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KESAN RAWATAN AZITHROMYCIN DAN DOXYCYCLINE 

SECARA INDIVIDU DAN KOMBINASI PADA TITISAN SEL MALIGNAN 

GLIOMA U87  

ABSTRAK 

Glioblastoma (GBM) adalah tumor otak malignan primer yang paling prevalen 

dikalangan orang dewasa. Rawatan konvensional, termasuk kombinasi kemoterapi 

temozolomide (TMZ) dan radioterapi, hanya memberikan kelangsungan hidup yang 

minimum. Rintangan terhadap terapi-terapi ini bukan sahaja kerap berlaku, malah 

dijangka. Berdasarkan bukti yang kukuh bahawa azithromycin (AZI) dan doxycycline 

(DOXY) menyebabkan sitotoksisiti yang berkaitan dengan apoptosis dalam pelbagai 

model kanser in vitro dan in vivo, ubat-ubatan ini telah dipilih untuk kajian ini. Potensi 

antikanser mereka, sama ada secara individu dan kombinasi, dinilai menggunakan 

titisan sel malignan glioma U87, khususnya GBM. Kajian in vitro ini mengukur daya 

hidup sel, bilangan koloni, interaksi sitotoksik, taburan kitaran sel, morfologi nukleus, 

pecahan kematian sel, aras sitokrom C, dan ekspresi gen yang berhubung dengan 

sitotoksisiti dan apoptosis. Ujian 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide menunjukkan bahawa keberkesanan AZI (IC50: 92.0 µg/ml) lebih tinggi 

berbanding TMZ (IC50: 151.0 µg/ml) dan DOXY (IC50:147.0 µg/ml) dalam sel U87. 

Berbanding dengan rawatan tunggal, AZI+DOXY (92.0+147.0 µg/ml) tidak 

menunjukkan peningkatan sitotoksisiti pada pelbagai kepekatan dan tempoh masa, dan 

bukti menunjukkan interaksi antagonistik. Berdasarkan ujian kelangsungan hidup sel, 

AZI menunjukkan kesan antiproliferatif yang signifikan secara statistik berbanding 

dengan kawalan negatif (NC) dan DOXY, tetapi hanya dengan NC di bawah TMZ. 

Analisis sitometri aliran menggunakan pelabelan propidium iodida (PI) menunjukkan 
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bahawa AZI tidak mengubah kitaran sel, manakala TMZ dan DOXY atau AZI+DOXY 

masing-masing menghentikan sel dalam fasa S/G2/M dan G0/G1. Pewarnaan Hoechst 

33342 menunjukkan ciri-ciri apoptosis dalam nukleus sel di semua kumpulan rawatan, 

namun luas nuklear yang lebih besar diperhatikan berbanding dengan NC. 

Selanjutnya, analisis sitometri aliran menggunakan pelabelan Annexin V/PI 

menunjukkan bahawa apoptosis merupakan bentuk utama kematian sel yang diinduksi 

oleh TMZ dan AZI. Sebaliknya, DOXY dan AZI+DOXY merangsang kedua-dua 

apoptosis dan nekrosis. Analisis spektrofotometrik aras protein sitokrom C 

menunjukkan peningkatan dalam semua kumpulan rawatan. Pada tahap transkripsi, 

semua rawatan meningkatkan aras ekspresi mRNA TP53 dan NFκβ1, dengan AZI+ 

DOXY secara signifikan merangsang kedua-dua gen. Aras PRKDC meningkat dengan 

ketara dengan TMZ, DOXY, dan AZI+DOXY. Sebaliknya, aras γH2AX adalah lebih 

tinggi dalam kumpulan AZI berbanding dengan semua rawatan yang lain. Aras 

ekspresi mRNA DRP1 dan MFN2 meningkat dalam semua kumpulan rawatan, dengan 

AZI+DOXY yang secara ketara menginduksi MFN2. Selain itu, hanya AZI yang 

meningkatkan kedua-dua aras BAX dan BAK, manakala BCL2 meningkat secara 

signifikan dalam kumpulan AZI dan AZI+DOXY, dan AZI+DOXY menunjukkan aras 

BCLXL terendah di antara kumpulan rawatan. Tambahan lagi, AZI meningkatkan 

nisbah BAX/BCL2, BAK/BCL2, dan BAX/BCLXL, manakala AZI+DOXY 

menunjukkan nisbah tertinggi bagi BAK/BCLXL. Kesimpulannya, AZI menunjukkan 

aktiviti antikanser dengan menghalang proliferasi sel, sebahagiannya melalui induksi 

apoptosis. Sebaliknya, DOXY dan AZI+DOXY menginduksi pemberhentian kitaran 

sel dan kedua-dua apoptosis dan nekrosis sebagai sebahagian daripada mekanisma 

antikanser mereka. Namun, rawatan dengan ubat-ubatan eksperimen secara individu 

memberikan kesan antikanser yang optimum berbanding kombinasi.  
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EFFECTS OF INDIVIDUAL AND COMBINATION TREATMENT OF 

AZITHROMYCIN AND DOXYCYCLINE ON U87 MALIGNANT GLIOMA 

CELL LINE 

ABSTRACT 

Glioblastoma (GBM) is the most prevalent malignant primary brain tumour in 

adults. Conventional treatment, which includes concurrent temozolomide (TMZ) 

chemotherapy and radiotherapy, provides only marginal survival benefits. Resistance 

to these therapies is both common and anticipated. Given the compelling evidence that 

azithromycin (AZI) and doxycycline (DOXY) induce apoptosis-related cytotoxicity in 

various cancer models in vitro and in vivo, these drugs were chosen for the present 

study. Their anticancer potential, both alone and in combination, was evaluated using 

the U87 malignant glioma cell line, specifically GBM. This in vitro study assessed cell 

viability, colony numbers, cytotoxic interactions, cell cycle distributions, nuclear 

morphology, cell death fractions, cytochrome C levels, and gene expression related to 

cytotoxicity and apoptosis. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide assay showed that AZI (IC50: 92.0 µg/ml) exhibited greater potency compared 

to TMZ (IC50: 151.0 µg/ml) and DOXY (IC50:147.0 µg/ml) in U87 cells. Compared to 

single-drug treatments, AZI+DOXY (92.0+147.0 µg/ml) did not show increased 

cytotoxicity across various concentrations and time points, and evidence indicated an 

antagonistic interaction. Based on the cell survival assay, AZI exhibited a statistically 

significant antiproliferative effect compared to the negative control (NC) and DOXY, 

but only to NC under TMZ. Flow cytometric analysis using propidium iodide (PI) 

labelling revealed that AZI did not interfere with the cell cycle, whereas TMZ and 

DOXY or AZI+DOXY arrested cells in the S/G2/M and G0/G1 phases, respectively. 



xxxiv 

Hoechst 33342 staining revealed apoptotic features in cell nuclei across all treatment 

groups; however, a larger nuclear area was observed than that of NC. Furthermore, 

flow cytometric analysis using Annexin V/PI labelling indicated that apoptosis was 

the predominant form of cell death induced by TMZ and AZI. In contrast, DOXY and 

AZI+DOXY induced both apoptosis and necrosis. Spectrophotometric analysis of 

cytochrome C protein levels exhibited an increase across all treatment groups. At the 

transcriptional level, all treatments enhanced TP53 and NFκβ1 mRNA expression 

levels, with AZI+DOXY significantly inducing both genes. PRKDC levels markedly 

increased with TMZ, DOXY, and AZI+DOXY. In contrast, γH2AX levels were higher 

in the AZI group than in any of the other treatments. DRP1 and MFN2 mRNA 

expression levels were elevated across all treatment groups, with AZI+DOXY 

substantially induced MFN2. Moreover, only AZI enhanced both BAX and BAK levels, 

whilst BCL2 significantly increased in the AZI and AZI+DOXY groups, and AZI+ 

DOXY showed the lowest BCLXL levels among the treatment groups. Additionally, 

AZI increased the ratios of BAX/BCL2, BAK/BCL2, and BAX/BCLXL, whereas AZI+ 

DOXY exhibited the highest ratio of BAK/BCLXL. In short, AZI shows anticancer 

activity by inhibiting cell proliferation, in part through the induction of apoptosis. On 

the other hand, DOXY and AZI+DOXY induce cell cycle arrest and both apoptosis 

and necrosis as part of their anticancer mechanisms. However, the experimental drugs 

appear to yield optimal anticancer effects when given alone rather than concurrently. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background of the study  

 

Cancer is a malignant tumour defined by the unchecked and rapid proliferation 

of aberrant cells that have evaded apoptosis (programmed cell death), invaded nearby 

tissues, and metastasised to different parts of the body. It can arise in almost any organ 

and tissue and, is a growing cause of mortality (occurring between ages 30–70 years) 

worldwide (Bray et al., 2021). According to GLOBOCAN estimates, cancer deaths 

climbed to 9.9 million in 2020, up from 9.5 in 2018, and there were 19.3 million new 

cancer cases in 2020, with a projected 28.4 million in 2040 (Ferlay et al., 2019; Ferlay 

et al., 2021; Sung et al., 2021).  

Among the 36 human cancers worldwide in 2020, brain and central nervous 

system (CNS) cancers accounted for approximately 308,102 (1.6% of all sites) new 

cases and 251,329 (2.5% of all sites) new deaths (Sung et al., 2021). In the Malaysian 

population from 2012 to 2016, it was recorded as one of the ten most common cancers 

among Malays but not Chinese or Indians. The number of cases was 642 (2.9%) in 

males and 557 (1.9%) in females (Azizah et al., 2019). The global incidence rate is 3.9 

per 100,000 males and 3.0 per 100,000 females, whereas in Malaysia, it is 1.8 per 

100,000 males and 1.6 per 100,000 females (Azizah et al., 2019; Sung et al., 2021).  

Globally, glioblastoma (GBM) is the most common primary brain tumour in 

adults. This type of high-grade glioma (HGG), often referred to as the most malignant 

glioma, is extremely lethal, exhibiting a high degree of plasticity, heterogeneity, and 

infiltrativeness (Neftel et al., 2019; Yabo et al., 2022). Despite countless clinical trials 

and research advancements, it remains refractory to improvements in treatment. Even 
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with the most promising agents, high failure rates in clinical trials are observed, and 

resistance to targeted therapies is mainly attributed to intricate interferences between 

signalling pathways and biological processes (Gatto et al., 2023).  

Historically, patient survival rates have been poor, with temozolomide (TMZ)-

containing regimens showing the best clinical performance (Guo et al., 2023a). TMZ 

was first authorised by the Food and Drug Administration (FDA) in 1999 as a second-

line therapy for GBM. Following favourable results from a phase III clinical trial 

commenced by the European Organisation for Research and Treatment of Cancer and 

the National Cancer Institute of Canada in 2005, the FDA and European Medicines 

Agency approved TMZ as a first-line treatment for newly diagnosed GBM (Stupp et 

al., 2009; Stupp et al., 2005). Other FDA-approved options, including nitrosoureas 

(such as lomustine and carmustine wafer implants), bevacizumab, and tumour-treating 

fields, may offer survival benefits when used in a combinatorial approach (Narsinh et 

al., 2024; Obrador et al., 2024).  

Given the suboptimal clinical outcomes, numerous pursuits are underway to 

discover and develop drugs with better efficacy and potency as potential alternatives 

and adjuvants to current therapies. This includes drug repositioning (also called drug 

repurposing), which involves the investigation of existing drugs for new therapeutic 

purposes (O'Rawe et al., 2022). Another ongoing effort involves exploring drug 

combinations to capitalise on synergistic interactions—increasing therapeutic efficacy 

at lower doses and thereby reducing systemic toxicity (Hassan et al., 2022; Yang et 

al., 2023b). Notwithstanding, not all patients favourably respond to the same effective 

drugs, and even if they do, resistance and relapse remain possible. 

Among the attractive candidates under investigation for potential in cancer 

therapy are azithromycin (AZI) and doxycycline (DOXY). Both antibacterial drugs 
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have been therapeutically utilised for over four decades (Bright and Hauske, 1984; 

Cunha et al., 1982). On the other hand, compelling evidence underscores the ability of 

AZI and DOXY to effectively interfere with tumour growth and progression (Ghasemi 

and Ghasemi, 2022; Hassan et al., 2023b). Their cytotoxic, antiproliferative, and/or 

pro-apoptotic effects have been demonstrated in various cancer models, including 

breast (Akhunzianov et al., 2023), colon (Alshaman et al., 2022; Qiao et al., 2018), 

gastric (Pandian et al., 2020; Zhou et al., 2012), and lung (Alsaadi et al., 2021; 

Toriyama et al., 2024). Notably, both AZI and DOXY can eradicate cancer stem cells 

(CSCs) and preferentially inhibit cancer cells (Lamb et al., 2015b; Peiris‐Pagès et al., 

2019). 

Armed with the existing knowledge, this study aimed to assess the anticancer 

potential of AZI and DOXY, both individually and in combination, using the human 

U87 malignant glioma cell line. This cell line is among the most widely used in vitro 

models of GBM in drug screening and mechanistic studies (Mousavi et al., 2023; 

Wang et al., 2022b; Zhang et al., 2024). U87 cells proliferate rapidly and tend to form 

neurosphere-like clusters or colonies, reflecting their highly tumourigenic nature (Diao 

et al., 2019). Furthermore, U87 cells are sensitive to TMZ and well-characterised, with 

key features of human GBM, including wild-type (wt)-isocitrate dehydrogenase (IDH) 

and wt-tumour protein 53 (TP53) (Wang et al., 2017a; Zhang et al., 2024). Overall, 

the cell line provides consistent and reproducible results across different laboratories, 

crucial for comparative studies and validating the effects of experimental drugs.  

 

1.2 Problem statement  

 

Current FDA-approved therapies for GBM, which primarily involve surgery 

followed in sequence by RT with concomitant and adjuvant TMZ, yield only marginal 
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improvements in survival. Infiltrative growth, tumour heterogeneity, overexpressed 

efflux pumps, brain anatomical characteristics, and drug resistance critically limit the 

effectiveness of GBM interventions. Ironically, all GBM cells, not exclusively glioma 

stem cells (GSCs), exhibit plasticity—undergoing molecular and phenotypic changes 

that allow them to resist cytotoxicity and evade apoptotic programmes. Moreover, 

enhanced glycolysis, often misconstrued to support cancer cell proliferation, is indeed 

insufficient without concurrent mitochondrial metabolism. GSCs display a greater 

reliance on oxidative phosphorylation (OXPHOS). Collectively, single-agent therapy 

is highly susceptible to resistance, a challenge further compounded by compensatory 

mechanisms and stromal components that serve as building blocks for tumour growth, 

survival, and progression. 

 

1.3 Rationale of the study  

 

Mitochondrial-targeting drugs represent a promising approach to addressing 

the unmet clinical needs of GBM. This is particularly crucial as virtually all patients 

eventually relapse and develop resistance to TMZ, resulting in a worsened prognosis 

and limited treatment options. AZI and DOXY may effectively inhibit GBM growth 

and progression through various action points, including antiproliferative and pro-

apoptotic effects. Notably, both drugs induce cytotoxicity in differentiated tumour 

cells and suppress CSC proliferation by triggering mitochondrial damage-mediated 

apoptosis and reducing OXPHOS (Lamb et al., 2015b; Xiao et al., 2019). However, 

their potential against GBM, whether used alone or in combination, remains largely 

unexplored. In consensus, it appears that combinatorial approaches are emerging as 

the winning strategies for tackling the intricate interplay of tumour elements. Unlike 

single-drug therapies, combination treatments have the potential to enhance potency 
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and efficacy through synergistic interactions. This modality may also help reduce 

systemic toxicity and delay the development of resistance. Given their availability, 

affordability, and extensive clinical safety record, making them therapeutic options 

would be feasible globally if proven beneficial.  

 

1.4 General objective 

 

To study the anticancer effects of AZI and DOXY alone and in combination 

on an in vitro model of human U87 GBM cells. 

 

1.4.1 Specific objectives  

 

i. To determine the cytotoxic and proliferation effects in U87 cells following 

AZI, DOXY, and AZI+DOXY treatments. 

ii. To evaluate the cell cycle effects in U87 cells following AZI, DOXY, and 

AZI+DOXY treatments. 

iii. To determine the apoptosis effects in U87 cells following AZI, DOXY, and 

AZI+DOXY treatments. 

iv. To assess the cytotoxic- and apoptosis-associated gene expression effects 

in U87 cells following AZI, DOXY, and AZI+DOXY treatments. 

 

1.5 Research questions 

 

i. What are the cytotoxic and proliferation effects of AZI, DOXY, and 

AZI+DOXY treatments on U87 glioblastoma cells?  

ii. How do AZI, DOXY, and AZI+DOXY treatments affect the cell cycle 

phases in U87 glioblastoma cells?  
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iii. What are the apoptosis-inducing effects of AZI, DOXY, and AZI+DOXY 

treatments on U87 glioblastoma cells?  

iv. How do AZI, DOXY, and AZI+DOXY treatments alter the expression of 

cytotoxicity- and apoptosis-associated genes in U87 glioblastoma cells?  

 

1.6 Hypotheses 

 

The hypothesis in this study proposes that AZI, DOXY, and their combined 

treatment exhibit antiproliferative effects by inducing cell cycle arrest and apoptosis 

in GBM cells. Moreover, it suggests that the synergistic impact of combined 

AZI+DOXY treatments is more effective in inhibiting GBM cell growth. Figure 1.1 

shows the conceptual framework of the study. 

 

 

 

Figure 1.1 Conceptual framework of the study. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Brain tumours  

 

Brain tumour is a general term for benign or malignant tumours arising from 

brain tissues—collectively referring to primary CNS tumours. In Southeast Asia, the 

incidence rates of benign and malignant brain tumours were 6.97 and 3.29 per 100,000 

person-years, respectively (Bell et al., 2019). Globally, gliomas and meningiomas are 

among the most prevalent types of brain tumours (Salari et al., 2023). In the United 

States, for instance, gliomas rank as the most common primary brain tumours in both 

children and adults, with GBM accounting for 50.1% of all malignant tumours. GBM 

is relatively more common in older adults and less so in children (Ostrom et al., 2022a; 

Ostrom et al., 2022b). Gliomas (61.8%) predominantly occur in the supra-tentorium 

(frontal, temporal, parietal, and occipital lobes combined), with only a minor fraction 

identified in CNS regions other than the brain (Ostrom et al., 2022a). Notably, 52.5% 

of GBM had invaded more than one lobe, with the frontal and temporal lobes being 

the most frequently affected regions (Guo et al., 2023b). 

In Malaysia, a single-centre cross-sectional study showed that the number of 

brain tumour cases was lower among children (0 to 10 years old), with only 4.4% 

(n=17) from 2013 to 2018 (Othman et al., 2020), whilst 3.5% (n=8) from 2018 to 2021 

(Heng et al., 2023). From 2009 to 2019, a total of five brain tumour cases were detected 

in the age range of 0 to 14 years, accounting for 8.2% of all incidents (Azman et al., 

2022). In addition, there were 31 cases (14.4%) of brain tumours under the age of 15 

from 2011 to 2014 (Dzali et al., 2017). Despite this, the incidence of brain tumours 
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rises with age, with glioma being the second most common (Heng et al., 2023). Table 

2.1 summarises cross-sectional studies on brain tumours in Malaysians. 

 

Table 2.1 Brain tumour prevalence in the Malaysian population  

 

Enrolment 

time 

Commonness Reference 

Type, % (n) Age (years), % (n) Gender, % (n) 

2018‒2021 Meningioma, 

38.7 (89) 

51‒60, 34.8 (80) Female, 57.4 

(132) 

(Heng et 

al., 2023) 

2009‒2019 GBM, 29.5 

(18) 

40‒70, 55.7 (34)  Male, 59.0 (36) (Azman et 

al., 2022) 

2013‒2018 Meningioma, 

27.2 (105) 

51‒60, 26.2 (101) Female, 55.5 

(214) 

(Othman 

et al., 

2020) 

2011‒2014 Meningioma, 

32.7 (71) 

>45, 49.8 (107) Female, 53.9 

(117) 

(Dzali et 

al., 2017) 

 

It is important to note that gliomas in children differ substantially from those 

in adults in terms of prognosis (clinically) and pathobiology (molecularly). The most 

recent revision, the 5th edition of the WHO classification of the CNS (WHO CNS5), 

divides them into four different families: (1) Adult-type diffuse gliomas (the majority 

of primary brain tumours in adults is wt-IDH GBM); (2) Paediatric-type diffuse low-

grade gliomas (LGG) (expected to have good prognoses); (3) Paediatric-type diffuse 

HGG (expected to behave aggressively); and (4) Circumscribed astrocytic gliomas 

(“circumscribed” referring to their more solid growth pattern, as opposed to the 

inherently “diffuse” tumours in groups 1, 2, and 3) (Louis et al., 2021). For astrocytic 

tumours, LGG are classified as grades 1 and 2, whilst HGG correspond to grades 3 

and 4.  

Of particular concern, the burden is increasing worldwide, with gliomas and 

GBM being the most financially draining (Khanmohammadi et al., 2023). Globally, 

from 1990 to 2019, the incidence, deaths, and disability-adjusted life years associated 
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with brain and CNS cancers climbed noticeably (Fan et al., 2022). Notably, in 2016, 

Indonesia, Thailand, and the Philippines recorded the highest incidence and death rates 

from primary brain tumours, with Malaysia ranking sixth in both measures. Moreover, 

scientific output on brain tumours does not reflect the current reality in Southeast Asia. 

Singapore contributes the majority of articles (44.8%), followed by Thailand (28.0%) 

and Malaysia (20.6%) (Mondia et al., 2020).  

 

2.2 Glioblastoma 

 

GBM is a rapidly growing cancer that relentlessly diffuses throughout the brain 

parenchyma and external blood vessel walls, without radiologic or histologic evidence 

of a less malignant precursor lesion (Ohgaki and Kleihues, 2013). In times before the 

era of integrated histopathology-molecular analysis, a tumour specimen that did not 

exhibit the classic histological features of GBM would have been assigned a lower 

WHO grade (Wen et al., 2020). At present, tumour entities are designated as “not 

otherwise specified” when molecular data are unavailable (Osborn et al., 2022). Note 

that the term “glioblastoma multiforme” has been dropped from the WHO CNS5, and 

“GBM” is no longer used in the context of paediatric-type neoplasms (Louis et al., 

2021). However, “glioblastoma multiforme” is still commonly used to refer to wt-IDH 

GBM. The term “multiforme” was originally coined to describe the heterogeneous 

cellular organisation and histological appearance of the tumour. In this study, “GBM” 

refers to wt-IDH GBM, unless otherwise specified.  
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2.2.1 Histopathological features 

 

 

GBM is classified as a CNS WHO grade 4 tumour. Since CNS tumour grading 

differs from other tumour grading systems, WHO CNS5 endorses the use of the term 

“CNS WHO grade” for assigning grades and is no longer restricted to histological 

grades alone. Furthermore, WHO CNS5 has amended two specific aspects of CNS 

tumour grading. It now uses Arabic numerals (instead of Roman numerals), and 

neoplasms are graded within types (rather than across different tumour types) (Louis 

et al., 2021; Louis et al., 2020).  

Histopathologically, GBM exhibits diffusely infiltrative growth, an astroglial 

appearance with angulated nuclei and irregular chromatin, and poor differentiation 

with brisk mitotic activity. Florid microvascular proliferation and/or necrosis, with or 

without pseudopalisading, are frequently observed (see Figure 2.1) (Wen et al., 2020; 

Whitfield and Huse, 2022). Notably, microvascular proliferation and/or necrosis are 

both sufficient criteria to establish the diagnosis of GBM in adult wt-IDH diffuse and 

astrocytic gliomas (Louis et al., 2021; Whitfield and Huse, 2022).  
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Figure 2.1 (a) Haematoxylin and eosin-stained GBM tumour sections reveal a cellular, pleomorphic, glial neoplasm with glomeruloid 

microvascular proliferation (arrow; 200× magnification). (b) Atypical mitotic figures are prominent (arrow; 400× magnification). Haematoxylin 

and eosin‐stained sections of another case demonstrate (c) notable nuclear pleomorphism and giant cell features (arrow; 100× magnification), 

along with (d) pseudopalisading necrosis (arrow; 200× magnification). Images are from Whitfield and Huse, 2022. 
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2.2.2 Molecular biomarkers 

 

 

The 2016 CNS WHO edition was the first to incorporate molecular parameters 

into the century-old, microscopy-based diagnostic criteria, classifying GBM as either 

wt-IDH or mutant (mut)-IDH (Louis et al., 2016). However, wt-IDH GBM develops 

rapidly de novo, without a precursor lesion, whereas mut-IDH GBM typically evolves 

from low-grade diffuse or anaplastic astrocytoma (Ohgaki and Kleihues, 2013). In 

WHO CNS5, GBM is classified only as “wt-IDH”, and mut-IDH astrocytoma covers 

grades 2‒4, with no CNS WHO grade 1. The terms mut-IDH “GBM” and “anaplastic 

astrocytoma” have been dropped.  

WHO CNS5 specifies several key diagnostic genes (Figure 2.2). In the absence 

of IDH mutations, either telomerase reverse transcriptase (TERT) promoter mutations, 

the combination of chromosome (Chr) 7 gain and Chr 10 loss, or epidermal growth 

factor receptor (EGFR) amplification is considered sufficient molecular evidence of 

GBM with similar clinical outcome, even when histologic examination meets only 

WHO grade 2 or 3 criteria (i.e., absence of high-grade features such as microvascular 

proliferation and/or necrosis (Brat et al., 2018; Tesileanu et al., 2020; Wen et al., 

2020). Other biomarkers include p53 (with rare positive cells) and alpha-thalassemia/ 

mental retardation syndrome X-linked (retained nuclear expression) (Osborn et al., 

2022). 

 



13 

 

 

Figure 2.2 Overview of selected diffuse gliomas and key diagnostic genes. 

Adapted from Louis et al., 2021.   

 

Presently, molecular patterns serve not only diagnostic but also prognostic and 

predictive functions. Prognostic biomarkers address clinical outcomes regardless of 

therapy, whereas predictive ones describe the likelihood of response to a therapeutic 

intervention. In an Italian single-centre, retrospective cohort study (n=417), the most 

common “druggable” drivers in both newly diagnosed and relapsed GBM were cyclin-

dependent kinase inhibitor 2A (CDKN2A) loss (54.4%), CDKN2B loss (51.8%), EGFR 

amplification (40.3%), and phosphatase and tensin homologue (PTEN) loss (43.6%) 

and mutation (34.3%) (Padovan et al., 2023). Another Italian retrospective cohort 
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study (n=120) found that relapsed GBM patients with methylated O6-methylguanine-

DNA methyltransferase (MGMT) survived longer than those with unmethylated status 

(Bosio et al., 2023). 

In a retrospective cohort study of Japanese patients with newly diagnosed 

GBM (n=100), unmethylated MGMT (49.0%) and CDKN2A homozygous deletion 

(39.0%) were substantially associated with poor prognosis. On the other hand, TERT 

mutation (63.0%), PTEN loss (58.0%), TP53 loss (36.0%), and EGFR amplification 

(19.0%) were not significant predictors of poor prognosis (Funakoshi et al., 2021). In 

a Chinese retrospective cohort study, MGMT methylation predicted longer overall 

survival (OS) (n=191), whilst a higher ki-67 index and TP53 alterations were among 

the factors linked to shorter OS (n=45) (Guo et al., 2023). In the Indonesian cohort, 

ki-67 expression was markedly higher in wt-IDH than in mut-IDH gliomas (Malueka 

et al., 2020).  

To the best of our knowledge, prognostic and predictive factors in a cohort of 

Malaysian patients with GBM are poorly reported. In a single-centre, cross-sectional 

study, EGFR (77.8%) and p53 proteins were highly expressed in Malaysian patients 

with GBM (Azman et al., 2022). Notably, the current progress in biomarker discovery 

for the prognosis and treatment of GBM is unsatisfactory, largely due to selection bias 

in clinical and translational research. To address this matter, liquid biopsy studies, such 

as cerebrospinal fluid and blood sampling, could serve as alternatives to post-operative 

tumour tissue-based molecular approaches (Pasqualetti et al., 2023).  
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2.2.3 Treatments and management 

 

The standard of care for newly diagnosed GBM involves surgery, followed by 

RT with concomitant and adjuvant TMZ. The median OS is 14.6 months (18.8, 13.5, 

and 9.4 months for patients with complete resection, partial resection, and biopsy 

alone, respectively) and the median progression-free survival (PFS) is 6.9 months 

(Stupp et al., 2009; Stupp et al., 2005). However, total resection is frequently impeded 

by the highly infiltrative nature of GBM cells, and nearly all patients experience 

relapse after standard treatment (Lim et al., 2022). When it recurs, the survival period 

is often much shorter, and since none of the current therapies are curative, the National 

Comprehensive Cancer Network recommends clinical trials as the preferred option for 

eligible patients (Nabors et al., 2020). Notably, a systematic review and meta-analysis 

delineated that extending adjuvant TMZ beyond the customary 6-cycle regimen to 7-

12 cycles did not improve median OS or PFS in newly diagnosed GBM (Attarian et 

al., 2021).  

Despite decades of diligence, survival rates for newly diagnosed or relapsed 

GBM have barely awe-inspiring, with many single-agent trials yielding disappointing 

results (Gatto et al., 2023). Combinatorial approaches have thus far provided only a 

marginal survival advantage over the standard Stupp protocol. In a multicentre phase 

3 randomised clinical trial involving newly diagnosed WHO grade 4 gliomas, TMZ+ 

interferon alfa (an immunotherapeutic cytokine) resulted in a slightly longer median 

OS than TMZ alone (20.5 vs. 17.7 months). However, the median PFS was 12.0 and 

12.8 months, respectively (Guo et al., 2023a). In newly diagnosed GBM with a 

methylated MGMT promoter, the median OS was 28.9 months with nivolumab (a 

programmed death-1 inhibitor)+RT+TMZ, compared to 32.1 months with placebo+ 

RT+TMZ (Lim et al., 2022). In addition, a phase 1 trial of chimeric antigen receptor 
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T-cell-EGFR variant III+pembrolizumab demonstrated safety and biological activity 

but lacked efficacy, with median OS and PFS of 11.8 and 5.2 months, respectively 

(Bagley et al., 2024).       

In recurrent GBM, no single treatment regimen provides a marked OS benefit, 

with median OS ranging from 3 to 17.6 months across chemotherapy, immunotherapy, 

antiangiogenic, and targeted therapies (Fazzari et al., 2022). For example, in a phase 

3 randomised clinical trial, patients with relapsed GBM who received either nivolumab 

or bevacizumab (an antiangiogenic agent) exhibited equivalent median OS (9.8 vs. 

10.0 months) (Reardon et al., 2020). For patients with recurrent or refractory GBM, 

metformin+TMZ did not provide a clinical benefit when compared to the control arm 

(placebo+TMZ). Median OS was 17.22 vs. 7.69 months (P = 0.473), and median PFS 

was 2.30 vs. 2.66 months (P = 0.679) (Yoon et al., 2023). Besides, a phase 1 clinical 

trial of dose-escalated oral renin-angiotensin system modulators indicated a 5.3-month 

increase in survival (median OS was 19.9 months) for patients who relapsed after 

standard treatment (O'Rawe et al., 2022).  

Overall, treatment recommendations for both newly diagnosed and recurrent 

GBM consider factors such as age, performance status, and genotype (e.g., MGMT 

promoter methylation status) (Mazarakis et al., 2024; Tan et al., 2020). Older age, 

male sex, and tumour involvement in deep brain structures or functional areas are 

associated with a poor prognosis. Conversely, MGMT promoter methylation, maximal 

tumour resection, and treatment based on the Stupp protocol are predictors of better 

survival. Additionally, the most common clinical manifestations at diagnosis include 

intracranial hypertension, a history of epilepsy, motor dysfunction, and aphasia 

(acquired language disorders) (Guo et al., 2023b). It is worth noting that an important 

aspect limiting the development of more effective therapies for GBM is the slow and 
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inefficient clinical trial process (Wen et al., 2020). Many factors contribute to poor 

trial accrual, including limited awareness and understanding of clinical trial 

opportunities among patients, together with a lack of knowledge and information about 

available trials among clinicians (Lee et al., 2019).  

 

2.3 Therapeutic challenges in glioblastoma  

 

2.3.1 Cell cycle dysregulation and apoptosis evasion  

 

Mutations or other alterations in proto-oncogenes and tumour suppressor genes 

are frequently the starting point (molecular basis) for cancer, with tumour development 

and apoptosis evasion intimately entwined, conferring cell immortality (Emmanuel et 

al., 2020). Essentially, cancer is driven by oncogenes (activated and phenotypically 

dominant) and tumour suppressor genes (inactivated and phenotypically recessive) 

(Nenclares and Harrington, 2020). In normal cellular processes, proto-oncogenes are 

key regulatory factors, acting as growth factors, transducers of cellular signals, and 

nuclear transcription factors. For example, in mitogen signal transduction, key proto-

oncogenes include cyclin-dependent kinase 4 (CDK4), myelocytomatosis (MYC) (a 

transcription factor), B-cell lymphoma 2 (BCL2) (which inhibits apoptosis), and 

mouse double minute 2 homologue (MDM2) (which regulates transcription and binds 

to the p53 protein, encoded by TP53). The activation of these genes into oncogenes 

can occur via point mutations, chromosomal translocations, and gene amplifications 

(Emmanuel et al., 2020). Tumour suppressor genes, in contrast, function to inhibit cell 

proliferation and survival. They are involved in regulating cell cycle progression and 

apoptosis, thereby providing protection against neoplasia (Nenclares and Harrington, 

2020).  
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For example, the top mutated tumour suppressor genes identified in GSCs 

derived from patients include TP53, followed by PTEN, and retinoblastoma 1 (RB1) 

(Lazzarini et al., 2023). In particular, TP53 mutations contribute to two major clusters 

of gene expression changes, specifically those related to the cell cycle and proliferative 

activity. Downstream components of the TP53 signalling pathway include CDKN1A 

(which encodes p21) and CDKN2A (which encodes p16/p14), whilst upstream 

components encompass checkpoint kinases 1 and 2 (CHEK1/2). Notably, TP53 

mutations, whether gain of function (GOF) or non-GOF, exhibit no discernible 

differences in the gene expression profile of the TP53 pathway; both types result in 

functional loss of downstream genes (Sasaki et al., 2023). Moreover, GOF activities 

of mut-TP53 are not universally required to sustain tumour growth; removal of mut-

TP53 does not affect the proliferation, survival, or mitochondrial activity of malignant 

cells (Wang et al., 2024).  

At its core, malignant proliferation is driven by cell cycle dysregulation, with 

most cancers exhibiting alterations in cyclins, cyclin-dependent kinases (CDKs), and 

CDK inhibitors. In GBM, one study reported enriched biological processes, including 

upregulated terms related to the cell cycle, specifically the G1/S and G1/M transitions 

of the mitotic cell cycle (Petkovic et al., 2023). In essence, the cell cycle is a 

background force underlying the development of multicellular organisms, tissue 

homeostasis, and tissue repair following injury. When a cell enters the cell cycle, it 

replicates its genome and segregates the resulting two copies into the daughter cells 

during mitosis (M). At the core of the molecular network controlling the cell cycle, 

CDKs function as oscillators, ensuring orderly and tightly regulated progression 

through the G1, S, G2, and M phases (see Figure 2.3) (Koliopoulos and Alfieri, 2022). 
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Primarily, cell cycle regulation and deoxyribonucleic acid (DNA) replication are the 

processes most prominently associated with p53-p21 targets (Engeland, 2022). 

As a case in point, loss of p53 or RB function leads to cell cycle dysregulation 

and malignant proliferation; transcriptional regulation of CDK and cyclin genes is 

subjected to multiple families of regulators, including p53 and RB (Engeland, 2022). 

The CDK-cyclin complex can phosphorylate RB protein and regulate the cell cycle 

positively, whereas CDK inhibitors (e.g., p21, p27, p19, and p16) hinder part of the 

cell cycle process and play a negative regulatory role. For example, p16 inhibits the 

activity of CDK4, prevents the phosphorylation of RB protein and the release of early 

region 2 factor, a family of transcription factors that promote downstream cell cycle 

factors). This, in turn, inhibits the cell life cycle in the G1 phase (Zhang et al., 2021). 

In a study, AT7519, a multi-CDK inhibitor, was demonstrated to inhibit CDK1/2 

phosphorylation, arrest the cell cycle at the G1/S and G2/M phases, induce cell death 

through apoptosis and pyroptosis pathways, and decrease GBM cell viability and 

proliferation (Zhao et al., 2023a).  

In addition, it is noteworthy that most oncogenes lack the capacity to drive cell 

proliferation by themselves. Instead, they (when overexpressed) have evolved with 

intrinsic and self-limiting safe mechanisms, which engage evolutionary dead-ends 

such as apoptosis and senescence programmes (Casacuberta-Serra et al., 2024). For 

example, cellular MYC (c-MYC), a member of the MYC oncogene family, is a critical 

downstream component of the nuclear factor-kappa β (NFκβ) signalling pathway in 

GBM cells. Knockdown (KD) of c-MYC expression led to suppression of malignant 

progression in GBM cells, likely due to direct inhibition of oncogenic pathways driven 

by c-MYC. Whereas inhibition of the NFκβ signalling pathway with JSH-23, a small-

molecular inhibitor that specifically blocks NFκβ transcriptional activity, significantly 
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reduced Ki-67 expression—a marker of proliferation—in U251 GBM xenograft mice 

overexpressing the long non-coding RNA XTP6, which is a pivotal regulator in 

sustaining the NFκβ pathway (Xiao et al., 2024). However, both NFκβ and c-MYC 

are considered “undruggable”. No drugs directly targeting them have been approved 

for clinical use (Casacuberta-Serra et al., 2024; Guo et al., 2024).  

NFκβ, a nuclear transcription factor, also modulates cell death mechanisms, 

particularly by suppressing apoptosis. For example, NFκβ target genes include anti-

apoptotic molecules such as BCL2, B-cell lymphoma-extra-large (BCLXL), and 

inhibitors of apoptosis. Furthermore, the mitogen EGFR is closely linked with NFκβ, 

contributing to drug resistance. EGFR activation triggers the extracellular signal-

regulated kinase (ERK)/protein kinase B (AKT) axis, which mediates the nuclear 

translocation of NFκβ. Subsequently, NFκβ enhances the expression of P-glycoprotein 

(P-gp) (Ma et al., 2024). Collectively, the interplay of various oncogenes and their 

complementary actions is referred to as oncogenic cooperation, a central concept in 

the complex landscape of cancer development and progression (Casacuberta-Serra et 

al., 2024). 
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Figure 2.3 Schematic representation of the cell cycle phases along with the respective cyclin-CDK complexes which are necessary for cell 

cycle progression. G1 (growth phase 1), S (DNA synthesis phase), G2 (growth phase 2), and M, whilst G0 or quiescence (a reversible cycling 

exit/non-proliferative state). When mitogenic signals trigger proliferation, a complex composed of cyclins and CDKs forms. Abbreviations: 

PDGF (platelet-derived growth factor); XIAP (x-linked inhibitory apoptosis protein). Adapted from Koliopoulos and Alfieri, 2022; Zhang et al., 

2021. 
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2.3.2 Factors affecting cytotoxic effectiveness 

 

 

TMZ, an analogue of dacarbazine marketed as Temodar, has been the leading 

cytotoxic chemotherapeutic in GBM for nearly two decades. Its chemical name is 3-

methyl-4-oxoimidaz[5,1-d][1,2,3,5] tetrazine-8-carboxamide, with a molecular weight 

(MW) of 194.15 g/mol and a chemical formula of C6H6N6O2. It is a small alkylating 

molecule and oral prodrug that introduces methyl groups to O6-guanine, N7-guanine, 

and N3-adenine DNA bases (Teraiya et al., 2023). However, its effectiveness is often 

limited by resistance mechanisms involving various proteins and signalling pathways 

(Pinevich et al., 2023). In particular, the durability of cytotoxic chemotherapy in GBM 

encounters multi-pathway hurdles. This section highlights some factors that can 

undermine the effectiveness of interventions.  

 

2.3.2(a) Blood-brain barrier  

 

One of the biggest handicaps in attaining optimal therapeutic effectiveness is 

the difficulty of drugs passing through the blood-brain barrier (BBB), a unique and 

challenging biological barrier. Doxorubicin, for example, exhibits prominent cytotoxic 

effects in U87 cell two-dimensional (2D) monolayers and 3D spheroids. However, its 

therapeutic potential is constrained by poor penetration across the BBB (Janjua et al., 

2021). Likewise, curcumin exhibits potential for anti-GBM activity, but it cannot cross 

the BBB and has poor oral absorption (Mohamadian et al., 2022; Shabaninejad et al., 

2020). TMZ, on the other hand, features excellent oral bioavailability (almost 100.0% 

absorption into the bloodstream) and linear plasma pharmacokinetics, but only 20.0-

30.0% crosses the BBB in adults, and 37.0% in paediatric CNS tumour patients 

(Büsker et al., 2022). To overcome this limitation, various breakthroughs have been 

made, including nanoparticle-based TMZ delivery systems. Preclinical studies have 
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demonstrated the potential of polymeric, inorganic, lipid-based, and carbon-based 

nanoparticles for improving drug effectiveness and biocompatibility (Pourmadadi et 

al., 2023). Importantly, nano-delivery technologies enable prolonged drug release, 

thereby maximising therapeutic effects (Zhao et al., 2023b).  

For example, compared to free TMZ, TMZ-loaded liposomes, TMZ-loaded 

polyethylene glycol (PEG)ylated liposomes, TMZ-loaded lyotropic liquid crystals 

(LLC), and TMZ-loaded PEGylated LLC all exhibited increased cytotoxicity in U87 

cells after 48 h at 0.2 or 1.0 mM. In terms of pharmacokinetics, TMZ-loaded 

PEGylated liposomes and PEGylated LLC display lower clearance, higher plasma 

concentrations up to 6 h (0.84 and 1.54 µg/ml), and longer half-lives (1.64 and 2.61 h) 

vs. free TMZ (0.56 µg/ml and 1.31 h), respectively. Both formulations also showed 

increased brain bioavailability, with area under curve (AUC)0-∞ values of 18.20 and 

25.49 µg/ml*h compared to free TMZ (14.27 µg/ml*h). Additionally, coated TMZs 

resulted in ≈3-fold reduced uptake by macrophage cells, thereby extending plasma 

circulation (Waghule et al., 2023). 

Besides, ultra-small, large pore silica (USLP) nanoparticles loaded with TMZ, 

reinforced with cationic amino (NH2) group, surface PEGylated (to minimise efflux), 

and/or cascade targeting protein lactoferrin (LF) (to maximise delivery into GBM). 

Both TMZ formulations, i.e., USLP-NH2-PEG-TMZ and USLP-NH2-PEG-TMZ-LF, 

markedly increased late and early apoptotic death in U87 and murine glioma 261 cells, 

respectively, when compared to free TMZ. In an in vitro BBB model, these USLP 

formulations did not enhance the TMZ delivery but greatly reduced efflux. Further, in 

vivo studies evidenced the biocompatibility of USLP-based delivery. Intravenous 

administration of USLP particles at 50 mg/kg resulted in significant accumulation in 

the brain within a few hours, with no apparent pathophysiological changes in vital 
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organs (Janjua et al., 2023). Another great effort is chitosan-β-glycerophosphate-based 

thermogel (THG) containing TMZ-loaded mesoporous silica (SiO2) nanoparticles 

(TMZ-THG-SiO2) or polycaprolactone (PCL) microparticles (TMZ-THG-PCL). The 

biocompatibility of THG with brain tissue was demonstrated, and both encapsulation 

formulations showed significant in vitro cytotoxicity and in vivo anti-tumour efficacy, 

with delayed tumour recurrence in an orthotopic xenograft resection and recurrence 

mouse model using U87-Red-Fluc cells (Gherardini et al., 2023).  

Notwithstanding, nanocarriers still have some drawbacks, including poor drug 

penetration, limited drug encapsulation, and poor targeting (Priya et al., 2022). For 

example, local chemotherapy of brain tumours is often released from the carrier before 

it comes into contact with the cancer cells (Liu et al., 2023a). These limitations can be 

addressed through surface modifications (engineered coatings), which make possible 

controlled release, greater penetration efficiency, and targeted drug delivery (Priya et 

al., 2022). Notably, a thorough review article highlights that emulsomes provide 

advantages over other lipid-based drug delivery systems (Table 2.2) (Singh et al., 

2023). Emulsomes, a modified generation of liposomes and considered a nexus 

between liposomes and solid lipid nanoparticles, can improve pharmacokinetics, 

enhance therapeutic efficacy, and combat multidrug resistance (Elnady et al., 2023).  

Of note, various clinical trials involving TMZ are ongoing, but only a small 

number of nanoformulations have advanced to phase 1 and 2 studies in patients with 

HGG. These include liposomal curcumin paired with RT and TMZ (NCT05768919, 

newly diagnosed cases) and rhenium-186 nanoliposomes (NCT01906385, relapsed 

cases) (last accessed clinical trials.gov on 10th Sept 2023). Other liposome-based 

studies include mitoxantrone hydrochloride (HCI) (phase 1/2), doxorubicin HCI 

(phase 1/2), and paclitaxel (phase 4) (Ashrafizadeh et al., 2022). Besides, collaborative 




