis. First,

Chapter 4 explores the interaction of the CWT with fractional operators of the Riemann-

Liouville and Caputo sense, as well as the ability of the results obtained thereof to

analytically solve FDEs. Then, Chapter 5 sees the construction of a numerical algorithm

based on the collocation method and the use of a wavelet basis through MRA, and

utilizes this algorithm to approximate the solutions of several FIEs. Finally, Chapter 6

concludes the current work and examines possible future studies.
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CHAPTER 2

PRELIMINARIES

In order to have a fruitful discussion pertaining to the newfound results of our research,

we need first indulge ourselves in some very important preliminaries. Thus, this chapter

shall lay the groundwork by providing a rudimentary exposition of the theories and

definitions for concepts that are necessary for the sequel.

2.1 Basic Measure Theory and Functional Analysis

We begin the present chapter with expository descriptions for the technical notions

relating to measure theory and functional analysis that are later used in this thesis. It

shall be important to highlight that the explanations hereafter are merely rudimentary,

as they are only intended to give the reader who is unfamiliar with real and functional

analysis a basic idea of the definitions relevant to this work. We start by defining set

functions and measures.

Definition 2.1.1 ([192]). Let S = {A1, A2 . . .} be a collection of subsets of some

interval [a, b] ⊂ R such that
⋃∞
n=1An ∈ S. A function assigning a real number to each

set A ∈ S is called a set function. A set function µ on S is a measure if

(i) 0 ≤ µ(A) ≤ b− a for all A ∈ S,

(ii) µ(∅) = 0,

(iii) µ(A1) ≤ µ(A2) whenever A1 ⊂ A2 for A1, A2 ∈ S, and

(iv) for A =
⋃∞
n=1An,

µ(A) =
∞∑
n=1

µ(An),

where An ∈ S for n = 1, 2, . . . and An ∩ Am = ∅ whenever n ̸= m.

Hereafter, µ will always be a measure. What follows naturally is the measure for sets,

followed by a definition of how one would describe a set as being measurable.
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Definition 2.1.2 (Outer and inner measures [192]). Let E be an open set and A ⊂ E.

Then, the outer measure µ∗(A) of A is defined as

µ∗(A) = glb{µ∗(G) : A ⊂ G, G open in E},

where glb denotes the greatest lower bound; while its inner measure µ∗(A) is given by

1− µ∗(E \ A).

Remark. For further understanding on how the sets G are constructed and measured,

see the reference cited in this definition.

Definition 2.1.3 (Measurable sets [192]). We say that a set A ⊂ E is (Lebesgue)

measurable if µ∗(A) = µ∗(A). For any such set A, its measure is given by µ(A) =

µ∗(A) = µ∗(A).

After establishing the idea of measurability of sets, it is now possible to delve into the

particularity of measure zero sets and the notion of “almost everywhere”. Let A ⊂ E.

If there exists a countable collection of open intervals {In}∞n=1 (that is, intervals of the

form (a, b)) such that for every ϵ > 0,

A ⊂
∞⋃
n=1

In and
∞∑
n=1

|In| < ϵ,

where |In| is the length of the interval In, then A is said to have measure zero. Any one

element set has measure zero. Moreover, we say that two functions f and g are equal

almost everywhere if f(x) = g(x) for all values of x except at sets of measure zero.

To define the Lp spaces, the notion of measurable functions is needed; we shall give

its definition here using measurable sets.

Definition 2.1.4 ([192]). Let A ⊂ R be a bounded measurable set. The function

f : A→ R is said to be measurable onA if, for every c ∈ R, the set {x ∈ A : c < f(x)}

is measurable.

Indeed, the spaces Lp(R), for 1 ≤ p < ∞, consist of measurable functions f
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satisfying

∥f∥p =
(∫ ∞

−∞
|f(t)|p dt

) 1
p

<∞.

The objects of primary space here are the spaces L1(R) and L2(R), with the former

serving as a starting point to define the Fourier transform, as one will come to meet.

The latter, on the other hand, exhibits many useful properties leading it to becoming the

star of many works in Fourier (or harmonic) analysis; this comes from the fact that it is

a Hilbert space. However, to acquaint ourselves with this concept, we need first grasp

the ideas of metrics and completeness.

Definition 2.1.5 (Metric and metric space [102]). Let X be a set and x, y, z ∈ X . A

real-valued, finite and nonnegative function d defined on X ×X satisfying

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x), and

(iii) d(x, y) ≤ d(x, z) + d(z, y)

is called a metric on X . The pair (X, d) is then called a metric space.

Definition 2.1.6 ([102]). A sequence (xn) in a metric space X = (X, d) is said to be

Cauchy if, for every ϵ > 0, there exists N ∈ N (dependent on ϵ) such that d(xm, xn) < ϵ

for every m,n > N . The space X is complete if every Cauchy sequence in X converges

in X .

We are now ready to define Hilbert spaces and the associated concept of inner

product spaces.

Definition 2.1.7 ([102]). Let X be a vector space, and let x, y, z ∈ X and α be a scalar.

An inner product ⟨·, ·⟩ onX is a function onX×X which assigns to each pair of vectors

x, y ∈ X a scalar, and satisfies

(i) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩,

(ii) ⟨αx, y⟩ = α⟨x, y⟩,

8



(iii) ⟨x, y⟩ = ⟨y, x⟩, and

(iv) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0,

where g denotes the complex conjugate of g. An inner product onX induces a norm onX

defined by ∥x∥ =
√

⟨x, x⟩ and a metric such that d(x, y) = ∥x−y∥ =
√

⟨x− y, x− y⟩.

An inner product space (sometimes called a pre-Hilbert space) is a vector space equipped

with an inner product. A Hilbert space is a complete inner product space with respect

to the metric induced by the inner product.

We have used the notation ∥ · ∥ in the above definition; this refers to a norm, which

we shall define subsequently.

Definition 2.1.8 ([102]). A norm on a vector space X is a real-valued function, denoted

by ∥ · ∥, such that for any x, y ∈ X and scalar α, one has

(i) ∥x∥ ≥ 0,

(ii) ∥x∥ = 0 if and only if x = 0,

(iii) ∥αx∥ = |α|∥x∥, and

(iv) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

The metric d on X defined by a norm is given by d(x, y) = ∥x− y∥ and is called the

metric induced by the norm. A normed space (X, ∥ · ∥) is a vector space equipped with

a norm.

Much like the case of inner product spaces, a complete normed space is also given a

unique name and is known as a Banach space.

Equipped with this knowledge, we are now ready to venture forth into the theories in

harmonic analysis and fractional calculus that serve as the backbone of this dissertation.

2.2 The Fourier Transform

A formalism of the Fourier transform is in order. We start with the space L1(R) of

absolutely integrable functions and work our way towards other relevant function spaces.
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Definition 2.2.1 (Fourier transform [67]). Let f ∈ L1(R). Then, the Fourier transform

of f is given by

f̂(ξ) =

∫ ∞

−∞
f(x)e−ixξ dx, ξ ∈ R. (2.1)

We denote the Fourier transform operator by F , so that (F f)(ξ) = f̂(ξ).

We remark that we chose this expression of the Fourier transform for the sake of

convenience; other variations of this transform and their respective explanations can

be found in [67]. We now provide a property of the Fourier transform in L1(R) whose

proof we will omit as it involves techniques and theorems in real analysis that do not fit

in this thesis; the interested reader can refer to [182].

Proposition 2.2.1 ([182]). If f ∈ L1(R), then f̂ is continuous and bounded.

What naturally follows in this discussion is then the Fourier inversion theorem

(sometimes called the inverse Fourier transform), whose proof can be found in [164, 182].

Theorem 2.2.1 (Fourier inversion [67]). If f, f̂ ∈ L1(R), then

f(x) =
1

2π

∫ ∞

−∞
f̂(ξ)eixξ dξ, x ∈ R (2.2)

almost everywhere.

Before proceeding, we first introduce Fubini’s theorem [172], which will be used in

subsequent proofs both within and beyond this chapter.

Theorem 2.2.2 (Fubini [172]). Let −∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞, and

let f be a measurable function defined on [a, b]× [c, d]. Then,

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy =

∫ b

a

∫ d

c

f(x, y) d(x, y)

if at least one of the integrals is absolutely convergent. In particular,

∫ b

a

∫ x

a

f(x, y) dy dx =

∫ b

a

∫ b

y

f(x, y) dx dy

if at least one of them is absolutely convergent.
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In our journey to extend the Fourier transform to the space L2(R), it is a must that

we speak of the Schwartz space S(R) ⊂ L2(R). To start, we note that if a function f is

such that its n-th derivative, f (n)(x) is O(x−m) as x→ ±∞ for m,n ∈ Z with m ≥ 1,

n ≥ 0, then the equality (2.2) holds for all x ∈ R [181]. This is precisely the Schwartz

space S(R), and f is said to be rapidly decreasing at infinity.

Now, equip S(R) with the Hermitian inner product given by

⟨f, g⟩ =
∫ ∞

−∞
f(x)g(x) dx, f, g ∈ L2(R).

Then, 〈
f̂ , ĝ
〉
=

∫ ∞

−∞
f̂(ξ)ĝ(ξ) dξ =

∫ ∞

−∞
f̂(ξ)

∫ ∞

−∞
g(x)e−ixξ dx dξ. (2.3)

We give a lemma that is essential to continue the above computation.

Lemma 2.2.3. Let f : R → C. Then,

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
f(x) dx.

Proof. Let Re[f(x)] and Im[f(x)] denote the real and imaginary parts of f(x), respec-

tively. Observe that

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
Re[f(x)] + i Im[f(x)] dx

=

∫ ∞

−∞
Re[f(x)] dx+ i

∫ ∞

−∞
Im[f(x)] dx

=

∫ ∞

−∞
Re[f(x)] dx− i

∫ ∞

−∞
Im[f(x)] dx

=

∫ ∞

−∞
Re[f(x)]− i Im[f(x)] dx

=

∫ ∞

−∞
f(x) dx.

Hence, (2.3) becomes

〈
f̂ , ĝ
〉
=

∫ ∞

−∞
f̂(ξ)

∫ ∞

−∞
g(x)e−ixξ dx dξ =

∫ ∞

−∞
f̂(ξ)

∫ ∞

−∞
g(x)eixξ dx dξ,
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which gives

〈
f̂ , ĝ
〉
=

∫ ∞

−∞

∫ ∞

−∞
f̂(ξ)eixξ dξ g(x) dx = 2π

∫ ∞

−∞
f(x)g(x) dx = 2π⟨f, g⟩.

by Theorem 2.2.1 and Fubini’s theorem. So, (2π)−1/2F : S(R) → S(R) forms an

isometry. Since S(R) is dense in L2(R) [68], we can extend F to L2(R). Consequently,

for f ∈ L2(R), we define its Fourier transform by a limiting process, that is,

f̂(ξ) = lim
R→∞

∫ R

−R
f(x)e−ixξ dx

for almost every x ∈ R. The almost everywhere convergence of the limit is due to

Carleson’s theorem (or rather, its integral analogue) [35]. As a consequence of this

extension of the Fourier transform, its properties that take place in S(R) can similarly

be generalized to the space L2(R).

Remark. Note that an isometry is a mapping T : X → X ′ between two metric spaces

X = (X, d) and X ′ = (X ′, d′) such that d′(Tx, Ty) = d(x, y) for all x, y ∈ X . An

isometry is useful as it is a distance-preserving transformation.

It shall be meaningful to delve into a shallow introduction of the discrete Fourier

transform (DFT), whose strength lies in the analysis of discrete objects, such as sequences

and datasets with distinct values, wherein the (continuous) Fourier transform is rendered

inapplicable. To meet our needs in the sequel, we define f : {0, 1, . . . , N − 1} → C

and denote {zn}N−1
n=0 = {z0, z1, . . . , zN−1} := {f(0), f(1), . . . , f(N − 1)}.

Definition 2.2.2 (Discrete Fourier transform [22]). Let (zn) be a sequence ofN complex

numbers. The discrete Fourier transform of (zn) is given by F [(zn)] = (xk), where

xk =
N−1∑
n=0

zne
−2πink/N =

N−1∑
n=0

zn

[
cos

(
2πnk

N

)
− i sin

(
2πnk

N

)]
,

for k = 0, 1, . . . , N = 1.

Recent papers took on the task of studying the application of integral operators to

complex analytic functions and a famous inequality surrounding it. The first of such
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articles is perhaps the one written by Kayumov et al. [93] involving the Cesáro operators.

Further discussions around the Bohr phenomenon of integral operators subsequently

arose, such as the analysis done in [107] for the β-Cesáro operator with β > 0, the

Bernardi operator, the Libera operator and the Alexander operator. This prompted our

interest in an investigation of the Bohr inequality of the Fourier transform when applied

to analytic functions, and its corresponding Bohr radius.

Recall that a function f defined on C is analytic at a point if it is differentiable in a

neighborhood of that point, and that it is analytic in a domain D ⊂ C if it is analytic at

every point in that domain [10]. Our main consideration lies in the family H of functions

defined on D := {z ∈ C : |z| < 1} that are analytic. Notably, any f ∈ H can be written

as [180]

f(z) =
∞∑
n=0

anz
n, z ∈ D,

where an ∈ C.

Our analysis on the Bohr inequality of the Fourier Transform (namely, the DFT) of

analytic functions yielded the following result, whose proof can be found in Appendix A.

Theorem 2.2.4. Let B = {f ∈ H : |f(z)| ≤ 1}. Then for any f(z) =
∑∞

n=0 anz
n ∈ B,

(i) Ff (r) =
∞∑
n=0

(
n∑
k=0

∣∣∣ake− 2πink
n+1

∣∣∣)rn ≤ 1

1− r
whenever r ≤ 1/3, and

(ii) Ff (r) ≤
1

1− r

√
1

1− r2
,

where r = |z| and Ff (r) denotes the DFT of f with respect to the variable r. These

inequalities are sharp.

2.3 The Wavelet Transform

In what follows we will present only the one-dimensional argument, as our work does

not involve higher dimensions; however, most of the results can be extended to the

multi-dimensional case, albeit with different notations. In a textbook-like fashion, we

start the section with a definition of the CWT.

13



Definition 2.3.1 (Continuous wavelet transform [50]). Let f ∈ L2(R), and let a, b ∈ R

be such that a > 0. The continuous wavelet transform of f is given by

(W f)(a, b) = a−1/2

∫ ∞

−∞
f(t)ψ

(
t− b

a

)
dt = ⟨f, ψa,b⟩, (2.4)

where g(x) denotes the complex conjugate of g and ψa,b(t) = a−1/2ψ
(
t−b
a

)
, which is a

continuous function with respect to both the time and frequency domains.

In the preceding equation, the function ψ(t), usually belonging to the space L1(R)∩

L2(R), is called the mother wavelet and satisfies the admissibility condition,

Cψ =

∫ ∞

0

∣∣∣ψ̂(ξ)∣∣∣2
ξ

dξ <∞, (2.5)

which implies that wavelets have zero mean, that is,
∫∞
−∞ ψ(t) dt = 0. To see this, note

that since ψ ∈ L1(R), it follows by Proposition 2.2.1 that ψ̂ is continuous. Thus for

(2.5) to hold, necessarily ψ̂(0) =
∫∞
−∞ ψ(t) dt = 0. The converse is almost true. We

need only to require that ψ additionally satisfies
∫∞
−∞ (1 + |t|)|ψ(t)| dt <∞ [50, 124].

We now reveal a theorem for recovering f from its wavelet transform and alongside

it, the importance of the admissibility condition (2.5).

Theorem 2.3.1 ([50, 124]). Let ψ ∈ L1(R) ∩ L2(R) satisfy (2.5). Then for any f ∈

L2(R),

f(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
(W f)(a, b)ψa,b(t) db

da

a2
. (2.6)

It is clear why we require the wavelets to fulfill the admissibility condition: the recon-

struction formula in Theorem 2.3.1 would not hold had Cψ been infinite!

2.4 Multiresolution Analysis

We venture forth into another colossal contribution of wavelet theory – MRA1 developed

by Mallat [125] and Meyer [129]. We start with a definition.

1The notion of MRA has many names; typically, any combination of the words ‘multiresolution’ or
‘multiscale’, and ‘analysis’ or ‘appproximation’ refers to an MRA.

14



Definition 2.4.1 (Multiresolution analysis [129]). A sequence (Vj)j∈Z of closed sub-

spaces in L2(R) is a multiresolution analysis if it satisfies

1. Vj ⊆ Vj+1 for all j ∈ Z

2.
⋃
j∈Z

Vj = L2(R)

3.
⋂
j∈Z

Vj = {0}

4. f(·) ∈ Vj ⇐⇒ f(2·) ∈ Vj+1 for all j ∈ Z

5. f(·) ∈ V0 ⇐⇒ f(· − k) ∈ V0 for all k ∈ Z

6. there exists ϕ ∈ V0 (called the scaling function) such that {ϕ(· − k) : k ∈ Z}

forms an orthonormal basis of V0.

Consequently, due to Conditions 4 and 6, the function ϕj,k := 2j/2ϕ(2jt− k) span each

of the Vj . We also note that the Vj are simply V0 scaled by a factor of 2j . This scaling of

the Vj’s, alongside Condition 5, reveal an interesting and useful characteristic of MRA

– translation invariance of the spaces, that is, f ∈ Vj =⇒ f(· − 2−jk) ∈ Vj for all

k ∈ Z. The keen reader might have observed that there is no mention of wavelets in

the definition of a MRA. While this is indeed true, wavelets do play a big role in the

construction of a MRA, serving as a complementary component to the scaling functions.

We claim that, due to the nature of the MRA, we are able to expand functions

f ∈ L2(R) in terms of wavelet bases, that is,

Pj+1(f) = Pj(f) +
∞∑

k=−∞

⟨f, ψj,k⟩ψj,k, (2.7)

where Pj(f) denotes the orthogonal projection of f onto Vj and ψj,k := 2j/2ψ(2jt− k).

To show this, we define the wavelet spaces Wj that are orthogonal complements to the

Vj’s in Vj+1, so that

Vj+1 = Vj ⊕Wj
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and that Wi ⊥ Wj for i ̸= j. Note that equation (2.7) is equivalent to saying that

given j, the collection of translated and dilated wavelets, {ψj,k : k ∈ Z} constitutes an

orthonormal basis for Wj .

We now attempt to extend this result, so that (2.7) can be written in a form that does

not rely on the projection onto Vj; to be precise, we wish to be able to express a function

f ∈ L2(R) in terms of purely wavelet bases. We continue from the definition of the

spaces Wj . First, recall that V−∞ = {0} by Properties 1 and 3 of Definition 2.4.1. Now,

Vj+1 =

j+1⋃
n=−∞

Vn =

j⊕
n=−∞

Wn

as the Wn’s are closed. Then as j → ∞, Property 3 from Definition 2.4.1 gives

⊕
j∈Z

Wj =
⋃
j∈Z

Vj = L2(R).

This allows us to rewrite (2.7) as

PJ+1(f) = PJ(f) +
∞∑

k=−∞

⟨f, ψJ,k⟩ψJ,k

= PJ−1(f) +
∞∑

k=−∞

⟨f, ψJ−1,k⟩ψJ−1,k +
∞∑

k=−∞

⟨f, ψJ,k⟩ψJ,k

= PJ−2(f) +
∞∑

k=−∞

⟨f, ψJ−2,k⟩ψJ−2,k +
∞∑

k=−∞

⟨f, ψJ−1,k⟩ψJ−1,k

+
∞∑

k=−∞

⟨f, ψJ,k⟩ψJ,k

= PJ−2(f) +
J∑

j=J−2

∞∑
k=−∞

⟨f, ψj,k⟩ψj,k

...

=
J∑

j=−∞

∞∑
k=−∞

⟨f, ψj,k⟩ψj,k, (2.8)

or, in more generality,

f =
∞∑

j=−∞

∞∑
k=−∞

⟨f, ψj,k⟩ψj,k. (2.9)
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We remark that projecting f onto Vj with respect to the scaling functions is also a

useful technique (and so too is the combination of the two); we cast the spotlight onto the

projection relative to the wavelet bases as, contextually, this expansion of a function f

in orthonormal wavelet bases serves more importance to us. We will, however, give the

expression of the orthogonal projection of f onto Vj in terms of the scaling functions:

Pj(f) =
∞∑

k=−∞

⟨f, ϕj,k⟩ϕj,k.

2.5 The Integrals and Derivatives of Fractional Calculus

It is perhaps easier to approach fractional calculus by giving the reader a geometric

intuition of fractional derivatives and thus, we shall do so. It will be important to mention

before proceeding any further that we shall discuss only those theories in fractional

calculus which will be entailed in future chapters2.

2.5.1 Half Derivatives and a Primer for Fractional Order Calculus

Consider the function f(x) = x2 and so, Df(x) = 2x, where D represents the standard

differential operator d/dx. We pose the question: what is D1/2f and what does it

represent? Intuition tells us that the half derivative should be of the form Cx3/2 with

C ∈ R. In addition, for this fractional order differential operator to obey the standard

result of the power rule for monomials,

Dnxm =
m!

(m− n)!
xm−n, (2.10)

the coefficient C should consist of some factorial term. This is, in fact, true and we can

actually modify (2.10) slightly to give us an expression for the α-th order derivative of a

monomial xm (the proof of this will come later):

Dαxm =
Γ(m+ 1)

Γ(m+ 1− α)
xm−α, (2.11)

2For the reader who is interested in a more textbook-like approach, as well as a more encyclopedic
account on the rudiments of fractional calculus, the book [98] is much recommended.
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where Γ is the Euler gamma function given by

Γ(α) =

∫ ∞

0

xα−1e−x dx. (2.12)

We shall stray from our discussion of fractional derivatives briefly to discuss some

useful properties of this gamma function Γ that will prove crucial to our work in subse-

quent parts of this thesis. The first of such properties is in order.

Proposition 2.5.1. Let α > 0. Then, Γ(α + 1) = αΓ(α).

Proof. This can be seen by a straightforward application of integration by parts:

Γ(α + 1) =

∫ ∞

0

xαe−x dx

= −xαe−x
∣∣∣∣∞
0

+

∫ ∞

0

αxα−1e−x dx

= lim
x→∞

−xαe−x − 0 + α

∫ ∞

0

xα−1e−x dx

= αΓ(α).

That limx→∞−xαe−x = 0 follows from L’Hôpital’s Rule.

We derive the next property by mathematical induction. Set the base case to be

Γ(1) = 0!; this can be verified easily:

Γ(1) =

∫ ∞

0

x1−1e−x dx =

∫ ∞

0

e−x dx = −e−x
∣∣∣∣∞
0

= 1 = 0!.

Now, assume that Γ(n) = (n− 1)! for n ∈ N and observe that by Proposition 2.5.1,

Γ(n+ 1) = nΓ(n) = n(n− 1)! = n!.

This proves the following proposition.

Proposition 2.5.2. Let n ∈ N. Then, Γ(n) = (n− 1)!.

We give the last two formulas without proof; they can both be found in [172].
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Proposition 2.5.3 ([172]). The functional equation

Γ(α)Γ(1− α) =
π

sin (πα)
, 0 < α < 1

holds. In particular,

Γ

(
1

2

)
=

√
π.

Proposition 2.5.4 ([172]). Let z ∈ C with z ̸= 0, and let α > 0 be such that 0 < α < 1

when Re(z) = 0 and that the principal value of zα is chosen such that zα is positive for

z > 0. Then, ∫ ∞

0

xα−1e−zx dx =
Γ(α)

zα
.

Thus to answer the first half of our question at the start of this subsection, we have

D1/2f(x) =
Γ(3)

Γ(5/2)
x3/2 =

2!

(3/2)(1/2)Γ(1/2)
x3/2 =

8

3
√
π
x3/2.

Unfortunately, the notion of half derivatives have yet to have a definitive mathematical

interpretation established; it does, however, have a significant geometric meaning. To

see this, we shall consider the second derivative of f , f ′′(x) = 2 and compute

D3/2f(x) =
Γ(3)

Γ(3/2)
x1/2 =

2 · 2!√
π
x1/2 =

4√
π
x1/2 = DD1/2f(x).

We shall defer the exploration of the interesting relation D3/2f = DD1/2f as it will

become apparent when we expose ourselves to the formal definition of this fractional

derivative. For now, we illustrate the derivatives of f(x) = x2 to give a clearer descrip-

tion on half derivatives.

One could deduce, from Figure 2.1 that the derivatives D1/2f and D3/2f behave

like “intermediary forms” as f → f ′ and f ′ → f ′′, respectively. Indeed, such is true

for fractional order derivatives: given m,n ∈ N with m < n and a function f , the

fractional derivatives Dαf , m < α < n, show the change as the function goes from its

m-th derivative to its n-th derivative.
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Figure 2.1: Derivatives of f(x) = x2 of order α = 0, 1/2, 1, 3/2, 2

The discussion on fractional calculus hitherto had been informal in nature, so as

to present a more intuitive overview. Hereon, we shall transition to more technical

descriptions of fractional integrals and derivatives as such is necessary for our work

henceforth. In this process, a prominent notoriety of fractional calculus will come

to surface: the lack of a universal definition for integrals and derivatives. Since the

fractional derivatives of our interest are defined based on fractional integrals, we shall

first examine the latter.

2.5.2 The Riemann-Liouville Fractional Integral and Derivative

The historical genesis of the countless work which led to what is called the Riemann-

Liouville fractional integral is Cauchy’s integral formula, first studied in a paper by Sonin

[161, 179]. However, to delve into this development of the fractional integral formula

would mean to indulge ourselves with many technicalities from complex analysis that

will not prove relevant beyond this point, unnecessarily lengthening this thesis. Thus,

we will present naught but the product of this process3.

Definition 2.5.1 (Riemann-Liouville fractional integral [98]). Let −∞ ≤ a < b ≤ ∞

and α > 0. The left- and right-sided Riemann-Liouville fractional integrals of order α

3The curious reader is directed to [161] for a chronological discussion on the development of fractional
calculus.
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are given by (
Iαa+f

)
(t) =

1

Γ(α)

∫ t

a

(t− x)α−1f(x) dx, t > a

and (
Iαb−f

)
(t) =

1

Γ(α)

∫ b

t

(x− t)α−1f(x) dx, t < b,

respectively.

Remark. While we will consider only α > 0, the definitions of fractional integrals and

derivatives given herein can be generalized to any α ∈ C with Re[α] > 0. It is also

important to mention that there is no consensus for the notations of fractional integral

and differential operators – it simply depends on the author’s preference. For instance,

another widely used notation for the Riemann-Liouville fractional integral is Jα (or

some variation of it).

In most practical situations, only the left-sided Riemann-Liouville fractional inte-

gral is of interest; this is also true here. Hence, we shall limit whatever discussions

of fractional integrals and derivatives to only the left-sided operator, with the above

definition serving as a reminder that there also exists a right-sided formula for each of

these definitions. For our cause, we are primarily interested in the case where a = 0

and b = ∞, so that Iαa+f is defined on [0,∞). For this particular case, the following

holds [98].

Proposition 2.5.5 ([98]). Let h ∈ R, and denote by τh the translation operator such

that (τhf)(t) = f(t− h). For α > 0,

τhI
α
0+f = Iαh+τhf.

What naturally follows in our current discussion is the Riemann-Liouville fractional

derivative. As previously mentioned, its definition is based upon that of the fractional

integral, as we shall now see.

Definition 2.5.2 (Riemann-Liouville fractional derivative [98]). Let −∞ ≤ a < b ≤ ∞

and α > 0. The left-sided Riemann-Liouville fractional derivative of order α is defined,
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for t > a, as

(
Dα
a+f
)
(t) =

(
d

dt

)n(
In−αa+ f

)
(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− x)n−α−1f(x) dx,

where

n =


[α] + 1, α /∈ N

α, α ∈ N
, (2.13)

and [α] denotes the integral part of α.

Similarly, our attention is focused on when 0 < t < ∞. Hereafter, we will denote by

f (n) the classical integer order derivative to avoid confusion. We shall now carry out

the promise we made earlier to prove the equation (2.11).

Proof of equation (2.11). Consider Definition 2.5.2 with f(x) = xm and a = 0. Then,

(
Dα

0+x
m
)
(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− x)n−α−1xm dx

=
1

Γ(n− α)

(
d

dt

)n ∫ t

0

tn−α−1
(
1− x

t

)n−α−1

tm
(x
t

)m
dx

=
1

Γ(n− α)

(
d

dt

)n
tm+n−α−1

∫ t

0

(
1− x

t

)n−α−1(x
t

)m
dx

It follows by the substitution u = x/t that dx = t du and so,

(
Dα

0+x
m
)
(t) =

1

Γ(n− α)

(
d

dt

)n
tm+n−α−1

∫ 1

0

(1− u)n−α−1umt du

=
1

Γ(n− α)

(
d

dt

)n
tm+n−α

∫ 1

0

(1− u)n−α−1um du.

Now, the beta function B given by

B(α, β) =

∫ 1

0

xα−1(1− x)β−1 dx (2.14)

has the popular identity [17]

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.
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Thus,

(
Dα

0+x
m
)
(t) =

1

Γ(n− α)

(
d

dt

)n
tm+n−αB(m+ 1, n− α)

=
1

Γ(n− α)

Γ(m+ 1)Γ(n− α)

Γ(m+ 1 + n− α)

(
d

dt

)n
tm+n−α

=
Γ(m+ 1)

Γ(m+ 1 + n− α)

(
d

dt

)n
tm+n−α.

Observe that

(
d

dt

)n
tm+n−α = (m+ n− α)(m+ n− α− 1) · · · (m− α + 1)tm−α

=
Γ(m+ n− α + 1)

Γ(m− α + 1)
tm−α,

and hence,

(
Dα

0+x
m
)
(t) =

Γ(m+ 1)

Γ(m+ 1 + n− α)

Γ(m+ n− α + 1)

Γ(m− α + 1)
tm−α

=
Γ(m+ 1)

Γ(m− α + 1)
tm−α.

2.5.3 Caputo Fractional Derivative

We follow the standard approach endorsed by fractional calculus textbooks, that is,

following the introduction of the Riemann-Liouville operators, we acquaint ourselves

with the Caputo fractional derivative4.

Definition 2.5.3 (Caputo fractional derivative [98]). Let −∞ ≤ a < b ≤ ∞ and α > 0.

The left-sided Caputo fractional derivative is defined in terms of the Riemann-Liouville

fractional derivative by

(
CDα

a+f
)
(t) =

(
Dα
a+

[
f(x)−

n−1∑
k=0

f (k)(a)

k!
(x− a)k

])
(t),

where n is given by (2.13).

4Again, only the left-sided derivative will be given here.
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While this definition makes the Caputo fractional derivative look intimidating,

we assure the reader that in most practical cases, we instead adopt one that is tamer;

the presentation of the above definition is merely for the sake of completeneness and

formalism. To give this more elegant description of the Caputo fractional derivative,

however, we require the following function spaces.

Definition 2.5.4 ([98]). Let n ∈ N∪ {0} and −∞ ≤ a < b ≤ ∞, and let C[a, b] be the

space of continuous functions on [a, b]. We denote by Cn[a, b] the space of functions

that are n-times continuously differentiable on [a, b]. Mathematically,

Cn[a, b] =
{
f : [a, b] → C | f ′, f ′′, . . . , f (n−1) ∈ C[a, b]

}
.

In particular, C1[a, b] = C[a, b].

Definition 2.5.5 ([98]). Let n ∈ N and −∞ < a < b < ∞, and let AC[a, b] be the

space of functions that are absolutely continuous on [a, b]. We denote by ACn[a, b] the

space consisting of functions with continuous derivatives up to order n − 1 on [a, b]

such that f (n−1) ∈ AC[a, b], that is,

ACn[a, b] =
{
f : [a, b] → C | f (n−1) ∈ AC[a, b]

}
.

In particular, AC1[a, b] = AC[a, b].

We now give the “nicer” expression for CDα
a+ [98]; this is the main representation

that will be adopted in the sequel.

Theorem 2.5.1 ([98]). Let −∞ ≤ a < b ≤ ∞ and α > 0, and let n be as in (2.13). If

f ∈ ACn[a, b], then CDα
a+f exists almost everywhere on [a, b] and has the representation

(
CDα

a+f
)
(t) =


1

Γ(n−α)

∫ t
a
(t− x)n−α−1f (n)(x) dx, α /∈ N,

f (n)(t), α ∈ N.

If, instead, f ∈ Cn[a, b], then CDα
a+f ∈ C[a, b].
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