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KESAN RAWATAN AZITHROMYCIN DAN DOXYCYCLINE
SECARA INDIVIDU DAN KOMBINASI PADA TITISAN SEL MALIGNAN

GLIOMA uU87

ABSTRAK

Glioblastoma (GBM) adalah tumor otak malignan primer yang paling prevalen
dikalangan orang dewasa. Rawatan konvensional, termasuk kombinasi kemoterapi
temozolomide (TMZ) dan radioterapi, hanya memberikan kelangsungan hidup yang
minimum. Rintangan terhadap terapi-terapi ini bukan sahaja kerap berlaku, malah
dijangka. Berdasarkan bukti yang kukuh bahawa azithromycin (AZI) dan doxycycline
(DOXY) menyebabkan sitotoksisiti yang berkaitan dengan apoptosis dalam pelbagai
model kanser in vitro dan in vivo, ubat-ubatan ini telah dipilih untuk kajian ini. Potensi
antikanser mereka, sama ada secara individu dan kombinasi, dinilai menggunakan
titisan sel malignan glioma U87, khususnya GBM. Kajian in vitro ini mengukur daya
hidup sel, bilangan koloni, interaksi sitotoksik, taburan kitaran sel, morfologi nukleus,
pecahan kematian sel, aras sitokrom C, dan ekspresi gen yang berhubung dengan
sitotoksisiti dan apoptosis. Ujian 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide menunjukkan bahawa keberkesanan AZI (ICso: 92.0 pg/ml) lebih tinggi
berbanding TMZ (ICso: 151.0 pg/ml) dan DOXY (I1Cs0:147.0 pg/ml) dalam sel U87.
Berbanding dengan rawatan tunggal, AZI+DOXY (92.0+147.0 pg/ml) tidak
menunjukkan peningkatan sitotoksisiti pada pelbagai kepekatan dan tempoh masa, dan
bukti menunjukkan interaksi antagonistik. Berdasarkan ujian kelangsungan hidup sel,
AZI menunjukkan kesan antiproliferatif yang signifikan secara statistik berbanding
dengan kawalan negatif (NC) dan DOXY, tetapi hanya dengan NC di bawah TMZ.

Analisis sitometri aliran menggunakan pelabelan propidium iodida (P1) menunjukkan
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bahawa AZI tidak mengubah kitaran sel, manakala TMZ dan DOXY atau AZI+DOXY
masing-masing menghentikan sel dalam fasa S/G2/M dan GO0/G1. Pewarnaan Hoechst
33342 menunjukkan ciri-ciri apoptosis dalam nukleus sel di semua kumpulan rawatan,
namun luas nuklear yang lebih besar diperhatikan berbanding dengan NC.
Selanjutnya, analisis sitometri aliran menggunakan pelabelan Annexin V/PI
menunjukkan bahawa apoptosis merupakan bentuk utama kematian sel yang diinduksi
oleh TMZ dan AZI. Sebaliknya, DOXY dan AZI+DOXY merangsang kedua-dua
apoptosis dan nekrosis. Analisis spektrofotometrik aras protein sitokrom C
menunjukkan peningkatan dalam semua kumpulan rawatan. Pada tahap transkripsi,
semua rawatan meningkatkan aras ekspresi mMRNA TP53 dan NFxf1, dengan AZI+
DOXY secara signifikan merangsang kedua-dua gen. Aras PRKDC meningkat dengan
ketara dengan TMZ, DOXY, dan AZI+DOXY. Sebaliknya, aras yH2AX adalah lebih
tinggi dalam kumpulan AZI berbanding dengan semua rawatan yang lain. Aras
ekspresi MRNA DRP1 dan MFN2 meningkat dalam semua kumpulan rawatan, dengan
AZ1+DOXY vyang secara ketara menginduksi MFN2. Selain itu, hanya AZI yang
meningkatkan kedua-dua aras BAX dan BAK, manakala BCL2 meningkat secara
signifikan dalam kumpulan AZI dan AZI+DOXY, dan AZI+DOXY menunjukkan aras
BCLXL terendah di antara kumpulan rawatan. Tambahan lagi, AZI meningkatkan
nisbah BAX/BCL2, BAK/BCL2, dan BAX/BCLXL, manakala AZI+DOXY
menunjukkan nisbah tertinggi bagi BAK/BCLXL. Kesimpulannya, AZI menunjukkan
aktiviti antikanser dengan menghalang proliferasi sel, sebahagiannya melalui induksi
apoptosis. Sebaliknya, DOXY dan AZI+DOXY menginduksi pemberhentian Kitaran
sel dan kedua-dua apoptosis dan nekrosis sebagai sebahagian daripada mekanisma
antikanser mereka. Namun, rawatan dengan ubat-ubatan eksperimen secara individu

memberikan kesan antikanser yang optimum berbanding kombinasi.
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EFFECTS OF INDIVIDUAL AND COMBINATION TREATMENT OF
AZITHROMYCIN AND DOXYCYCLINE ON U87 MALIGNANT GLIOMA

CELL LINE

ABSTRACT

Glioblastoma (GBM) is the most prevalent malignant primary brain tumour in
adults. Conventional treatment, which includes concurrent temozolomide (TMZ)
chemotherapy and radiotherapy, provides only marginal survival benefits. Resistance
to these therapies is both common and anticipated. Given the compelling evidence that
azithromycin (AZI) and doxycycline (DOXY) induce apoptosis-related cytotoxicity in
various cancer models in vitro and in vivo, these drugs were chosen for the present
study. Their anticancer potential, both alone and in combination, was evaluated using
the U87 malignant glioma cell line, specifically GBM. This in vitro study assessed cell
viability, colony numbers, cytotoxic interactions, cell cycle distributions, nuclear
morphology, cell death fractions, cytochrome C levels, and gene expression related to
cytotoxicity and apoptosis. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide assay showed that AZI (ICso: 92.0 pug/ml) exhibited greater potency compared
to TMZ (ICso: 151.0 pg/ml) and DOXY (ICs0:147.0 pg/ml) in U87 cells. Compared to
single-drug treatments, AZI+DOXY (92.0+147.0 pg/ml) did not show increased
cytotoxicity across various concentrations and time points, and evidence indicated an
antagonistic interaction. Based on the cell survival assay, AZI exhibited a statistically
significant antiproliferative effect compared to the negative control (NC) and DOXY,
but only to NC under TMZ. Flow cytometric analysis using propidium iodide (PI)
labelling revealed that AZI did not interfere with the cell cycle, whereas TMZ and

DOXY or AZI+DOXY arrested cells in the S/G2/M and G0/G1 phases, respectively.
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Hoechst 33342 staining revealed apoptotic features in cell nuclei across all treatment
groups; however, a larger nuclear area was observed than that of NC. Furthermore,
flow cytometric analysis using Annexin V/PI labelling indicated that apoptosis was
the predominant form of cell death induced by TMZ and AZI. In contrast, DOXY and
AZ1+DOXY induced both apoptosis and necrosis. Spectrophotometric analysis of
cytochrome C protein levels exhibited an increase across all treatment groups. At the
transcriptional level, all treatments enhanced TP53 and NFxfl mMRNA expression
levels, with AZI+DOXY significantly inducing both genes. PRKDC levels markedly
increased with TMZ, DOXY, and AZI+DOXY. In contrast, yH2AX levels were higher
in the AZI group than inany of the other treatments. DRP1 and MFN2 mRNA
expression levels were elevated across all treatment groups, with AZI+DOXY
substantially induced MFN2. Moreover, only AZI enhanced both BAX and BAK levels,
whilst BCL2 significantly increased in the AZIl and AZI+DOXY groups, and AZI+
DOXY showed the lowest BCLXL levels among the treatment groups. Additionally,
AZI increased the ratios of BAX/BCL2, BAK/BCL2, and BAX/BCLXL, whereas AZI+
DOXY exhibited the highest ratio of BAK/BCLXL. In short, AZI shows anticancer
activity by inhibiting cell proliferation, in part through the induction of apoptosis. On
the other hand, DOXY and AZI+DOXY induce cell cycle arrest and both apoptosis
and necrosis as part of their anticancer mechanisms. However, the experimental drugs

appear to yield optimal anticancer effects when given alone rather than concurrently.
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CHAPTER 1

INTRODUCTION

1.1  Background of the study

Cancer is a malignant tumour defined by the unchecked and rapid proliferation
of aberrant cells that have evaded apoptosis (programmed cell death), invaded nearby
tissues, and metastasised to different parts of the body. It can arise in almost any organ
and tissue and, is a growing cause of mortality (occurring between ages 30—70 years)
worldwide (Bray et al., 2021). According to GLOBOCAN estimates, cancer deaths
climbed to 9.9 million in 2020, up from 9.5 in 2018, and there were 19.3 million new
cancer cases in 2020, with a projected 28.4 million in 2040 (Ferlay et al., 2019; Ferlay
et al., 2021; Sung et al., 2021).

Among the 36 human cancers worldwide in 2020, brain and central nervous
system (CNS) cancers accounted for approximately 308,102 (1.6% of all sites) new
cases and 251,329 (2.5% of all sites) new deaths (Sung et al., 2021). In the Malaysian
population from 2012 to 2016, it was recorded as one of the ten most common cancers
among Malays but not Chinese or Indians. The number of cases was 642 (2.9%) in
males and 557 (1.9%) in females (Azizah et al., 2019). The global incidence rate is 3.9
per 100,000 males and 3.0 per 100,000 females, whereas in Malaysia, it is 1.8 per
100,000 males and 1.6 per 100,000 females (Azizah et al., 2019; Sung et al., 2021).

Globally, glioblastoma (GBM) is the most common primary brain tumour in
adults. This type of high-grade glioma (HGG), often referred to as the most malignant
glioma, is extremely lethal, exhibiting a high degree of plasticity, heterogeneity, and
infiltrativeness (Neftel et al., 2019; Yabo et al., 2022). Despite countless clinical trials

and research advancements, it remains refractory to improvements in treatment. Even



with the most promising agents, high failure rates in clinical trials are observed, and
resistance to targeted therapies is mainly attributed to intricate interferences between
signalling pathways and biological processes (Gatto et al., 2023).

Historically, patient survival rates have been poor, with temozolomide (TMZ)-
containing regimens showing the best clinical performance (Guo et al., 2023a). TMZ
was first authorised by the Food and Drug Administration (FDA) in 1999 as a second-
line therapy for GBM. Following favourable results from a phase Il clinical trial
commenced by the European Organisation for Research and Treatment of Cancer and
the National Cancer Institute of Canada in 2005, the FDA and European Medicines
Agency approved TMZ as a first-line treatment for newly diagnosed GBM (Stupp et
al., 2009; Stupp et al., 2005). Other FDA-approved options, including nitrosoureas
(such as lomustine and carmustine wafer implants), bevacizumab, and tumour-treating
fields, may offer survival benefits when used in a combinatorial approach (Narsinh et
al., 2024; Obrador et al., 2024).

Given the suboptimal clinical outcomes, numerous pursuits are underway to
discover and develop drugs with better efficacy and potency as potential alternatives
and adjuvants to current therapies. This includes drug repositioning (also called drug
repurposing), which involves the investigation of existing drugs for new therapeutic
purposes (O'Rawe et al., 2022). Another ongoing effort involves exploring drug
combinations to capitalise on synergistic interactions—increasing therapeutic efficacy
at lower doses and thereby reducing systemic toxicity (Hassan et al., 2022; Yang et
al., 2023b). Notwithstanding, not all patients favourably respond to the same effective
drugs, and even if they do, resistance and relapse remain possible.

Among the attractive candidates under investigation for potential in cancer

therapy are azithromycin (AZI) and doxycycline (DOXY). Both antibacterial drugs



have been therapeutically utilised for over four decades (Bright and Hauske, 1984,
Cunha et al., 1982). On the other hand, compelling evidence underscores the ability of
AZIl and DOXY to effectively interfere with tumour growth and progression (Ghasemi
and Ghasemi, 2022; Hassan et al., 2023b). Their cytotoxic, antiproliferative, and/or
pro-apoptotic effects have been demonstrated in various cancer models, including
breast (Akhunzianov et al., 2023), colon (Alshaman et al., 2022; Qiao et al., 2018),
gastric (Pandian et al., 2020; Zhou et al., 2012), and lung (Alsaadi et al., 2021,
Toriyama et al., 2024). Notably, both AZI and DOXY can eradicate cancer stem cells
(CSCs) and preferentially inhibit cancer cells (Lamb et al., 2015b; Peiris-Pages et al.,
2019).

Armed with the existing knowledge, this study aimed to assess the anticancer
potential of AZI and DOXY, both individually and in combination, using the human
U87 malignant glioma cell line. This cell line is among the most widely used in vitro
models of GBM in drug screening and mechanistic studies (Mousavi et al., 2023;
Wang et al., 2022b; Zhang et al., 2024). U87 cells proliferate rapidly and tend to form
neurosphere-like clusters or colonies, reflecting their highly tumourigenic nature (Diao
et al., 2019). Furthermore, U87 cells are sensitive to TMZ and well-characterised, with
key features of human GBM, including wild-type (wt)-isocitrate dehydrogenase (IDH)
and wt-tumour protein 53 (TP53) (Wang et al., 2017a; Zhang et al., 2024). Overall,
the cell line provides consistent and reproducible results across different laboratories,

crucial for comparative studies and validating the effects of experimental drugs.

1.2 Problem statement

Current FDA-approved therapies for GBM, which primarily involve surgery

followed in sequence by RT with concomitant and adjuvant TMZ, yield only marginal



improvements in survival. Infiltrative growth, tumour heterogeneity, overexpressed
efflux pumps, brain anatomical characteristics, and drug resistance critically limit the
effectiveness of GBM interventions. Ironically, all GBM cells, not exclusively glioma
stem cells (GSCs), exhibit plasticity—undergoing molecular and phenotypic changes
that allow them to resist cytotoxicity and evade apoptotic programmes. Moreover,
enhanced glycolysis, often misconstrued to support cancer cell proliferation, is indeed
insufficient without concurrent mitochondrial metabolism. GSCs display a greater
reliance on oxidative phosphorylation (OXPHOS). Collectively, single-agent therapy
is highly susceptible to resistance, a challenge further compounded by compensatory
mechanisms and stromal components that serve as building blocks for tumour growth,

survival, and progression.

1.3  Rationale of the study

Mitochondrial-targeting drugs represent a promising approach to addressing
the unmet clinical needs of GBM. This is particularly crucial as virtually all patients
eventually relapse and develop resistance to TMZ, resulting in a worsened prognosis
and limited treatment options. AZI and DOXY may effectively inhibit GBM growth
and progression through various action points, including antiproliferative and pro-
apoptotic effects. Notably, both drugs induce cytotoxicity in differentiated tumour
cells and suppress CSC proliferation by triggering mitochondrial damage-mediated
apoptosis and reducing OXPHOS (Lamb et al., 2015b; Xiao et al., 2019). However,
their potential against GBM, whether used alone or in combination, remains largely
unexplored. In consensus, it appears that combinatorial approaches are emerging as
the winning strategies for tackling the intricate interplay of tumour elements. Unlike

single-drug therapies, combination treatments have the potential to enhance potency



and efficacy through synergistic interactions. This modality may also help reduce

systemic toxicity and delay the development of resistance. Given their availability,

affordability, and extensive clinical safety record, making them therapeutic options

would be feasible globally if proven beneficial.

1.4

General objective

To study the anticancer effects of AZI and DOXY alone and in combination

on an in vitro model of human U87 GBM cells.
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1.5

Specific objectives

To determine the cytotoxic and proliferation effects in U87 cells following
AZI, DOXY, and AZI+DOXY treatments.

To evaluate the cell cycle effects in U87 cells following AZI, DOXY, and
AZ1+DOXY treatments.

To determine the apoptosis effects in U87 cells following AZI, DOXY, and
AZ1+DOXY treatments.

To assess the cytotoxic- and apoptosis-associated gene expression effects

in U87 cells following AZI, DOXY, and AZI+DOXY treatments.

Research questions

What are the cytotoxic and proliferation effects of AzZI, DOXY, and

AZ1+DOXY treatments on U87 glioblastoma cells?

How do AZI, DOXY, and AZI+DOXY treatments affect the cell cycle

phases in U87 glioblastoma cells?



iii.  What are the apoptosis-inducing effects of AZIl, DOXY, and AZI+DOXY
treatments on U87 glioblastoma cells?
iv. How do AZI, DOXY, and AZI+DOXY treatments alter the expression of

cytotoxicity- and apoptosis-associated genes in U87 glioblastoma cells?

1.6 Hypotheses

The hypothesis in this study proposes that AZI, DOXY, and their combined
treatment exhibit antiproliferative effects by inducing cell cycle arrest and apoptosis
in GBM cells. Moreover, it suggests that the synergistic impact of combined
AZ1+DOXY treatments is more effective in inhibiting GBM cell growth. Figure 1.1

shows the conceptual framework of the study.
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Figure 1.1 Conceptual framework of the study.



CHAPTER 2

LITERATURE REVIEW

2.1 Brain tumours

Brain tumour is a general term for benign or malignant tumours arising from
brain tissues—collectively referring to primary CNS tumours. In Southeast Asia, the
incidence rates of benign and malignant brain tumours were 6.97 and 3.29 per 100,000
person-years, respectively (Bell et al., 2019). Globally, gliomas and meningiomas are
among the most prevalent types of brain tumours (Salari et al., 2023). In the United
States, for instance, gliomas rank as the most common primary brain tumours in both
children and adults, with GBM accounting for 50.1% of all malignant tumours. GBM
is relatively more common in older adults and less so in children (Ostrom et al., 2022a;
Ostrom et al., 2022b). Gliomas (61.8%) predominantly occur in the supra-tentorium
(frontal, temporal, parietal, and occipital lobes combined), with only a minor fraction
identified in CNS regions other than the brain (Ostrom et al., 2022a). Notably, 52.5%
of GBM had invaded more than one lobe, with the frontal and temporal lobes being
the most frequently affected regions (Guo et al., 2023b).

In Malaysia, a single-centre cross-sectional study showed that the number of
brain tumour cases was lower among children (0 to 10 years old), with only 4.4%
(n=17) from 2013 to 2018 (Othman et al., 2020), whilst 3.5% (n=8) from 2018 to 2021
(Heng et al., 2023). From 2009 to 2019, a total of five brain tumour cases were detected
in the age range of 0 to 14 years, accounting for 8.2% of all incidents (Azman et al.,
2022). In addition, there were 31 cases (14.4%) of brain tumours under the age of 15

from 2011 to 2014 (Dzali et al., 2017). Despite this, the incidence of brain tumours



rises with age, with glioma being the second most common (Heng et al., 2023). Table

2.1 summarises cross-sectional studies on brain tumours in Malaysians.

Table 2.1 Brain tumour prevalence in the Malaysian population

Enrolment Commonness Reference
time Type, % (n)  Age (years), % (n) Gender, % (n)
2018-2021 Meningioma, 51-60, 34.8 (80) Female, 57.4 (Heng et

38.7 (89) (132) al., 2023)
20092019 GBM, 29.5 40-70,55.7 (34) Male, 59.0 (36)  (Azman et
(18) al., 2022)
2013-2018 Meningioma, 51-60, 26.2 (101)  Female, 55.5 (Othman
27.2 (105) (214) et al.,
2020)
2011-2014 Meningioma,  >45, 49.8 (107) Female, 53.9 (Dzali et
32.7 (71) (117) al., 2017)

It is important to note that gliomas in children differ substantially from those
in adults in terms of prognosis (clinically) and pathobiology (molecularly). The most
recent revision, the 5" edition of the WHO classification of the CNS (WHO CNS5),
divides them into four different families: (1) Adult-type diffuse gliomas (the majority
of primary brain tumours in adults is wt-IDH GBM); (2) Paediatric-type diffuse low-
grade gliomas (LGG) (expected to have good prognoses); (3) Paediatric-type diffuse
HGG (expected to behave aggressively); and (4) Circumscribed astrocytic gliomas
(“circumscribed” referring to their more solid growth pattern, as opposed to the
inherently “diffuse” tumours in groups 1, 2, and 3) (Louis et al., 2021). For astrocytic
tumours, LGG are classified as grades 1 and 2, whilst HGG correspond to grades 3
and 4.

Of particular concern, the burden is increasing worldwide, with gliomas and
GBM being the most financially draining (Khanmohammadi et al., 2023). Globally,

from 1990 to 2019, the incidence, deaths, and disability-adjusted life years associated



with brain and CNS cancers climbed noticeably (Fan et al., 2022). Notably, in 2016,
Indonesia, Thailand, and the Philippines recorded the highest incidence and death rates
from primary brain tumours, with Malaysia ranking sixth in both measures. Moreover,
scientific output on brain tumours does not reflect the current reality in Southeast Asia.
Singapore contributes the majority of articles (44.8%), followed by Thailand (28.0%)

and Malaysia (20.6%) (Mondia et al., 2020).

2.2 Glioblastoma

GBM is arapidly growing cancer that relentlessly diffuses throughout the brain
parenchyma and external blood vessel walls, without radiologic or histologic evidence
of a less malignant precursor lesion (Ohgaki and Kleihues, 2013). In times before the
era of integrated histopathology-molecular analysis, a tumour specimen that did not
exhibit the classic histological features of GBM would have been assigned a lower
WHO grade (Wen et al., 2020). At present, tumour entities are designated as “not
otherwise specified” when molecular data are unavailable (Osborn et al., 2022). Note
that the term “glioblastoma multiforme” has been dropped from the WHO CNS5, and
“GBM?” is no longer used in the context of paediatric-type neoplasms (Louis et al.,
2021). However, “glioblastoma multiforme” is still commonly used to refer to wt-IDH
GBM. The term “multiforme” was originally coined to describe the heterogeneous
cellular organisation and histological appearance of the tumour. In this study, “GBM”

refers to wt-IDH GBM, unless otherwise specified.



221 Histopathological features

GBM is classified as a CNS WHO grade 4 tumour. Since CNS tumour grading
differs from other tumour grading systems, WHO CNS5 endorses the use of the term
“CNS WHO grade” for assigning grades and is no longer restricted to histological
grades alone. Furthermore, WHO CNS5 has amended two specific aspects of CNS
tumour grading. It now uses Arabic numerals (instead of Roman numerals), and
neoplasms are graded within types (rather than across different tumour types) (Louis
et al., 2021; Louis et al., 2020).

Histopathologically, GBM exhibits diffusely infiltrative growth, an astroglial
appearance with angulated nuclei and irregular chromatin, and poor differentiation
with brisk mitotic activity. Florid microvascular proliferation and/or necrosis, with or
without pseudopalisading, are frequently observed (see Figure 2.1) (Wen et al., 2020;
Whitfield and Huse, 2022). Notably, microvascular proliferation and/or necrosis are
both sufficient criteria to establish the diagnosis of GBM in adult wt-IDH diffuse and

astrocytic gliomas (Louis et al., 2021; Whitfield and Huse, 2022).
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Figure 2.1 (a) Haematoxylin and eosin-stained GBM tumour sections reveal a cellular, pleomorphic, glial neoplasm with glomeruloid
microvascular proliferation (arrow; 200x magnification). (b) Atypical mitotic figures are prominent (arrow; 400x magnification). Haematoxylin
and eosin-stained sections of another case demonstrate (c) notable nuclear pleomorphism and giant cell features (arrow; 100x magnification),
along with (d) pseudopalisading necrosis (arrow; 200x magnification). Images are from Whitfield and Huse, 2022.
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222 Molecular biomarkers

The 2016 CNS WHO edition was the first to incorporate molecular parameters
into the century-old, microscopy-based diagnostic criteria, classifying GBM as either
wt-IDH or mutant (mut)-IDH (Louis et al., 2016). However, wt-IDH GBM develops
rapidly de novo, without a precursor lesion, whereas mut-IDH GBM typically evolves
from low-grade diffuse or anaplastic astrocytoma (Ohgaki and Kleihues, 2013). In
WHO CNS5, GBM is classified only as “wt-IDH”, and mut-IDH astrocytoma covers
grades 2—4, with no CNS WHO grade 1. The terms mut-IDH “GBM” and “anaplastic
astrocytoma” have been dropped.

WHO CNS?5 specifies several key diagnostic genes (Figure 2.2). In the absence
of IDH mutations, either telomerase reverse transcriptase (TERT) promoter mutations,
the combination of chromosome (Chr) 7 gain and Chr 10 loss, or epidermal growth
factor receptor (EGFR) amplification is considered sufficient molecular evidence of
GBM with similar clinical outcome, even when histologic examination meets only
WHO grade 2 or 3 criteria (i.e., absence of high-grade features such as microvascular
proliferation and/or necrosis (Brat et al., 2018; Tesileanu et al., 2020; Wen et al.,
2020). Other biomarkers include p53 (with rare positive cells) and alpha-thalassemia/
mental retardation syndrome X-linked (retained nuclear expression) (Osborn et al.,

2022).
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2021 WHO classification

Diffuse gliomas
Adult-type
CNS WHO Histologically CNS WHO
grade 4 grades 2—4
wt-IDH Molecularly mut-/DH
GBM Astrocytoma
: Oligodendroglioma
:
1
v
Differential genetic parameters
include:
EGFR, TERT promoter, and Chr
7/10

Figure 2.2 Overview of selected diffuse gliomas and key diagnostic genes.
Adapted from Louis et al., 2021.

Presently, molecular patterns serve not only diagnostic but also prognostic and
predictive functions. Prognostic biomarkers address clinical outcomes regardless of
therapy, whereas predictive ones describe the likelihood of response to a therapeutic
intervention. In an Italian single-centre, retrospective cohort study (n=417), the most
common “druggable” drivers in both newly diagnosed and relapsed GBM were cyclin-
dependent kinase inhibitor 2A (CDKN2A) loss (54.4%), CDKN2B loss (51.8%), EGFR
amplification (40.3%), and phosphatase and tensin homologue (PTEN) loss (43.6%)

and mutation (34.3%) (Padovan et al., 2023). Another Italian retrospective cohort

13



study (n=120) found that relapsed GBM patients with methylated O6-methylguanine-
DNA methyltransferase (MGMT) survived longer than those with unmethylated status
(Bosio et al., 2023).

In a retrospective cohort study of Japanese patients with newly diagnosed
GBM (n=100), unmethylated MGMT (49.0%) and CDKN2A homozygous deletion
(39.0%) were substantially associated with poor prognosis. On the other hand, TERT
mutation (63.0%), PTEN loss (58.0%), TP53 loss (36.0%), and EGFR amplification
(19.0%) were not significant predictors of poor prognosis (Funakoshi et al., 2021). In
a Chinese retrospective cohort study, MGMT methylation predicted longer overall
survival (OS) (n=191), whilst a higher ki-67 index and TP53 alterations were among
the factors linked to shorter OS (n=45) (Guo et al., 2023). In the Indonesian cohort,
Ki-67 expression was markedly higher in wt-IDH than in mut-IDH gliomas (Malueka
et al., 2020).

To the best of our knowledge, prognostic and predictive factors in a cohort of
Malaysian patients with GBM are poorly reported. In a single-centre, cross-sectional
study, EGFR (77.8%) and p53 proteins were highly expressed in Malaysian patients
with GBM (Azman et al., 2022). Notably, the current progress in biomarker discovery
for the prognosis and treatment of GBM is unsatisfactory, largely due to selection bias
in clinical and translational research. To address this matter, liquid biopsy studies, such
as cerebrospinal fluid and blood sampling, could serve as alternatives to post-operative

tumour tissue-based molecular approaches (Pasqualetti et al., 2023).
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2.2.3 Treatments and management

The standard of care for newly diagnosed GBM involves surgery, followed by
RT with concomitant and adjuvant TMZ. The median OS is 14.6 months (18.8, 13.5,
and 9.4 months for patients with complete resection, partial resection, and biopsy
alone, respectively) and the median progression-free survival (PFS) is 6.9 months
(Stupp et al., 2009; Stupp et al., 2005). However, total resection is frequently impeded
by the highly infiltrative nature of GBM cells, and nearly all patients experience
relapse after standard treatment (Lim et al., 2022). When it recurs, the survival period
is often much shorter, and since none of the current therapies are curative, the National
Comprehensive Cancer Network recommends clinical trials as the preferred option for
eligible patients (Nabors et al., 2020). Notably, a systematic review and meta-analysis
delineated that extending adjuvant TMZ beyond the customary 6-cycle regimen to 7-
12 cycles did not improve median OS or PFS in newly diagnosed GBM (Attarian et
al., 2021).

Despite decades of diligence, survival rates for newly diagnosed or relapsed
GBM have barely awe-inspiring, with many single-agent trials yielding disappointing
results (Gatto et al., 2023). Combinatorial approaches have thus far provided only a
marginal survival advantage over the standard Stupp protocol. In a multicentre phase
3 randomised clinical trial involving newly diagnosed WHO grade 4 gliomas, TMZ+
interferon alfa (an immunotherapeutic cytokine) resulted in a slightly longer median
OS than TMZ alone (20.5 vs. 17.7 months). However, the median PFS was 12.0 and
12.8 months, respectively (Guo et al., 2023a). In newly diagnosed GBM with a
methylated MGMT promoter, the median OS was 28.9 months with nivolumab (a
programmed death-1 inhibitor)+RT+TMZ, compared to 32.1 months with placebo+

RT+TMZ (Lim et al., 2022). In addition, a phase 1 trial of chimeric antigen receptor
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T-cell-EGFR variant I11+pembrolizumab demonstrated safety and biological activity
but lacked efficacy, with median OS and PFS of 11.8 and 5.2 months, respectively
(Bagley et al., 2024).

In recurrent GBM, no single treatment regimen provides a marked OS benefit,
with median OS ranging from 3 to 17.6 months across chemotherapy, immunotherapy,
antiangiogenic, and targeted therapies (Fazzari et al., 2022). For example, in a phase
3 randomised clinical trial, patients with relapsed GBM who received either nivolumab
or bevacizumab (an antiangiogenic agent) exhibited equivalent median OS (9.8 vs.
10.0 months) (Reardon et al., 2020). For patients with recurrent or refractory GBM,
metformin+TMZ did not provide a clinical benefit when compared to the control arm
(placebo+TMZ). Median OS was 17.22 vs. 7.69 months (P = 0.473), and median PFS
was 2.30 vs. 2.66 months (P = 0.679) (Yoon et al., 2023). Besides, a phase 1 clinical
trial of dose-escalated oral renin-angiotensin system modulators indicated a 5.3-month
increase in survival (median OS was 19.9 months) for patients who relapsed after
standard treatment (O'Rawe et al., 2022).

Overall, treatment recommendations for both newly diagnosed and recurrent
GBM consider factors such as age, performance status, and genotype (e.g., MGMT
promoter methylation status) (Mazarakis et al., 2024; Tan et al., 2020). Older age,
male sex, and tumour involvement in deep brain structures or functional areas are
associated with a poor prognosis. Conversely, MGMT promoter methylation, maximal
tumour resection, and treatment based on the Stupp protocol are predictors of better
survival. Additionally, the most common clinical manifestations at diagnosis include
intracranial hypertension, a history of epilepsy, motor dysfunction, and aphasia
(acquired language disorders) (Guo et al., 2023b). It is worth noting that an important

aspect limiting the development of more effective therapies for GBM is the slow and
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inefficient clinical trial process (Wen et al., 2020). Many factors contribute to poor
trial accrual, including limited awareness and understanding of clinical trial
opportunities among patients, together with a lack of knowledge and information about

available trials among clinicians (Lee et al., 2019).

2.3  Therapeutic challenges in glioblastoma

2.3.1 Cell cycle dysregulation and apoptosis evasion

Mutations or other alterations in proto-oncogenes and tumour suppressor genes
are frequently the starting point (molecular basis) for cancer, with tumour development
and apoptosis evasion intimately entwined, conferring cell immortality (Emmanuel et
al., 2020). Essentially, cancer is driven by oncogenes (activated and phenotypically
dominant) and tumour suppressor genes (inactivated and phenotypically recessive)
(Nenclares and Harrington, 2020). In normal cellular processes, proto-oncogenes are
key regulatory factors, acting as growth factors, transducers of cellular signals, and
nuclear transcription factors. For example, in mitogen signal transduction, key proto-
oncogenes include cyclin-dependent kinase 4 (CDK4), myelocytomatosis (MYC) (a
transcription factor), B-cell lymphoma 2 (BCL2) (which inhibits apoptosis), and
mouse double minute 2 homologue (MDM2) (which regulates transcription and binds
to the p53 protein, encoded by TP53). The activation of these genes into oncogenes
can occur via point mutations, chromosomal translocations, and gene amplifications
(Emmanuel et al., 2020). Tumour suppressor genes, in contrast, function to inhibit cell
proliferation and survival. They are involved in regulating cell cycle progression and
apoptosis, thereby providing protection against neoplasia (Nenclares and Harrington,

2020).
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For example, the top mutated tumour suppressor genes identified in GSCs
derived from patients include TP53, followed by PTEN, and retinoblastoma 1 (RB1)
(Lazzarini et al., 2023). In particular, TP53 mutations contribute to two major clusters
of gene expression changes, specifically those related to the cell cycle and proliferative
activity. Downstream components of the TP53 signalling pathway include CDKN1A
(which encodes p21) and CDKN2A (which encodes p16/pl14), whilst upstream
components encompass checkpoint kinases 1 and 2 (CHEK1/2). Notably, TP53
mutations, whether gain of function (GOF) or non-GOF, exhibit no discernible
differences in the gene expression profile of the TP53 pathway; both types result in
functional loss of downstream genes (Sasaki et al., 2023). Moreover, GOF activities
of mut-TP53 are not universally required to sustain tumour growth; removal of mut-
TP53 does not affect the proliferation, survival, or mitochondrial activity of malignant
cells (Wang et al., 2024).

At its core, malignant proliferation is driven by cell cycle dysregulation, with
most cancers exhibiting alterations in cyclins, cyclin-dependent kinases (CDKs), and
CDK inhibitors. In GBM, one study reported enriched biological processes, including
upregulated terms related to the cell cycle, specifically the G1/S and G1/M transitions
of the mitotic cell cycle (Petkovic et al., 2023). In essence, the cell cycle is a
background force underlying the development of multicellular organisms, tissue
homeostasis, and tissue repair following injury. When a cell enters the cell cycle, it
replicates its genome and segregates the resulting two copies into the daughter cells
during mitosis (M). At the core of the molecular network controlling the cell cycle,
CDKs function as oscillators, ensuring orderly and tightly regulated progression

through the G1, S, G2, and M phases (see Figure 2.3) (Koliopoulos and Alfieri, 2022).
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Primarily, cell cycle regulation and deoxyribonucleic acid (DNA) replication are the
processes most prominently associated with p53-p21 targets (Engeland, 2022).

As a case in point, loss of p53 or RB function leads to cell cycle dysregulation
and malignant proliferation; transcriptional regulation of CDK and cyclin genes is
subjected to multiple families of regulators, including p53 and RB (Engeland, 2022).
The CDK-cyclin complex can phosphorylate RB protein and regulate the cell cycle
positively, whereas CDK inhibitors (e.g., p21, p27, p19, and p16) hinder part of the
cell cycle process and play a negative regulatory role. For example, p16 inhibits the
activity of CDK4, prevents the phosphorylation of RB protein and the release of early
region 2 factor, a family of transcription factors that promote downstream cell cycle
factors). This, in turn, inhibits the cell life cycle in the G1 phase (Zhang et al., 2021).
In a study, AT7519, a multi-CDK inhibitor, was demonstrated to inhibit CDK1/2
phosphorylation, arrest the cell cycle at the G1/S and G2/M phases, induce cell death
through apoptosis and pyroptosis pathways, and decrease GBM cell viability and
proliferation (Zhao et al., 2023a).

In addition, it is noteworthy that most oncogenes lack the capacity to drive cell
proliferation by themselves. Instead, they (when overexpressed) have evolved with
intrinsic and self-limiting safe mechanisms, which engage evolutionary dead-ends
such as apoptosis and senescence programmes (Casacuberta-Serra et al., 2024). For
example, cellular MYC (c-MYC), a member of the MY C oncogene family, is a critical
downstream component of the nuclear factor-kappa B (NF«p) signalling pathway in
GBM cells. Knockdown (KD) of c-MYC expression led to suppression of malignant
progression in GBM cells, likely due to direct inhibition of oncogenic pathways driven
by c-MYC. Whereas inhibition of the NF«p signalling pathway with JSH-23, a small-

molecular inhibitor that specifically blocks NF«f transcriptional activity, significantly
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reduced Ki-67 expression—a marker of proliferation—in U251 GBM xenograft mice
overexpressing the long non-coding RNA XTP6, which is a pivotal regulator in
sustaining the NF«kp pathway (Xiao et al., 2024). However, both NF«xf and c-MYC
are considered “undruggable”. No drugs directly targeting them have been approved
for clinical use (Casacuberta-Serra et al., 2024; Guo et al., 2024).

NF«p, a nuclear transcription factor, also modulates cell death mechanisms,
particularly by suppressing apoptosis. For example, NF«f target genes include anti-
apoptotic molecules such as BCL2, B-cell lymphoma-extra-large (BCLXL), and
inhibitors of apoptosis. Furthermore, the mitogen EGFR is closely linked with NF«},
contributing to drug resistance. EGFR activation triggers the extracellular signal-
regulated kinase (ERK)/protein kinase B (AKT) axis, which mediates the nuclear
translocation of NF«kp. Subsequently, NF«kf enhances the expression of P-glycoprotein
(P-gp) (Ma et al., 2024). Collectively, the interplay of various oncogenes and their
complementary actions is referred to as oncogenic cooperation, a central concept in
the complex landscape of cancer development and progression (Casacuberta-Serra et

al., 2024).
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Figure 2.3 Schematic representation of the cell cycle phases along with the respective cyclin-CDK complexes which are necessary for cell
cycle progression. G1 (growth phase 1), S (DNA synthesis phase), G2 (growth phase 2), and M, whilst GO or quiescence (a reversible cycling
exit/non-proliferative state). When mitogenic signals trigger proliferation, a complex composed of cyclins and CDKs forms. Abbreviations:
PDGF (platelet-derived growth factor); XIAP (x-linked inhibitory apoptosis protein). Adapted from Koliopoulos and Alfieri, 2022; Zhang et al.,
2021.
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2.3.2 Factors affecting cytotoxic effectiveness

TMZ, an analogue of dacarbazine marketed as Temodar, has been the leading
cytotoxic chemotherapeutic in GBM for nearly two decades. Its chemical name is 3-
methyl-4-oxoimidaz[5,1-d][1,2,3,5] tetrazine-8-carboxamide, with a molecular weight
(MW) of 194.15 g/mol and a chemical formula of CeHsNeO>. It is a small alkylating
molecule and oral prodrug that introduces methyl groups to O6-guanine, N7-guanine,
and N3-adenine DNA bases (Teraiya et al., 2023). However, its effectiveness is often
limited by resistance mechanisms involving various proteins and signalling pathways
(Pinevich et al., 2023). In particular, the durability of cytotoxic chemotherapy in GBM
encounters multi-pathway hurdles. This section highlights some factors that can

undermine the effectiveness of interventions.

2.3.2(a) Blood-brain barrier

One of the biggest handicaps in attaining optimal therapeutic effectiveness is
the difficulty of drugs passing through the blood-brain barrier (BBB), a unique and
challenging biological barrier. Doxorubicin, for example, exhibits prominent cytotoxic
effects in U87 cell two-dimensional (2D) monolayers and 3D spheroids. However, its
therapeutic potential is constrained by poor penetration across the BBB (Janjua et al.,
2021). Likewise, curcumin exhibits potential for anti-GBM activity, but it cannot cross
the BBB and has poor oral absorption (Mohamadian et al., 2022; Shabaninejad et al.,
2020). TMZ, on the other hand, features excellent oral bioavailability (almost 100.0%
absorption into the bloodstream) and linear plasma pharmacokinetics, but only 20.0-
30.0% crosses the BBB in adults, and 37.0% in paediatric CNS tumour patients
(Busker et al., 2022). To overcome this limitation, various breakthroughs have been

made, including nanoparticle-based TMZ delivery systems. Preclinical studies have
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demonstrated the potential of polymeric, inorganic, lipid-based, and carbon-based
nanoparticles for improving drug effectiveness and biocompatibility (Pourmadadi et
al., 2023). Importantly, nano-delivery technologies enable prolonged drug release,
thereby maximising therapeutic effects (Zhao et al., 2023b).

For example, compared to free TMZ, TMZ-loaded liposomes, TMZ-loaded
polyethylene glycol (PEG)ylated liposomes, TMZ-loaded lyotropic liquid crystals
(LLC), and TMZ-loaded PEGylated LLC all exhibited increased cytotoxicity in U87
cells after 48 h at 0.2 or 1.0 mM. In terms of pharmacokinetics, TMZ-loaded
PEGylated liposomes and PEGylated LLC display lower clearance, higher plasma
concentrations up to 6 h (0.84 and 1.54 pg/ml), and longer half-lives (1.64 and 2.61 h)
vs. free TMZ (0.56 pg/ml and 1.31 h), respectively. Both formulations also showed
increased brain bioavailability, with area under curve (AUC)o-» values of 18.20 and
25.49 pg/ml*h compared to free TMZ (14.27 pg/ml™h). Additionally, coated TMZs
resulted in =3-fold reduced uptake by macrophage cells, thereby extending plasma
circulation (Waghule et al., 2023).

Besides, ultra-small, large pore silica (USLP) nanoparticles loaded with TMZ,
reinforced with cationic amino (NH.) group, surface PEGylated (to minimise efflux),
and/or cascade targeting protein lactoferrin (LF) (to maximise delivery into GBM).
Both TMZ formulations, i.e., USLP-NH2-PEG-TMZ and USLP-NH2-PEG-TMZ-LF,
markedly increased late and early apoptotic death in U87 and murine glioma 261 cells,
respectively, when compared to free TMZ. In an in vitro BBB model, these USLP
formulations did not enhance the TMZ delivery but greatly reduced efflux. Further, in
vivo studies evidenced the biocompatibility of USLP-based delivery. Intravenous
administration of USLP particles at 50 mg/kg resulted in significant accumulation in

the brain within a few hours, with no apparent pathophysiological changes in vital
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organs (Janjua et al., 2023). Another great effort is chitosan-pB-glycerophosphate-based
thermogel (THG) containing TMZ-loaded mesoporous silica (SiO2) nanoparticles
(TMZ-THG-Si03) or polycaprolactone (PCL) microparticles (TMZ-THG-PCL). The
biocompatibility of THG with brain tissue was demonstrated, and both encapsulation
formulations showed significant in vitro cytotoxicity and in vivo anti-tumour efficacy,
with delayed tumour recurrence in an orthotopic xenograft resection and recurrence
mouse model using U87-Red-Fluc cells (Gherardini et al., 2023).

Notwithstanding, nanocarriers still have some drawbacks, including poor drug
penetration, limited drug encapsulation, and poor targeting (Priya et al., 2022). For
example, local chemotherapy of brain tumours is often released from the carrier before
it comes into contact with the cancer cells (Liu et al., 2023a). These limitations can be
addressed through surface modifications (engineered coatings), which make possible
controlled release, greater penetration efficiency, and targeted drug delivery (Priya et
al., 2022). Notably, a thorough review article highlights that emulsomes provide
advantages over other lipid-based drug delivery systems (Table 2.2) (Singh et al.,
2023). Emulsomes, a modified generation of liposomes and considered a nexus
between liposomes and solid lipid nanoparticles, can improve pharmacokinetics,
enhance therapeutic efficacy, and combat multidrug resistance (Elnady et al., 2023).

Of note, various clinical trials involving TMZ are ongoing, but only a small
number of nanoformulations have advanced to phase 1 and 2 studies in patients with
HGG. These include liposomal curcumin paired with RT and TMZ (NCT05768919,
newly diagnosed cases) and rhenium-186 nanoliposomes (NCT01906385, relapsed
cases) (last accessed clinical trials.gov on 10" Sept 2023). Other liposome-based
studies include mitoxantrone hydrochloride (HCI) (phase 1/2), doxorubicin HCI

(phase 1/2), and paclitaxel (phase 4) (Ashrafizadeh et al., 2022). Besides, collaborative
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