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APLIKASI PEMBELAJARAN MESIN UNTUK MERAMAL
KECEDERAAN LIGAMEN ANTERIOR CRUCIATE DALAM KALANGAN

PEMAIN BOLA KERANJANG

ABSTRAK

Kecederaan Ligamen Anterior Cruciate (ACL) adalah antara kecederaan yang
paling kerap berlaku dalam kalangan atlet, yang memberi kesan besar kepada
prestasi kompetitif mereka. Mencegah kecederaan ACL adalah mencabar kerana
sifatnya yang pelibagai faktor. Teknik perlombongan data berasaskan pembelajaran
mesin telah menunjukkan potensi besar dalam mengenal pasti faktor risiko yang
berkaitan dengan kecederaan ACL. Kajian ini bertujuan untuk menilai keupayaan
meramal faktor-faktor ini menggunakan model pembelajaran mesin. Data mengenai
profil atlet, fungsi fizikal, kualiti khusus, analisis pergerakan tiga dimensi, dan
elektromiografi serentak telah dikumpulkan secara prospektif daripada 104 pemain
bola keranjang lelaki. Susulan selama satu tahun dijalankan untuk memantau
kecederaan ACL, dengan 11 pemain dikenal pasti mengalami kecederaan. Empat

algoritma pembelajaran mesin — Random Forest (RF), Support Vector Machine
(SVM), eXtreme Gradient Boosting (XGBoost), dan Logistic Regression (LR) —

dibangunkan untuk meramalkan kecederaan ACL. Model terbaik dipilih berdasarkan
purata kawasan di bawah lengkung ciri operasi penerima (AUC-ROC) daripada 10
ulangan validasi silang dan digunakan bersama Shapley Additive exPlanations
(SHAP) untuk menganalisis faktor risiko. Keputusan menunjukkan nilai AUC-ROC

sedikit berbeza antara ulangan dan kaedah (0.66-0.80), dengan pengelas terbaik
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adalah RF. Analisis SHAP mengenal pasti ciri-ciri utama dengan nilai ramalan
tertinggi untuk kecederaan ACL semasa pergerakan sukan tertentu. Fasa Berhenti
Kecemasan: Peningkatan momen fleksi lutut, daya tindak balas tanah posterior, sudut
fleksi lutut, dan pengaktifan berlebihan kuadrisep lateral serta otot rectus femoris.
Fasa Pecutan Awal: Peningkatan tork putaran dalaman lutut dan tekanan lateral pada
anggota kaki. Fasa Pemotongan Sisi: Penurunan kecondongan tibial dan sudut fleksi
pinggul, peningkatan sudut inversi pergelangan kaki, momen eversi pergelangan kaki,
dan pengaktifan berlebihan otot paha lateral. Selain itu, kestabilan yang lemah pada
kaki bukan dominan, prestasi Squat Jump yang rendah, beban latithan melebihi 15
jam seminggu, dan sejarah kecederaan sebelum ini adalah peramal ketara untuk
kecederaan ACL. Kajian ini menekankan keberkesanan model Pembelajaran Mesin
dalam meramalkan kecederaan ACL, dengan mengutamakan metrik biomekanik,
atribut fungsi, dan faktor sejarah sebagai peramal penting untuk strategi pencegahan

yang disasarkan.
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MACHINE LEARNING APPLICATION IN PREDICTING ANTERIOR

CRUCIATE LIGAMENT INJURY AMONG BASKETBALL PLAYERS

ABSTRACT

Anterior cruciate ligament (ACL) injury is among the most prevalent injuries in
athletes, significantly impacting their competitive performance. Preventing ACL
injury is challenging due to their multifactorial nature. Machine learning-based data
mining techniques have shown significant potential in identifying risk factors
associated with ACL injury. This study aimed to assess the predictive capability of
these features using machine learning models. Data on athlete’s profile, physical
function, specialized qualities, three-dimensional movement analysis, and
simultaneous electromyography were prospectively collected from 104 male
basketball players. A one-year follow-up was conducted to monitor ACL injury,
identifying n=11 injured players. Four machine learning algorithms—Random Forest
(RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost), and
Logistic Regression (LR)—were developed to predict ACL injury. The optimal
model was selected based on the mean area under the receiver operating
characteristic curve (AUC-ROC) across 10 cross-validation runs and was used with
Shapley Additive exPlanations to analyze the risk factors. The results show that
AUC-ROC values varied slightly across repetitions and methods (0.66-0.80), the best
classifier was RF. SHAP analysis identified key feature with the highest predictive

value for ACL injury during specific sports motions. Emergency Stop phase:
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Increased knee flexion moment, posterior ground reaction forces, knee flexion angle,
and overactivation of the lateral quadriceps and rectus femoris. Initial Acceleration
phase: Elevated knee internal rotation torque and lateral stress on the lower limbs.
Side-Cutting phase: Reduced tibial inclination and hip flexion angles, increased
ankle inversion angle, ankle eversion moment, and excessive lateral thigh muscle
activation. Furthermore, poor stability in the non-dominant leg, weak Squat Jump
performance, training loads exceeding 15 hours per week, and prior injury history
were significant ACL injury predictors. This study emphasizes the Machine Learning
model's effectiveness in predicting ACL injury, highlighting biomechanical metrics,
functional attributes, and historical feature as critical predictors for targeted

prevention strategies.

xxi



CHAPTER 1

INTRODUCTION

1.1 Background of the study

Basketball is a high-intensity competitive sport, which requires athletes to
dribble, breakthrough and shooting while running at a high speed. Due to the game
intensity and prolonged training, basketball players are prone to sports injuries.
Among them, Anterior Cruciate Ligament (ACL) injury is one of the most common
sports injuries of basketball players (Escamilla et al., 2012; Westermann et al., 2019).
According to an epidemiological study, the incidence rate of ACL injury in team
sports in the United States is 0.15% to 0.36%, annually (Rosa et al., 2014). Also in
China, ACL-related injuries in basketball players accounted for approximately 22%
of the total injuries, and the number of ACL-related injuries is increasing every year
(Lu & Zhang., 2014).

ACL is a complex structure that can withstand multiaxial stress and variable
tensile strain to prevent leg over-extension and knee valgus. The high-risk actions of
ACL injury include side cutting, jumping, and sudden deceleration, which occur
repeatedly in basketball training and competition (Micheo et al., 2010). ACL injury
will seriously affect the competitive state of athletes. Even with ACL reconstruction,
it will take 4-4.6 seasons to recover (Mihata et al., 2006). Moreover, the surgery and
subsequent rehabilitation are time-consuming and expensive, which will be a heavy

burden on the patients’ physiology, psychology and finance. As the core talent pool



of basketball, strategies for ACL injury prevention among the collegiate basketball
teams should be considered.

"Prevention is greater than treatment" has become a consensus in dealing with
non-contact ACL injury (Zhang et al., 2019). Currently, a variety of tests are
available to assess athletes for features associated with their susceptibility and risk of
ACL injury, such as Landing Error Scoring System (LESS) (Beutler et al., 2009),

and Cutting Movement Assessment Score (CMAS ) (Hughes & Watkins, 2006).

Although, standardized movement tests are highly applicable and simple to execute,
but most studies evaluated a single biomechanical factor of ACL risk injury for
example dynamic knee valgus (Dai et al., 2012) or landing technique (Dai et al.,
2015). Despite that, other potential features of ACL injury also include lower
extremity or core muscle strength deficits (Raschner et al., 2012), lack of balance and
joint laxity (Oshima et al., 2018), and increased body mass index (BMI) (Cronstrém
et al., 2023). Therefore, predicting ACL injury requires a comprehensive approach
that integrates multidimensional movement patterns and dynamic system interactions
to account for the complex interplay of biomechanical, muscular, and physiological
risk factors.

Machine learning (ML) technology, represented by simulating human learning
behaviour, has become more mature, and widely used in various fields of Artificial
Intelligence. Sports injuries and rehabilitation have recently benefited from ML
applications, as ML models can capture the interaction of multiple predictors. For
example, Taborri et al. (2021) identified the risk of ACL injury in 39 basketball
players by machine learning algorithm. Their results showed that the Support Vector

Machine (SVM) algorithm could achieve 96% accuracy, demonstrating a high



predictive effect (Taborri et al., 2021). However, this study is limited by a small
sample size, a narrow selection of influencing features, and a lack of robust
validation for the model's results, which may impact the generalizability and
reliability of its findings.

Machine learning is a powerful tool for automated decision-making, but its
effectiveness in injury prediction modeling depends on several critical features. First
and foremost is the quality of data, as the reliability and performance of ML models
are directly influenced by the accuracy, relevance, and comprehensiveness of the
input data (Jain et al., 2020). This current study used prospective experimental data,
ensured dataset reliability through Lachman clinical tests, and performed differential
testing to identify risk factors linked to ACL injury. Secondly, addressing the
challenge of data imbalance is essential. In sports injury prediction using ML, the
injury samples are usually a very small fraction of the total number. Therefore, the
class-imbalance data can lead to overfitting (Jauhiainen et al., 2021). The current
study employs a combination of Gaussian noise and Synthetic Minority Over-
Sampling Technique (SMOTE) to address class imbalance in the data. This approach
not only simulates the noise of real data but also ensures that the model has sufficient
samples to learn the complex patterns in the data. Moreover, the use of cross-
validation, the most commonly used way to estimate model generalization ability in
many fields, introduces randomness to the analysis can be effective in preventing
data overfitting (Forman & Scholz, 2010). While the primary goal of machine
learning is often to achieve high predictive accuracy on independent test data, this
study also emphasized the importance of ensuring that the models are interpretable
and their predictions are explainable. Hence, to interpret and visualize the output of

each model, we used the SHapley Additive exPlanations (SHAP) approach
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(Lundberg et al., 2018) because it provides a better understanding of the impact of
different features on the model results. Finally, to ensure robust model performance,
this study employed multiple randomized repetitions of experiments to enhance
result stability and credibility while minimizing the influence of chance on
predictions. A comprehensive evaluation of four machine learning algorithms—
Random Forest, Logistic Regression, SVM, and XGBoost—was conducted using
various performance metrics such as accuracy, precision, recall, F1 score, and AUC.
These algorithms were selected for their specific strengths: Random Forest and
XGBoost excel in handling complex nonlinear relationships, Logistic Regression is
valued for its simplicity and interpretability, and SVM performs well in high-
dimensional spaces. This approach allowed for the identification of the most suitable
model tailored to the research task.

Based on the above, this study focuses on male basketball players and
incorporates athlete’s profile, physical function features, physical fitness tests, and
biomechanical and electromyographic data collected during unanticipated lateral
cutting maneuvers. Then, a multidimensional machine learning model for predicting
ACL injury was developed. This study addresses the limitations of existing research
in data integration, predictive performance, and model interpretability. It provides
scientific evidence and theoretical support for the early identification and effective

prevention of ACL injury.

1.2 Theoretical framework

The theoretical framework provides comprehensive understanding for ACL
injury risk identification, data analysis, and model development through the

integration and application of multidisciplinary theories. The framework not only
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facilitates the achievement of research objectives but also lays a foundation for the
scientific advancement of injury prediction and prevention. The specific theoretical

components are as follows:

1.2.1 Multifactorial Model of Injury

The multifactorial model of sports injury originates from the four-step
framework for injury prevention proposed by Van Mechelen et al. (1992). This
framework systematically addresses injury identification, causal exploration,
prevention strategy development, and outcome evaluation from an epidemiological
perspective, laying a foundation for subsequent research. Meeuwisse (1994) further
advanced this field by proposing the multifactorial model of sports injury,
emphasizing that the interplay between intrinsic features and extrinsic features
jointly determines injury risk. In 2007, the dynamic recursive model was proposed,
which highlights the accumulation and dynamic variation of risk factors combined
with the final triggering event may collectively drive injury occurrence (Meeuwisse
et al., 2007). Bahr and Krosshaug (2005) introduced the concept of the injury
causation chain, systematically breaking down the entire injury process for the first
time—from individual baseline risk to acute precipitating features and triggering
events. Using biomechanical techniques, they revealed key mechanisms underlying
injuries, providing a basis for effective prevention. Entering the era of complex
systems theory, Bittencourt et al. (2016) adopted a complex systems model
perspective, viewing sports injuries as the result of nonlinear dynamic interactions
among multidimensional features. Through network analysis, they uncovered the
intricate relationships between these features, driving the transition from traditional

causal analysis to precise prediction.



Based on the developmental trajectory of the multifactorial model of sports
injuries, ACL injury research should adopt a multidimensional perspective to
comprehensively uncover its complex mechanisms. Core risk factors include
intrinsic features such as anatomical characteristics, physiological traits, and
neuromuscular control capacity, which often determine an individual's baseline
susceptibility to injury (Shultz et al., 2012). Secondly, extrinsic features related to
environmental or external conditions significantly influence the occurrence of
injuries. These include training and competition intensity, frequency, playing
surfaces, and equipment (Alentorn-Geli et al., 2009). Thirdly, trigger events.
Biomechanical imbalances during high-risk actions or events are often the direct
causes of injury, such as insufficient knee flexion angle during jump landings and
excessive knee shear forces during high-speed lateral movements. Consequently,
biomechanical metrics have become the most commonly used predictors of ACL
injury (Yu & Garrett, 2007). Furthermore, integrating complex systems theory is

necessary to analyze the interactions among multidimensional features.

1.2.2. Theoretical Framework for Machine Learning in Injury Prediction

The core of machine learning in injury prediction lies in multidimensional data
classification, where input features are analyzed to determine whether an athlete is at
high risk. In the 1950s, the concept of using machine learning for prediction was
proposed, laying the philosophical foundation for the field (Turing, 1950). Then,
rule-based chess program demonstrated the potential of decision-making through
pattern recognition, marking the prototype of supervised learning (Samuel, 1959).
Next, statistical learning theory and support vector machines (SVM) provided the

mathematical foundation for small-sample learning and high-dimensional modeling,
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forming an early framework for injury risk classification tasks (Vapni, 2000).
However, these models have limitations in handling nonlinear dynamic interactions.
As machine learning shifted its focus to data-driven model optimization, Random
Forest was proposed to enhance model robustness and generalization through
ensemble learning methods (Breiman, 2001). Meanwhile, the decision tree model
was developed to  decomposed complex problems into multiple simple decision
paths, significantly improving the model's interpretability and applicability (Quinlan,
2014). During this phase, machine learning was gradually applied to sports injury
prediction, focusing on identifying specific high-risk movements, such as assessing
knee joint mechanics during dynamic activities.

The interpretability of machine learning models has also become a key research
focus. The LIME method enhances model transparency through local explanations,
particularly in multivariable interaction analysis (Das et al., 2019). Meanwhile,
SHAP tool was developed based on game theory, quantifying the contribution of
each feature to the model’s predictions and enhancing prediction transparency. In the
field of sports injury prediction, these tools help to interpret the specific impact of
key features on injury risk (Lundberg & Lee, 2017).

Overall, the development of machine learning prediction theories has evolved from
early probabilistic models to advanced models capable of capturing nonlinear
dynamic relationships and multifactorial interactions, providing a theoretical

foundation and practical support for precise sports injury prediction.



1.3  Conceptual Framework

This study's conceptual framework systematically illustrates the entire process, from
identifying risk factors for ACL injury and data collection to building predictive

models.

1.3.1  Classification of Risk factors for ACL Injury

Risk factors for ACL injury include anatomical structure, hormonal levels, and
environmental features, which are typically difficult to modify and are defined as
invariable features. In contrast, biomechanical and neuromuscular features related to
ACL injury—such as biomechanics, joint flexibility, core stability, body composition,
and sport-specific qualities—can be improved through training and are classified as

variable features, which are the focus of this study.

1.3.2  Risk Data Collection and Injury Quantification for ACL Injury

Risk factors were identified through a literature review. Then, biomechanical data
were collected during unanticipated stop-and-cut basketball maneuvers. Next, joint
flexibility and stability were measured using the FMS test while the core stability
was assessed through the Y-Balance test. The sport-specific qualities were quantified
using strength, explosiveness, and agility tests. Finally, the athlete’s Profile was
gathered through questionnaires. A 12-month follow-up was conducted post-testing,

with ACL injury diagnosed using the Lachman test and MRI.

1.3.3  Construction of the ACL Injury Prediction Model



(1) Feature Selection: Independent sample t-tests were performed to include features
that showed significant differences (P < 0.05) between injured and non-injured
athletes. Feature selection reduces model complexity, enhances generalization,
and ensures the relevance of the input features.

(2) VIF: By eliminating features with high collinearity, feature redundancy is
reduced, and model stability is optimized.

(3) Sample Splitting: The dataset is divided into training and testing sets, used
respectively for model training and performance validation. This ensures an
objective evaluation of model performance while preventing overfitting, which
could compromise the model's generalization capability.

(4) Algorithm Selection: Random Forest, SVM, Logistic Regression, and XGBoost
were chosen to address challenges posed by different data characteristics. These
algorithms ensure the ability to capture nonlinear relationships while balancing
model accuracy and interpretability.

(5) 10-Fold Cross-Validation: Through multiple random groupings and validations,
this method comprehensively evaluates model stability and reduces performance
bias caused by the randomness of data splitting.

(6) Model Evaluation: The performance of the model is comprehensively evaluated
using metrics such as AUC, ROC curves, F1 score, precision, and recall to select
the best predictive model.

(7) Model Interpretation: SHAP is used to quantify the contribution of each features
to the prediction outcome, enhancing the model's transparency and
interpretability.

The overall process is illustrated in Figure 1.1.
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Figure 1.1 Theoretical framework of the study
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1.4 Problem statement

About 70% of ACL injury are non-contact injuries (Claudino et al., 2019). Non-

contact ACL injury is influenced by various risk factors, including anatomical
structure, hormonal levels, and environmental conditions, many of which are
unmodifiable. However, modifiable features of ACL injury such as biomechanical
and neuromuscular characteristics can be improved through training, offering
potential for injury prevention measures. Existing research has yet to elucidate the
specific relationship between these modifiable features and ACL injury risk in male
basketball players. Additionally,the anatomical features of ACL injury are highly
variable in terms of gender and measurement of parameters (Jagadeesh et al., 2021).
Therefore, in order to draw more accurate conclusions, the current research limits the
research participants to male basketball athletes.

Although machine learning models have shown promise in predicting sports
injuries (Johnson et al., 2019; Lépez-Valenciano et al., 2018; Rommers et al., 2020),
several limitations remain in ACL injury prediction. First, the included risk factors in
existing studies vary significantly, leading to inconsistent prediction results and
limited clinical applicability. Second, the issue of class imbalance is often
overlooked, causing models to favor the majority class and reducing predictive
performance for the minority class (i.e., injury cases). Third, the lack of
interpretability in machine learning models results in insufficient transparency
between features and prediction outcomes.

Therefore, this study optimizes the modeling strategy, ensures data validity,

reveals key ACL injury factors, and enhances model interpretability.
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1.5 Research Question

This study aims to investigate key issues in ACL injury prediction by addressing

the following questions

(1) Which specific metrics are significantly associated with ACL injury risk in male
basketball players?

(2) How valid the machine learning algorithms in predicting ACL injury among male
basketball player?

(3) How do algorithms like Random Forest, XGBoost, Support Vector Machine
(SVM), and Logistic Regression perform in predicting ACL injury?

(4) Can interpretability tools (e.g., SHAP) effectively identify key features

associated with ACL injury?

1.6  Research objectives

1.6.1  Overall Objective

To develop and validate a machine learning framework that integrates biomechanical,
physical, and demographic risk factors to predict ACL injury risk in male basketball
players, identify the most effective predictive algorithm, and utilize SHAP for model

interpretability to uncover key risk factors for ACL injury prevention.

1.6.2  Specific Objectives

(1) To evaluate the relationship of lower limb biomechanics, joint flexibility, core
stability, physical fitness, athletes’ profile features and incidence of ACL injury in

male basketball players.
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(2) To validate machine learning algorithm in predicting ACL injury among male
basketball players

(3) To compare the performance of machine learning algorithms including
Random Forest, SVM, Logistic Regression, and XGBoost and determine the best
algorithm for ACL injury prediction.

(4) To perform visualization analysis of machine learning models, by evaluating

the rankings of features across different algorithms using SHAP.

1.7  Research hypotheses

The following are the study hypotheses
Objective 1:

Ho: There are no significant relationships between lower limb biomechanics, joint
flexibility, core stability, physical fitness, athletes’ profile features and incidence of
ACL injury

Ha: There are significant relationships between lower limb biomechanics, joint
flexibility, core stability, physical fitness, athletes’ profile features and incidence of

ACL injury

Objective 2:

Ho: The predictive model is not valid in distinguishing between male basketball
players with and without ACL injury.

Ha: The predictive model is valid in distinguishing between male basketball

players with and without ACL injury.
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Objective 3:

Ho: There is no significant difference in the classification performance of Random
Forest, SVM, Logistic Regression, and XGBoost algorithms for ACL injury
prediction.

Ha: There is a significant difference in the classification performance of Random
Forest, SVM, Logistic Regression, and XGBoost algorithms for ACL injury

prediction.

Objective 4:

Ho: SHAP analysis indicates that feature importance does not converge across
different algorithms, making it impossible to identify consistent key features for
ACL injury.

Ha: SHAP analysis indicates that feature importance converges across different

algorithms, enabling the identification of consistent key features for ACL injury.

1.8  Significance of the study

This study holds significant theoretical and practical implications. First, by
identifying key risk factors associated with ACL injury in male basketball players,
this study helps athletes implement preventive measures, reduce injury rates, and
prolong their careers. Second, by optimizing modeling strategies and incorporating
various techniques—such as VIF for features screening, handling imbalanced
samples, and cross-validation—it enhances the model’s predictive performance and
robustness, offering valuable insights for modeling in complex data environments.

Gaussian noise combined with SMOTE is introduced to address sample imbalance,
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and cross-validation is used to evaluate model stability. Additionally, multiple
machine learning algorithms are employed, each offering unique advantages in injury
prediction, providing multidimensional support for sports injury risk assessment.
Random Forest integrates multiple decision trees, offering robust nonlinear modeling
capabilities to capture feature interactions in complex data. Additionally, its built-in
feature of importance evaluation mechanism supports the identification of key injury
risk factors (Briand et al., 2022). SVM excels in high-dimensional feature modeling,
capturing nonlinear relationships through kernel functions. Its margin-maximizing
property effectively prevents overfitting, making it suitable for injury data analysis
with limited sample sizes (Miawarni et al., 2022). Logistic Regression is renowned
for its simplicity and interpretability, clearly demonstrating the influence of risk
factors and enabling quantitative assessment of injury risk through probability
outputs (Stylianou et al., 2015). XGBoost excels in complex feature modeling with
its strong predictive performance and efficiency, enhancing model stability and
generalization through iterative optimization and regularization mechanisms
(Priscilla et al., 2020). Finally, SHAP visualization tools are utilized to rank features
across different algorithms, identify key features that influencing ACL injury risk

and aid in the development of targeted prevention strategies.

1.9 Operational definition

This study establishes a series of operational definitions to ensure consistency in

understanding key concepts, and methodology throughout the research, (Table 1.1).
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Table 1.1 Operational definition

Terms

Operational definition

Machine

Learning

The extraction of relevant knowledge from a machine-learning
model concerning relationships either contained in data or
learned by the model (Murdoch et al., 2019). It provides a
framework for predicting outcomes and identifying key features

influencing ACL injury

SVM

Support Vector Machine is a universal learner. It can classify
both linear and non-linear data, (Joachims, 1999). It serves as a
universal learner and is particularly effective for high-

dimensional datasets

Logistic

regression

Logistic regression is a statistical model that quantifies the
relationship between a categorical dependent variable (e.g., ACL
injury status) and one or more independent features. It is widely
used for binary classification tasks due to its simplicity and

interpretability (Nick & Campbell, 2007).

XGboost

Extreme Gradient Boosting (XGBoost) is an improved algorithm
based on Gradient Boosting Decision Trees, which combines
individual learners together through the boosting technique to
establish dependencies. Additionally, it can effectively construct

boosting trees and run in parallel (Jiang et al., 2023).

Random forest

A random forest (RF) is an ensemble classifier and consisting of
many Decision Trees similar to the way a forest is a collection of
many trees (Breiman, 2001). It is particularly effective in

handling non-linear data and identifying features importance

ACL injury

In this study, ACL injury refers specifically to non-contact
anterior cruciate ligament injuries of varying severities,
diagnosed using Magnetic Resonance Imaging (MRI) or
confirmed by positive Lachman tests. This operational definition

ensures consistency in identifying the target condition.
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Table 1.1 Continued

Male
basketball
player

The study focuses on male college basketball players aged 18
and above who have participated in competitive basketball for at
least three years. This criterion ensures the inclusion of athletes
with adequate exposure to the physical demands and injury risks

inherent in basketball.

Physical
Function

Features

Physical Function Features are defined as measurable features of
an individual’s physical capabilities that influence variations in

injury risk.

Key Physical Function Features include the Y-Balance Test (Left
Leg Combined Score, Right Leg Combined Score, Double Leg
Difference) and the overall Functional Movement Screen (FMS)
score, which collectively assess stability, mobility, and

movement symmetry.

Athlete’s
Profile

Features

Athlete’s profile features are defined as individual characteristics
encompassing physical attributes, personal history, and lifestyle
features that influence injury risk.

These include measurable physical parameters (e.g., height,
weight, age, and body composition), training background (e.g.,
sport level, years of training, and weekly training hours),
functional roles (e.g., playing position), and health-related
information (e.g., injury history, hereditary conditions, and
medication use). Collectively, these features provide a
comprehensive understanding of an athlete’s predisposition to
injuries, enabling tailored risk evaluation and the formulation of

preventive measures.
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Table 1.1 Continued

Physical
Fitness

features

Physical Fitness features represent the athletic abilities and
performance metrics directly related to basketball activities that

influence ACL injury risk.

These features capture the strength, power, agility, and explosive
performance of players. Examples include lane agility, one-
repetition maximum (1RM) for squat and deadlift, relative
strength metrics (e.g., relative squat and deadlift loads), peak
maximum rate of force development (mRFD) during squat and
deadlift, dominant single-leg hop distance, and vertical jump
performance (e.g., squat jump, deep jump, countermovement
jump). These measures provide insights into a player’s
neuromuscular capabilities and biomechanical efficiency, which
are critical in assessing injury risk during basketball-specific

movements.

Biomechanical

features

Biomechanical features pertain to the kinematic, kinetic, and
electromyographic parameters observed during unanticipated
side-cutting movements that influence ACL injury risk

These features involve dynamic movement patterns, joint angles,
moments, and muscle activations that occur during high-risk
maneuvers. Key features included the standardization of the
center of mass (COM), ground reaction forces measured via force
platforms, horizontal distances from the ankle joint to the center
of pressure, and specific joint angles and moments . Additionally,
electromyographic (EMG) activation levels of key muscles,
including the rectus femoris, vastus medialis, vastus lateralis,
biceps femoris (long and short head), medial and lateral
gastrocnemius, are measured to evaluate neuromuscular control
during these movements. These data allow for a detailed analysis
of the biomechanical and neuromuscular mechanisms underlying

ACL injury risk.
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CHAPTER 2

LITERATURE REVIEW

2.1  Anterior cruciate ligament: structure and injury diagnosis

The human body's largest and most complex weight-bearing joint is the knee
joint which comprises the lower end of the femur, the upper end of the tibia, and the
patella (Figure 2.1) (Hughes & Watkins, 2006). In addition, the knee joint is
supported by a combination of ligaments, muscles, and tendons that work together to
provide strength and flexibility. It enables us to do various physical activities like
walking, running, bending, rotating, squatting, and complex movements (Xu et al.,
2007). The anterior cruciate (ACL) and posterior cruciate (PCL) ligaments have a
hinge shape and are attached between the intercondylar fossa of the femur and the
intercondylar eminence of the tibia. These ligaments play a crucial role in

maintaining proper knee joint function. Any injury to the ligaments can destabilize

the knee joint, hinder physical activity, and lead to secondary osteoarthritis

(Kraeutler et al., 2017; Lohmander et al., 2007).
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Figure 2.1 Anatomy of the knee joint. (Adopted with permission from Hughes & Watkins,
2006).

The ACL is a crucial component for the knee joint stability by controlling the
excessive movement of the tibia and femur (Escamilla et al., 2012). It is a strong
band made of connective tissue and collagenous fibres that originate from the
anteromedial aspect of the intercondylar region of the tibial plateau and extends
posteromedially to attach to the lateral femoral condyle (Gupta et al., 2019). The
ACL is formed by anteromedial bundle and posterolateral bundle. ACL injury in
sports occur due to excessive motion involving flexion, extension, and twisting of
the knee (Evans & Nielson, 2023). Recovery typically requires at least 6 months of
surgical reconstruction and rehabilitation (Kruse et al., 2012). It is estimated that the
yearly expense for extended care following an ACL injury is approximately $2.8
billion (Mather et al., 2013).

At present, physicians rely on a combination of a patient's medical history,
physical examination, and Magnetic Resonance Imaging (MRI) (Musahl et al., 2018)
to accurately diagnose ACL injury (Bai et al., 2022). In cases of acute ACL injury,
patients may hear a tearing sound or feel an abnormality in the joint, followed by
intense knee pain, limited mobility, and swelling. Other signs include persistent

swelling in the knee, a sensitive knee area, or unstable knee movements while
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engaging in activities that involve twisting or jumping ( Peat et al., 2017). When
physicians suspect that an athlete has an ACL injury, they commonly use the
Lachman test and pivot shift test to evaluate the severity of the injury (Bai et al.,
2022). In addition, physicians frequently use a combination of MRI techniques to
diagnose ACL tears. MRI offers several benefits such as multi-directional imaging,
good contrast for soft tissues, and high spatial resolution. It also displays exceptional
sensitivity and specificity in detecting ACL tears (Phelan et al., 2016).

The classification of ACL tears is based on the extent of the ligament damage,
with the following being the commonly used medical standards (Dar et al., 2022):
Grade I - minor strain of the ligament without significant tearing, knee remains stable,
mild pain and swelling, Lachman Test shows minimal movement (less than 5 mm);
Grade II - partial tear of the ligament, affecting knee stability. The patient may
experience knee instability accompanied by moderate pain and swelling. Lachman
Test shows noticeable movement (5-10 mm); Grade III - complete ligament tear,
resulting in knee instability. This injury grade is usually associated with severe pain,
swelling, and inability of the knee to bear weight. while the Lachman Test shows a
forward movement of more than 10 mm. The current study focuses on all grades of
ACL injury with a positive Lachman Test and a comprehensive assessment of the

injury using MRIL.

2.2 ACL injury mechanisms and risk factors

In high-intensity sports like basketball and soccer, movements changing
direction, jumping, landing, and sudden stops can increase the risk of ACL injury

( Leppédnen et al., 2017). ACL injury occur when there is instability (i.e., abnormal
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motion) in the tibio-femoral joint, which causes an overload on the ACL (Hughes &
Watkins, 2006). The tibio-femoral joint, commonly known as the knee joint, exhibits
motion across three anatomical planes: the sagittal, frontal, and transverse planes,
reflecting its complexity and versatility (Figure 2.2) (Kwong, 2008). This motion is
characterized by six degrees of freedom, encompassing three rotational movements
and three translational movements. The rotational movements include flexion and
extension in the sagittal plane, internal and external rotation in the transverse plane,
and abduction and adduction in the frontal plane. The translational movements
consist of anterior-posterior translation (i.e., sliding forward and backward), medial-
lateral translation (i.e., shifting side to side), and proximal-distal translation (i.e.,
compression and distraction along the joint axis). Together, these degrees of freedom
enable the knee joint to perform its essential functions in dynamic activities while
maintaining joint stability and mobility. ACL injury is often caused by the knee
being outside of its normal range of motion in all directions. This can result in
excessive strain on the joint, ligaments, and cartilage. Studies have shown that the
ACL experiences greater stress when subjected to complex and multidirectional
loading, compared to loading in a single direction (Berns et al., 1992; Markolf et al.,
1995; Miles et al., 2022). Athletes who play basketball are at a higher risk of
experiencing ACL injury due to the complex and varied nature of the movements

involved in the game.
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Figure 2.2 Six degrees of freedom (i.e., three rotational, three translational) of
the knee joint motion model (Adopted with permission from Kwong, 2008)
Approximately 70% of ACL injury are non-contact in nature, making them the

primary focus of this study (Claudino et al., 2019). Non-contact injuries occur
without any direct physical contact between the athlete and an external force, such as
another player or object. In contrast, contact injuries involve external forces, such as
a collision with another player or a direct blow to the knee (Zhou, 2018). Non-
contact ACL injury is often multifactorial and the risk factors can be categorized into
modifiable and non-modifiable features (Zhou, 2018). Non-modifiable risk factors
include, anatomical structures (Simon et al., 2010), hormones (Hewett et al., 2007)
and environmental features (Orchard & Powell, 2003), which are often difficult or
impossible to change. Modifiable risk factors include biomechanics and
neuromuscular control associated with ACL injury (Zhang et al., 2019). Accurately
identifying the modifiable risk factors, is crucial to develop effective injury

prevention programs to reduce ACL injury incidence.
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2.2.1 Anatomical risk factors

When the knee is in an overly extended position in the sagittal plane, all the
fibres of the ACL are stretched. The base of the intercondylar fossa then pulls it into
a curved chord, which serves as the primary resistance to hyperextension (Wang et
al., 2019). When the ACL ligament is stretched, it becomes vulnerable to damage
from shear stresses.Therefore, athletes with larger quadriceps angles (also known as
Q-Angle) and flat foot may experience an increase in knee valgus and a decrease in
lower limb stability which can greatly increase the risk of ACL injury when external
forces impact the knee (Vacek et al., 2016). Combined features of the medial tibial
depth (MTD) and lateral posterior tibial slope (LPTS) are important anatomical
factors in assessing the risk of ACL injury (Misir et al., 2022). It was shown that
combined shallow MTD Shallow and decreased LPTS is a risk factor for ACL injury
in male, while combined shallow MTD and increased LPTS is a risk factor for ACL
injury for female (Hashemi et al., 2010). There are certain sex-specific anatomical
factors, such as Tibial Slope (TS) and lateral femoral condyle ratio (LFCR), which
pose a risk solely to female (Barnum et al., 2021; Beynnon et al., 2014; Jeon et al.,
2022). On the other hand, the ACL size and the shape of the intercondylar notch are
strongly associated with an ACL injury risk in male (Whitney et al., 2014; Huang et
al.,2020).

Additionally, the posterior slope angle of medial tibial plateau is a contributing
factor to the risk of ACL injury (Matas et al., 2021). The articular surface of the
medial tibial plateau is not perpendicular to the longitudinal axis of the tibia, but
rather has a downward sloping angle. When an athlete abruptly changes direction and

lands on one foot, it creates pressure on the knee and causes the quadriceps muscles
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