EFFECTS OF HEALTH EDUCATION ON PHYSICAL ACTIVITY PROMOTION BASED ON PRECEDE-PROCEED MODEL AMONG ADOLESCENTS IN YUNNAN, CHINA

ZENG LINXIAN

UNIVERSITI SAINS MALAYSIA

2025

EFFECTS OF HEALTH EDUCATION ON PHYSICAL ACTIVITY PROMOTION BASED ON PRECEDE-PROCEED MODEL AMONG ADOLESCENTS IN YUNNAN, CHINA

by

ZENG LINXIAN

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

August 2025

ACKNOWLEDGEMENT

The sharpening of a sword grants it keenness, just as the harsh winter unveils the fragrance of plum blossoms. My three-year doctoral journey has been one of transformation—from aspiring to academia to dedicating myself to rigorous research. It was a path paved with perseverance, sweat, and moments of triumph and struggle. This journey has shaped me, teaching me resilience in failure, joy in success, and the courage to make life-changing decisions.

I am deeply grateful to Universiti Sains Malaysia, my esteemed alma mater, for allowing me to pursue my PhD in sports science. Their unwavering support has illuminated every step of my academic path. My heartfelt thanks go to my supervisor, Associate Professor Dr. Garry Kuan, for his invaluable guidance, patience, and mentorship. His meticulous academic rigor and personal kindness have provided me with an environment where I could thrive. I also extend my sincere gratitude to my cosupervisors, Associate Professor Dr. Kueh Yee Cheng, Dr. Ayu Suzailiana Binti Muhamad, and Professor Zhao Fang, for their insightful advice and steadfast support. Their expertise has been instrumental in overcoming research challenges and refining my work.

I am forever indebted to my parents and my husband, Mr. Liu Wei, for their unwavering encouragement and support. To my children, Liu Chengrui and Liu Zeng Ziyan, you are my greatest motivation, giving me strength and faith to push forward.

As I reflect on the past, my heart swells with gratitude; as I look ahead, I am filled with confidence. Completing this dissertation is not an end but a new beginning—one that I embrace with determination, appreciation, and a commitment to lifelong learning.

TABLE OF CONTENTS

ACK	NOWLEI	OGEMENT	T	ii
TAB	LE OF CO	ONTENTS		iii
LIST	OF TAB	LES		xv
LIST	OF FIGU	JRES		xix
LIST	OF ABB	REVIATIO	ONS	xix
LIST	OF APPI	ENDICES		xxiv
ABS	ΓRAK			xxv
ABS	ΓRACT			xxviii
СНА	PTER 1	INTROD	UCTION	1
1.1	Backgro	und		1
1.2	Problem	statement.		5
1.3	Rational	e and Signi	ficance of the Study	8
	1.3.1	Rationale	of the Study	8
	1.3.2	Significar	ace of the Study	9
1.4	Research	question		10
1.5	Research	objective.		12
1.6	Research	hypothesis	S	13
1.7	Operatio	nal definiti	on	15
	1.7.1	PRECED	E phase (evaluation phase)	15
		1.7.1(a)	Sociological assessment	15
		1.7.1(b)	Epidemiological assessment	15
		1.7.1(c)	Behavioural environment assessment	16
		1.7.1(d)	Educational organisation assessment	16
		1.7.1(e)	Administrative and policy assessment	17
	1.7.2	PROCEE	D phase (experimental intervention)	17

		1.7.2(a) Implementation	18	
		1.7.2(b) Process evaluation	18	
		1.7.2(c) Impact evaluation	18	
		1.7.2(d) Outcome evaluation	19	
	1.7.3	Physical activity social support (PASS)	19	
	1.7.4	Physical activity self-efficacy (PASE)	19	
	1.7.5	Exercise benefits and barriers (EBBS)	20	
	1.7.6	School physical activity environment (SPAE)	20	
	1.7.7	Physical fitness (PF)	21	
	1.7.8	Physical activity level (PA)	21	
	1.7.9	Confirmatory factor analysis (CFA)	21	
	1.7.10	Structural equation modelling (SEM)	22	
CHA	CHAPTER 2 LITERATURE REVIEW			
2.1	Introduc	tion	23	
2.2	Definition	ons of relevant concepts	24	
	2.2.1	Adolescents	24	
	2.2.2	Physical activity	24	
2.3	The rela	tionship between physical activity and health	25	
	2.3.1	Control overweight and obesity	26	
	2.3.2	Enhance cardiovascular and bone health	26	
	2.3.3	Improve cognitive ability and academic performance	28	
2.4	PRECE	DE-PROCEED model	29	
	2.4.1	Definition of PRECEDE-PROCEED model	29	
	2.4.2	Implementation steps of the PRECEDE-PROCEED model	30	
		2.4.2(a) The PRECEDE stage	32	
		2.4.2(b) The PROCEED stage	37	
	2.4.3	Advantages of the PRECEDE-PROCEED model	38	

2.5	Applicat	ion of the PRECEDE-PROCEED model to health interventions	. 40
	2.5.1	Cognitive Behavioural Intervention	. 40
	2.5.2	Self-Management	.41
	2.5.3	Epidemiological prevention and screening	.41
2.6		influencing adolescent physical activity based on the PRECEI ED model	
	2.6.1	Individual level	. 43
		2.6.1(a) Relationship between self-efficacy and PA	.44
		2.6.1(b) Relationship between perceived benefits and barriers of exercise and PA	.45
		2.6.1(c) Relationship between physical fitness level and PA	.47
	2.6.2	Social level	. 49
	2.6.3	School level	. 50
2.7	Interven	tions to promote PA	. 52
	2.7.1	PA interventions at the individual level	. 53
	2.7.2	PA intervention measures at the school level	. 54
	2.7.3	PA intervention measures at the social support level	. 55
2.8	PRECEI	DE-PROCEED model health education intervention plan for PA	. 56
2.9	Structura	al Equation Modelling	. 58
2.10	Mixed A	NOVA and MANOVA	. 60
2.11	Concept	ual framework	. 62
2.12	Summar	y	. 63
СНА	PTER 3	METHOD FOR PHASE 1	. 65
3.1	Introduc	tion	. 65
3.2	Setting a	and duration of study	. 65
3.3	Question	nnaire translation (ASAFA, Q-SPACE)	. 66
	3.3.1	Translation procedure (forward and backward)	. 67
	3.3.2	Content validity	. 69

	3.3.3	Reconciliation	70		
	3.3.4	Pre-testing study	71		
3.4	Study de	esign	71		
3.5	Study du	ıration	71		
3.6	Study lo	cation	72		
3.7	Study po	opulation and sample	72		
	3.7.1	Study population	72		
	3.7.2	Sampling frame (after inclusion/exclusion criteria)	72		
		3.7.2(a) Inclusion criteria:	72		
		3.7.2(b) Exclusion criteria:	73		
		3.7.2(c) Withdrawal criteria:	73		
	3.7.3	Study participants	73		
3.8	Samplin	g method	73		
3.9	Sample	size calculation	73		
3.10	Measurement tools				
	3.10.1	Assess Social Support for Physical Activity Scale (ASAFA)	75		
	3.10.2	Questionnaire-School Physical Activity Environment (Q-SPACE)	75		
	3.10.3	Exercise Benefits/Barriers Scale (EBBS-CN)	76		
	3.10.4	Physical Activity Self-efficacy Scale (PASES-C)	77		
	3.10.5	Physical Activity Questionnaire for Adolescents (PAQ-CN)	78		
	3.10.6	Summary of the measurement tools	79		
3.11	Data col	lection	79		
3.12	Data ma	nagement and statistical analyses	81		
3.13	Confirm	atory factor analysis (CFA)	81		
	3.13.1	Normality	82		
		3.13.1(a) Univariate normality	83		
		3.13.1(b) Multivariate normality	83		

		3.13.1(c) Multicollinearity	83
	3.13.2	Model goodness-of-fit	84
		3.13.2(a) Absolute fit indices	84
		3.13.2(b) Relative fit indices	85
		3.13.2(c) Parsimonious fit indices	85
		3.13.2(d) Noncentrally-based indices	86
	3.13.3	Validity & Reliability of measurement model	87
	3.13.4	Measurement reliability	88
	3.13.5	Model re-specification	89
		3.13.5(a) Standardized residuals	89
		3.13.5(b) Modification Index	90
	3.13.6	Test-retest reliability	90
3.14	Statistica	al flowchart for phase 1	90
3.15	Ethical c	consideration	92
	3.15.1	Ethical approval	92
	3.15.2	Data protection and record keeping	93
	3.15.3	Declaration of conflict of interest	93
3.16	Chapter	summary	93
CHA	PTER 4	RESULT OF THE PHASE 1	94
4.1	Introduc	tion	94
4.2	Question	nnaire translation	94
	4.2.1	Content validity- good to conduct.	94
	4.2.2	Content validity test I-CVI	94
	4.2.3	Reconciliation	95
	4.2.4	Pre-testing	95
4.3	Confirm	atory factor analysis (CFA)	96
	4.3.1	Sample description	96

	4.3.2	Preliminary data analysis	96
	4.3.3	Assumption checking for CFA	97
		4.3.3(a) Univariate normality	97
		4.3.3(b) Multicollinearity	98
4.4	Measure	ment model analyses (CFA)	98
	4.4.1	ASAFA-C Scale	98
		4.4.1(a) Confirmatory Factor Analysis of ASAFA-C	98
		4.4.1(b) Composite reliability (CR) and discriminant validity 1	00
		4.4.1(c) Test-retest	01
	4.4.2	Q-SPACE-C scale	.02
		4.4.2(a) Confirmatory factor analysis of Q-SPACE-C1	02
		4.4.2(b) Composite reliability (CR) and discriminant validity 1	03
		4.4.2(c) Test-retest	03
	4.4.3	EBBS-CN with two subscales	.04
		4.4.3(a) Confirmatory factor analysis of EBBS-CN1	04
		4.4.3(b) Composite reliability (CR) and discriminant validity 1	07
		4.4.3(c) Test-retest	09
	4.4.4	PASES-C scale	.11
		4.4.4(a) Confirmatory factor analysis of PASES-C1	11
		4.4.4(b) Composite reliability (CR) and discriminant validity 1	12
		4.4.4(c) Test-retest	12
	4.4.5	PAQ-CN1	.13
		4.4.5(a) Confirmatory factor analysis of PAQ-CN1	13
		4.4.5(b) Composite reliability (CR) and discriminant validity 1	15
		4.4.5(c) Test-retest	15
4.5	Summary	y 1	16

CHA	PTER 5	METHOD FOR PHASE 2	118			
5.1	Introduc	tion	118			
5.2	Study de	esign1	118			
5.3	Study du	ration	118			
5.4	Study lo	cation1	118			
5.5	Study po	opulation and sample	119			
	5.5.1	Study population	119			
	5.5.2	Sampling frame (after inclusion/exclusion criteria)	119			
		5.5.2(a) Inclusion criteria:	119			
		5.5.2(b) Exclusion criteria:	119			
		5.5.2(c) Withdrawal criteria:	120			
	5.5.3	Study participants	120			
5.6	Samplin	g method	120			
5.7	Sample	size calculation	120			
5.8	Measure	ment tools	121			
5.9	PRECEI	PRECEDE phase of the PRECEDE-PROCEED model				
	5.9.1	Sociological assessment	124			
	5.9.2	Epidemiological assessment	124			
	5.9.3	Behavioural and environmental assessment	125			
	5.9.4	Educational and organisational assessment	125			
	5.9.5	Administrative and policy assessment	126			
5.10	Data col	lection	126			
5.11	Data ma	nagement	128			
5.12	Statistica	Statistical analysis				
	5.12.1	Descriptive analysis	129			
		5.12.1(a) Analysis of sociodemographic characteristics of participants	129			
		5.12.1(b) Descriptive statistics of the scores of each variable 1	130			

		5.12.1(c) Analysis of correlation	130
	5.12.2	Structural Equation Modelling (SEM)	130
5.13	Ethical o	consideration	134
	5.13.1	Ethical approval	134
	5.13.2	Data protection and record keeping.	135
5.14	Chapter	summary	135
СНА	PTER 6	RESULT OF THE PHASE 2	137
6.1	Introduc	tion	137
6.2	Sample	description	137
6.3	Prelimin	nary data analysis	138
6.4	Prelimin	nary data screening	139
6.5	Assump	tions checking for SEM	140
	6.5.1	Univariate normality	140
	6.5.2	Multicollinearity	140
6.6	Analysis	s of evaluation results based on the PRECEDE-PROCEED mode	1 140
	6.6.1	The physical activity social support	140
	6.6.2	The physical activity self-efficacy	142
	6.6.3	Exercise benefits/barriers	143
	6.6.4	The school physical activity environment	145
	6.6.5	Physical fitness	146
	6.6.6	The PA levels	146
6.7	Structura	al equation modelling estimation	148
	6.7.1	Structural equation modelling analysis	148
	6.7.2	Validity and reliability of questionnaires used in SEM	148
	6.7.3	Correlations between variables	149
	6.7.4	Path model testing of structural equation modelling	150
	6.7.5	Initial /Final structural model	153

	6.7.6	Summary of SEM tests and model fit indices	155	
	6.7.7	Structural model testing for indirect relationships	156	
6.8	Summar	y	158	
CHA	PTER 7	METHOD OF PHASE 3	160	
7.1	Introduc	tion	160	
7.2	Study de	esign	160	
7.3	Study du	ıration	160	
7.4	Study lo	cation	160	
7.5	Study po	pulation and sample	161	
	7.5.1	Study population	161	
	7.5.2	Sampling frame (after inclusion/exclusion criteria)	161	
		7.5.2(a) Inclusion criteria:	161	
		7.5.2(b) Exclusion criteria:	161	
		7.5.2(c) Withdrawal criteria:	162	
7.6	Sampling	g method	162	
7.7	Sample s	size calculation	163	
7.8	Measurement and intervention tools			
	7.8.1	Questionnaires	165	
	7.8.2	Physical fitness level test standards	165	
7.9		education intervention steps based on the PROCEED stage DE-PROCEED model		
	7.9.1	Implementation	166	
	7.9.2	Process evaluation	170	
	7.9.3	Impact evaluation	170	
	7.9.4	Outcome evaluation	171	
7.10	Data coll	lection	171	
7.11	Data mai	nagement	174	
	7.11.1	Descriptive statistics	174	

	7.11.2	Mixed Al	NOVA	174
	7.11.3	Mixed M	ANOVA	177
7.12	Study flo	ow chart		179
7.13	Summar	y		180
CHAI	PTER 8	RESULT	OF PHASE 3	182
8.1	Introduc	tion		182
8.2	Demogra	aphic chara	cteristics of adolescents	182
8.3	Mixed A	NOVA		183
	8.3.1	Physical a	activity self-efficacy	183
		8.3.1(a)	Within-group difference (Time effect)	183
		8.3.1(b)	Between-group difference (Group effect)	184
		8.3.1(c)	Within-between groups (Time*Group effect)	185
		8.3.1(d)	Checking assumptions	187
	8.3.2	Physical	activity level	187
		8.3.2(a)	Within-group difference (Time effect)	187
		8.3.2(b)	Between-group difference (Group effect)	188
		8.3.2(c)	Within-between groups (Time*Group effect)	189
		8.3.2(d)	Checking assumptions	191
	8.3.3	Physical	fitness (PF)	192
		8.3.3(a)	Within-group difference (Time effect)	192
		8.3.3(b)	Between-group difference (Group effect)	193
		8.3.3(c)	Within-between groups (Time*Group effect)	193
		8.3.3(d)	Checking assumptions	195
8.4	Mixed M	IANOVA .		195
	8.4.1	Physical	activity social support	196
		8.4.1(a)	Within-group difference (Time effect)	196
		8.4.1(b)	Between-groups difference (group effect)	197

		8.4.1(c)	Within-between groups difference (Time*Group effect)	.198
		8.4.1(d)	Checking assumptions	.200
	8.4.2	Exercise	Benefits/Barriers	. 202
		8.4.2(a)	Within-group difference (Time effect)	.202
		8.4.2(b)	Between-groups difference (group effect)	.203
		8.4.2(c)	Within-between groups difference (Time*Group effect)	.204
		8.4.2(d)	Checking assumptions	.206
	8.4.3	The scho	ol physical activity environment	. 208
		8.4.3(a)	Within-group difference (Time effect)	.208
		8.4.3(b)	Between-groups difference (group effect)	.209
		8.4.3(c)	Within-between groups difference (Time*Group effect)	.210
		8.4.3(d)	Checking assumptions	.212
8.5	Summary	y		. 214
CHAI	PTER 9	DISCUS	SION	. 215
9.1	Introduct	ion		. 215
9.2	Response	e rate and p	participants' withdrawal	. 215
9.3	Demogra	phic chara	ecteristics of the participants	. 216
9.4	Main find	dings of pl	nase 1	. 218
	9.4.1		lated Chinese version questionnaire of ASAFA-C, Q-	. 218
	9.4.2	Content r	eliability and validity of translated questionnaires	. 221
	9.4.3 V	alidity and	d reliability of the Chinese translated questionnaires	. 222
9.5	Main find	dings of pl	nase 2	. 230
	9.5.1	•	of evaluation results based on the PRECEDE-	. 230
	9.5.2	Structura	l equation modelling	. 245

		9.5.2(a)	Hypothesis testing	. 245
		9.5.2(b)	Indirect path examination	.249
		9.5.2(c)	Unsupported hypotheses in SEM	.250
9.6	Main find	dings of ph	ase 3	. 252
	9.6.1		health education in the PRECEDE-PROCEED model Mixed ANOVA	. 252
	9.6.2		health education in the PRECEDE-PROCEED model Mixed MANOVA	. 256
9.7	Strengths	and limita	ations of the study	. 260
	9.7.1	Strengths	of the study	. 260
	9.7.2	Limitatio	ns of the study	. 264
9.8	Summary	/		. 265
СНАН	PTER 10	CONCL	USION AND FUTURE RECOMMENDATIONS	. 267
10.1	Introduct	ion		. 267
10.2	Conclusio	on		. 267
10.3	Recomme	endation fo	or future research	. 268
10.4	Chapter s	summary		. 269
REFE	RENCES			. 271
APPE	NDICES			
LIST (OF PUBLI	ICATIONS	S	

xiv

LIST OF TABLES

Page
Table 2.1 Description of the PRECEDE phase
Table 2.2 Description of the PROCEED phase
Table 3.1 List of questionnaires
Table 3.2 Fit indices as suggested by several sources
Table 4.1 I-CVI and S-CVI measurement results (n=6 experts)95
Table 4.2 Participants' response rate summary96
Table 4.3 The demographic characteristics (n=586)97
Table 4.4 Goodness of fit indices for ASAFA-C (Initial and Final models)99
Table 4.5 Composite reliability (CR) and discriminant validity of ASAFA-C101
Table 4.6 Test-retest reliability of ASAFA-C
Table 4.7 Summary for Q-SPACE-C model fit indices
Table 4.8 Composite Reliability (CR) and Discriminant Validity of Q-SPACE-C103
Table 4.9 Test-retest reliability of Q-SPACE-C
Table 4.10 Goodness of fit indices for EBBS-CN-Benefits (Final models)106
Table 4.11 Goodness of fit indices for EBBS-CN-Barriers (Final models)107
Table 4.12 Composite reliability (CR) and discriminant validity of EBBS-CN-Benefits
Table 4.13 Composite reliability (CR) and discriminant validity of EBBS-CN-Barrier
Table 4.14 Test-retest reliability of EBBS-CN-Benefits
Table 4.15 Test-retest reliability of EBBS-CN- Barriers
Table 4.16 Goodness of fit indices for PASES-C (Final models)112
Table 4.17 Composite reliability (CR) and discriminant validity of PASES-C112

Table 4.18 Test-retest reliability of S-PASES-C.	113
Table 4.19 Goodness of fit indices for PAQ-CN (Final models)	114
Table 4.20 Composite reliability (CR) and discriminant validity of PAQ-CN	115
Table 4.21 Test-retest reliability of PAQ-CN.	116
Table 5.1 List of Physical fitness level test indicators.	122
Table 5.2 The intended statistical analyses of the present study	129
Table 6.1 Participants' response rate summary	137
Table 6.2 The demographic characteristics ($n = 920$)	139
Table 6.3 Analysis of the scores of physical activity social support $(n = 920)$	142
Table 6.4 Analysis of the scores of PASE ($n = 920$)	143
Table 6.5 Analysis of the scores of exercise benefits/barriers $(n = 920)$	144
Table 6.6 Analysis of the scores of SPAE $(n = 920)$	145
Table 6.7 Analysis of the scores of physical fitness ($n = 920$)	146
Table 6.8 Analysis of the scores of physical activity $(n = 920)$	147
Table 6.9 Reliability and validity statistics of each questionnaire	149
Table 6.10 Correlations among PASS, PASE, SPAE, EBF, EBR, PF and PA $(n = 1)$	Ξ
920)	150
Table 6.11 Specific hypotheses for the initial model of SEM	152
Table 6.12 Goodness of fit indices for final SEM.	154
Table 6.13 Decision for the proposed hypotheses	155
Table 6.14 Hypothesised path relationships in proposed model	156
Table 6.15 The standardised indirect and total effects on PA	158
Table 7.1 The health education intervention program of the PRECEDE-PROCEE model	
Table 7.2 Intervention plan of PRECEDE-PROCEED model - Health Education	
Intervention Overview	160

Table 7.3 Intervention plan of PRECEDE-PROCEED model - Physical Activity
Intervention Overview
Table 8.1 The demographic characteristics (n=156)
Table 8.2 Comparison of PASES-C score within group based on time (Time
effect)
Table 8.3 Overall mean differences of PASES-C score among two groups185
Table 8.4 Comparison of mean score for PASES-C scale among two groups based
on time (Time*Group effect)
Table 8.5 Summary of Levene's test for PASES-C scale
Table 8.6 Comparison of PAQ-CN score within group based on time (Time
effect)
Table 8.7 Overall mean differences of PAQ-CN score among the two groups189
Table 8.8 Comparison of mean score for PAQ-CN scale among two groups based on
time (Time*Group effect)
Table 8.9 Summary of Levene's test for PAQ-CN scale191
Table 8.10 Comparison of PF score within group based on time (Time effect)192
Table 8.11 Overall mean differences of PF score among the two groups193
Table 8.12 Comparison of mean score for PF score scale among two groups based
on time (Time*Group effect)
Table 8.13 Summary of Levene's test for PF score
Table 8.14 Comparison of ASAFA-C score within group based on time (Time
effect)
Table 8.15 Overall mean differences of the ASAFA-C score among the two
groups198
Table 8.16 Comparison of mean score for the ASAFA-C score scale among two
groups based on time (Time*Group effect)
Table 8.17 Correlations of Pre-intervention score for ASAFA-C factors202

Table 8.18	Comparison of EBBS-CN score within group based on time (Time	
	effect)	03
Table 8.19	Overall mean differences of EBBS-CN score among the two groups. 20	04
Table 8.20	Comparison of mean score for EBBS-CN score scale among two group	ps
	based on time (Time*Group effect)20	05
Table 8.21	Correlations of Pre-intervention score for EBBA-CN factors20	08
Table 8.22	Comparison of Q-SPACE-C score within group based on time (Time	
	effect)20	09
Table 8.23	Overall mean differences of Q-SPACE-C score among the two groups2	10
Table 8.24	Comparison of mean score for Q-SPACE-C score scale among two	
	groups based on time (Time*Group effect)	11
Table 8.25	Correlations of Pre-intervention score for Q-SPACE-C factors2	13

LIST OF FIGURES

Pag
Figure 2.1 Schematic diagram of the PRECEDE-PROCEED model
Figure 2.2 Conceptual framework of the present study.
Figure 3.1 Definitions of content validity terms
Figure 3.2 Flow chart
Figure 3.3 Flow chart for questionnaire translation
Figure 3.4 Flow chart for CFA.
Figure 4.1 Initial model of ASAFA-C. 98
Figure 4.2 Final model of ASAFA-C
Figure 4.3 Initial and Final model of Q-SPACE-C with two factors
Figure 4.4 Initial and Final Model of EBBS-CN-Benefits
Figure 4.5 Initial and Final model of EBBS-CN-Barriers
Figure 4.6 Initial and Final model of PASES-C
Figure 4.7 Initial and Final model of PAQ-CN.
Figure 5.1 Flowchart of the evaluation phase (PRECEDE)
Figure 5.2 Flow chart of data collection for phase 2
Figure 5.3 Flowchart of SEM analysis
Figure 6.1 Frequency distribution of social support classification
Figure 6.2 Frequency distribution of physical activity self-efficacy classification.143
Figure 6.3 Frequency distribution of exercise benefits/barriers classification 144
Figure 6.4 Frequency distribution of school physical activity environment
classification. 146
Figure 6.5 Frequency distribution of physical activity classification

Figure 6.6	The hypothesised proposed initial SEM of PASS, PASE, SPAE, EBF,
	EBR, PF, and PA153
Figure 6.7	The final SEM of the study variables
Figure 7.1	Phase 3 sample size calculation
Figure 7.2	Flowchart of the health intervention phase (PROCEED)166
Figure 7.3	Flow chart of data collection for phase 3
Figure 7.4	Summary of steps of the Mixed ANOVA and Mixed MANOVA179
Figure 7.5	Study Flow Chart of Phase 3
Figure 8.1	Adjusted means of PASES-C scores at Time 1 (Pre-intervention), Time 2 (4 th week), Time 3 (8 th week), and Time 4 (Post-intervention) for both groups, Intervention and Control
Figure 8.2	Adjusted means of PAQ-CN scores at Time 1 (Pre-intervention), Time 2 (4 th week), Time 3 (8 th week), and Time 4 (Post-intervention) for both groups, Intervention and Control
Figure 8.3	Adjusted mean PF scores at Time 1 (Pre-intervention), Time 2 (4th week), Time 3 (8th week), and Time 4 (Post-intervention) for two groups, Intervention and Control
Figure 8.4	Adjusted mean support from parents of ASAFA-C scores at Time 1 (Preintervention), Time 2(4 th week), Time 3 (8 th week), and Time 4 (Postintervention) for two groups, Intervention and Control
Figure 8.5	Adjusted mean support from friends of ASAFA-C scores at Time1 (Pre-intervention), Time2 (4 th week), Time3 (8 th week), and Time4 (Post-intervention) for two groups, Intervention and Control
Figure 8.6	Adjusted mean Exercise Benefits of EBBS-CN scores at Time 1 (Pre-intervention), Time 2 (4 th week), Time 3 (8 th week), and Time 4 (Post-intervention) for two groups, Intervention and Control
Figure 8.7	Adjusted mean Exercise Barriers of EBBS-CN scores at Time 1 (Pre-intervention), Time 2 (4 th week), Time 3 (8 th week), and Time 4 (Post-intervention) for two groups, Intervention and Control206

Figure 8.8	8 Adjusted mean Physical Environment of Q-SPACE-C scores at Time	
	(Pre-intervention), Time 2 (4th week), Time 3 (8th week), and Time 4	
	(Post-intervention) for two groups, Intervention and Control212	
Figure 8.9	Adjusted mean Social Environment of Q-SPACE-C scores at Time 1	
	(Pre-intervention), Time 2 (4th week), Time 3 (8th week), and Time 4	
	(Post-intervention) for two groups, Intervention and Control212	

LIST OF ABBREVIATIONS

ASAFA Assess Social Support for Physical Activity scale

ASAFA-C Assess Social Support for Physical Activity scale - Chinese

ANOVA Analysis of Variance

BMI Body mass index

CFA Confirmatory factor analysis

CFI Comparative fit index

Chisq/df Chi-square/degrees of freedom

CI Confidence interval
CR Composite reliability
CVI Content validity index
df Degree of freedom

EBBS-CN Exercise Benefits/Barriers Scale- Chinese

EBB Exercise Benefits/Barriers

EBF Exercise Benefits
EBR Exercise Barriers

IFT Impaired fasting glycaemia

ITL Indeks Tucker Lewis

JEPeM Jawatankuasa Etika Penyelidikan Manusia (Human Research Ethics

Committee)

kg kilogram

MANOVA Multivariate analysis of variance

PRECEDE Predisposing, Reinforcing, and Enabling Constructs in Educational

Diagnosis and Evaluation

PROCEED Policy, Regulatory, and Organizational Constructs in Educational and

Environmental Development

PA Physical activity

PAQ-CN Physical Activity Questionnaire- Chinese

PASS Physical Activity Social Support

PF Physical Fitness

PASES-C Physical Activity Self-Efficacy Scale-Chinese

PASE Physical activity self-efficacy

PU Pull-ups

PFLWS Physical Fitness Level Weighted Score

Q-SPACE Questionnaire-School Physical Activity Environment

Q-SPACE- Questionnaire-School Physical Activity Environment- Chinese

C

RCT Randomised controlled trial

RM Repeated measures

RMR Root Mean Square Residual

RMSEA Root Mean Square Error of Approximation

SPACE School Physical Activity Environment

SEM Structural Equation Modelling

SFB Sitting Forward Bend

SLJ Standing Long Jump

SU Sit-ups

TLI Tucker Lewis Index

VC Vital Capacity

WHO World Health Organization

LIST OF APPENDICES

Appendix A	Multivariate normality tests for CFA
Appendix B	Multivariate normality tests for SEM
Appendix C	Normality of residuals assumption for RM ANOVA
Appendix D	Linearity relationship (scatter plot graphs) assumption for RM MANOVA
Appendix E	Human Research Ethics Committee USM (HREC) approval letter (2023-04)
Appendix F	Study advertisement poster
Appendix G	Phase 1, 2, 3 participants' information form
Appendix H	Summary I-CVI and S-CVI
Appendix I	The Study Questionnaire (instrument)
Appendix J	National Student Physical Fitness Test Standards (revised in 2014)
Appendix K	Intervention Group Process Records

KESAN PENDIDIKAN KESIHATAN TERHADAP PROMOSI AKTIVITI FIZIKAL BERDASARKAN MODEL PRECEDE-PROCEED DI KALANGAN REMAJA DI YUNNAN,CHINA

ABSTRAK

Aktiviti fizikal yang kerap adalah penting untuk pertumbuhan remaja, manakala kekurangannya boleh menjejaskan perkembangan mereka. Model PRECEDE-PROCEED ialah rangka kerja promosi kesihatan yang digunakan secara meluas yang memfokuskan kepada faktor psikologi dan sosial. Model ini terdiri daripada dua fasa: PRECEDE (diagnosis) dan PROCEED (pelaksanaan dan penilaian), dengan jumlah sembilan langkah. Dalam fasa PRECEDE, melalui lima langkah diagnostik (diagnosis sosial, diagnosis epidemiologi, diagnosis tingkah laku dan persekitaran, diagnosis pendidikan dan organisasi, serta diagnosis pengurusan dan dasar), analisis menyeluruh tentang faktor yang mempengaruhi tingkah laku kesihatan dijalankan, meringkaskan faktor mudah terdedah (sikap dan kepercayaan), faktor pengukuhan (sokongan sosial), dan faktor pemboleh (sumber dan dasar). Dalam fasa PROCEED, program intervensi yang disasarkan direka bentuk, dilaksanakan dan dinilai. Kajian ini mengikuti sembilan langkah model PRECEDE-PROCEED dan dijalankan dalam tiga fasa: dua kajian keratan rentas diikuti dengan percubaan terkawal rawak. Peserta dipilih menggunakan pensampelan kelompok. Pada peringkat pertama, keboleh percayaan dan kesahan beberapa soal selidik berkaitan aktiviti fizikal (ASAFA-C, Q-SPACE-C, EBBS-CN, PASES-C, dan PAQ-CN) telah diuji menggunakan analisis faktor pengesahan dan kebolehpercayaan ketekalan dalaman. Sebanyak 625 soal selidik telah dikumpul, dengan 586 jawapan yang sah (49.8% lelaki, 50.2% perempuan). Analisis data dilakukan menggunakan Mplus 8.0 dan SPSS 29.0, mengesahkan bahawa semua

model mempunyai kesesuaian yang baik dalam julat yang boleh diterima. Keputusan ini mengesahkan soal selidik sebagai alat yang boleh dipercayai untuk menilai aktiviti fizikal remaja di Wilayah Yunnan. Dalam Kajian 2, persampelan rawak menghasilkan 1,250 soal selidik yang lengkap, dengan 920 jawapan yang sah (51.2% lelaki, 48.8% perempuan). SPSS 29.0 digunakan untuk menganalisis faktor yang mempengaruhi aktiviti fizikal remaja, termasuk sokongan sosial, efikasi kendiri, faedah/halangan senaman, persekitaran sekolah, kecergasan fizikal, dan tahap aktiviti. Keputusan menunjukkan tahap aktiviti fizikal tidak mencukupi, kecergasan fizikal mereka berada pada tahap lulus, dan faktor lain berada pada tahap sederhana dalam kalangan remaja (pelajar sekolah menengah) di Wilayah Yunnan, China. SEM mengesahkan hubungan yang signifikan antara faktor-faktor ini, dengan indeks muat model yang baik (RMSEA (90% CI) = 0.029 [0.026, 0.033], CFI = 0.981, TLI = 0.979, SRMR = 0.031).Dalam Kajian 3, program pendidikan kesihatan selama 12 minggu telah dibangunkan, menggabungkan kuliah dengan aktiviti fizikal. Intervensi itu termasuk sesi pembelajaran interaktif selama 45 minit dan aktiviti fizikal selama 45 minit, dengan ibu bapa mengambil bahagian dalam dua sesi. Seramai 156 pelajar sekolah menengah mengambil bahagian, dengan kumpulan intervensi (n = 79) dan kumpulan kawalan (n = 77). Peserta melengkapkan soal selidik dan ujian kecergasan fizikal pada empat mata: sebelum intervensi, semasa minggu ke-4 dan ke-8, dan selepas program. Analisis data menggunakan SPSS 29.0 dan ANOVA Campuran menunjukkan bahawa kumpulan intervensi mempunyai skor yang lebih tinggi secara signifikan dalam sokongan sosial, efikasi kendiri, faedah senaman, kecergasan fizikal, dan tahap aktiviti fizikal. Mereka juga mempunyai markah yang lebih rendah dalam halangan senaman dan had persekitaran sekolah berbanding kumpulan kawalan. Kajian itu menyimpulkan bahawa alat ukuran yang disahkan secara berkesan menilai aktiviti fizikal remaja, dan

program pendidikan kesihatan berasaskan PRECEDE-PROCEED berjaya meningkatkan faktor utama yang mempengaruhi penyertaan aktiviti fizikal dalam kalangan pelajar sekolah menengah di China. Walaupun kajian ini memberikan pandangan yang berharga, adalah penting untuk ambil perhatian bahawa sampel adalah terhad secara geografi, yang mungkin menjejaskan kebolehgeneralisasian keputusan.

EFFECTS OF HEALTH EDUCATION ON PHYSICAL ACTIVITY PROMOTION BASED ON PRECEDE-PROCEED MODEL AMONG ADOLESCENTS IN YUNNAN, CHINA

ABSTRACT

Regular physical activity is crucial for adolescent growth, while a lack of it can harm development. The PRECEDE-PROCEED model is a widely used health promotion framework that focuses on psychological and social factors. The model consists of two phases: PRECEDE (assessment) and PROCEED (implementation and evaluation), with a total of nine steps. In the PRECEDE phase, through five assessment steps, a comprehensive analysis of factors affecting health behavior is conducted, summarizing susceptible factors (attitudes and beliefs), reinforcing factors (social support), and enabling factors (resources and policies). In the PROCEED phase, targeted intervention programs are designed, implemented, and evaluated. This study followed the nine steps of the PRECEDE-PROCEED model and was conducted in three phases: two cross-sectional studies followed by a randomized controlled trial. In Phase 1, the researchers used cluster random sampling to select the participants. The reliability and validity of several physical activity-related questionnaires (ASAFA-C, Q-SPACE-C, EBBS-CN, PASES-C, and PAQ-CN) were tested using confirmatory factor analysis and internal consistency reliability. A total of 625 questionnaires were collected, with 586 valid responses (49.8% male, 50.2% female). Data analysis was done using Mplus 8.0 and SPSS 29.0, confirming that all models had good fit within acceptable ranges. These results validated the questionnaires as reliable tools for assessing adolescent physical activity in Yunnan Province. In Phase 2, cluster random sampling resulted in 1,250 completed questionnaires, with 920 valid responses (51.2%

male, 48.8% female). SPSS 29.0 was used to analyse factors influencing adolescent physical activity, including social support, self-efficacy, exercise benefits/barriers, school environment, physical fitness, and activity levels. The results showed that physical activity level was insufficient, their physical fitness was at a passing level, and the other factors were at a moderate level among adolescents (high school students) in Yunnan Province, China. SEM confirmed significant relationships between these factors, with good model fit indices (RMSEA (90% CI) = 0.029 [0.026, 0.033], CFI = 0.981, TLI = 0.979, SRMR = 0.031). In Phase 3, a 12-week health education program was developed, combining lectures with physical activity. The intervention included 45-minute interactive learning sessions and 45-minute physical activities, with parents participating in two sessions. A total of 156 high school students participated, with the intervention group (n=79) and control group (n=77). Participants completed questionnaires and physical fitness tests at four points: before the intervention, during the 4th and 8th weeks, and after the program. Data analysis using SPSS 29.0 and Mixed ANOVA showed that the intervention group had significantly higher scores in social support, self-efficacy, exercise benefits, physical fitness, and physical activity levels. They also had lower scores in exercise barriers and school environment limitations compared to the control group. The study concluded that the validated measurement tools effectively assess adolescent physical activity, and the PRECEDE-PROCEEDbased health education program successfully improved key factors influencing physical activity participation among high school students in China. Although this study provides valuable insights, it is important to note that the sample was geographically limited, which may affect the generalizability of the results.

CHAPTER 1

INTRODUCTION

1.1 Background

Physical activity (PA) is clearly defined in a related report released by the World Health Organization (WHO) in 2010 as any bodily movement produced by skeletal muscles that requires energy expenditure (World Health Organization, 2010). For adolescents, the scope of physical activity is vast, encompassing organised and unorganised forms of activity. Organized activities include physical education classes offered by schools and structured exercise programs organised by schools or communities. Unorganized activities, on the other hand, include playing with peers, spontaneously running or playing ball games, choosing to walk or cycle as a mode of transportation to and from school, and engaging in various recreational activities during leisure time (Hu, 2022).

The health benefits of physical activity for children and adolescents have been well documented (Etnier et al., 2009; Janssen et al., 2010; Kuan et al., 2019; Timmons et al., 2012). Physical activity during childhood and adolescence plays a vital role in health outcomes in adulthood, such as increasing bone mineral density and indirectly preventing overweight (Loprinzi et al., 2012). Existing evidence shows that people's health behaviours in adulthood are derived from the environment in which they live since childhood, and behavioural habits formed in childhood tend to be maintained in adulthood (Jones et al., 2013; Telama, 2009). At the same time, physical activity plays a vital role in the growth of adolescents, and its impact covers multiple levels of physiology, psychology, and cognition. Many studies have fully confirmed this. Regarding physiology, regular physical activity can improve cardiopulmonary function and enhance endurance and metabolic levels, while strength training can

promote muscle and bone development and increase bone density (Corder et al., 2008; Strong et al., 2005). In terms of psychology, exercise helps relieve learning and life pressure, reduce anxiety and depression, and enhance self-confidence and psychological resilience, which is closely related to the secretion of endorphins, dopamine, and other neurotransmitters during exercise (Biddle et al., 2019; Dinas et al., 2011; Dishman et al., 2009). Regarding cognition, physical activity can promote the secretion of neurotransmitters, improve attention, memory, and learning ability, and enable adolescents to perform better in academic development (Donnelly et al., 2011; Hillman et al., 2008).

In 2018, China issued the "Guidelines for Physical Activity for Chinese Children and Adolescents", which recommends that school-age children and adolescents (6-17 years old) should participate in moderate to high-intensity physical activity (MVPA) for no less than 60 minutes a day, including strenuous exercise at least 3 days a week (Zhang et al., 2017). However, a survey showed that as many as 84.3% of adolescents in China still need to meet this standard (Guthold et al., 2020). With the rapid development of science and technology, electronic devices such as smartphones and tablets are becoming increasingly popular and are deeply loved by adolescents. According to data from the China Internet Network Information Centre (CNNIC) (China Internet Network Information Center, 2024), the number of young Internet users is vast, and the Internet has become an essential part of their daily lives. This has led to a significant increase in the sedentary time of adolescents, who are immersed in electronic games and short videos for a long time, and a substantial decrease in the time and frequency of physical activities.

Meanwhile, Chinese adolescents, especially high school students, face significant academic pressure (Sun et al., 2012; Zhu et al., 2017); the high expectations of schools

and parents regarding academic performance place a heavy burden on students. As a result, they have to devote a substantial amount of time to studying. In this context, their extracurricular time is significantly reduced, further limiting opportunities for physical activity (Zhu et al., 2021). Insufficient physical activity among adolescents potentially threatens their physical and mental health development (World Health Organization, 2020). Lack of physical activity will lead to an increase in adolescent obesity rates, a decline in physical fitness, and an increased risk of chronic diseases such as cardiovascular disease and diabetes, which will hurt the physical and mental health of adolescents (Tremblay et al., 2011). Therefore, it is necessary to promote participation in physical activity among adolescents. At present, traditional ways of promoting physical activity have problems such as single content, boring form, and lack of pertinence, which makes it difficult to fully meet the actual needs of adolescents (Chen et al., 2020). Therefore, a more scientific and systematic theoretical framework is needed to design and implement effective intervention strategies to improve the intervention effect fundamentally.

The PRECEDE-PROCEED (Predisposing, Reinforcing, and Enabling Constructs in Educational Diagnosis and Evaluation- Policy, Regulatory, and Organizational Constructs in Educational and Environmental Development) model was developed by Lawrence W. Green, a famous American health educator, as a practical, theoretical framework for evaluating, planning, implementing and promoting health programs (Gielen et al., 2008; Green et al., 2005). The model has become one of health education's most commonly used models (Crosby et al., 2011; Gielen et al., 2008). It is a guiding framework for health promotion strategies for different populations and has the advantage of integrating theoretical frameworks, interventions, and evaluations (Kim et al., 2022). The model comprehensively identifies the key factors affecting

adolescent physical activity through multi-dimensional diagnoses, such as sociology, epidemiology, behaviour, and environment (Green et al., 2005), and designs more targeted intervention strategies for predisposing factors, enabling factors, and reinforcing factors. During implementation, the model emphasises dynamic evaluation of processes, impacts, and results to ensure interventions' scientific nature and sustainability. From the feasibility perspective, the PRECEDE-PROCEED model has been widely used in health promotion projects worldwide and has accumulated rich empirical experience (Kim et al., 2022). As the central place for adolescent activities, schools can provide sufficient venues, teachers, and organizational support. At the same time, parents' attention to adolescent health has created a good social environment for implementing the model. In addition, the model has a clear, logical structure and rigorous steps, which are easy for health educators to understand and operate, thereby effectively promoting the implementation of intervention projects to promote adolescent physical activity (Gielen et al., 2008).

In this context, this study explored the impact of health education based on the PRECEDE-PROCEED model on the promotion of physical activity among Chinese adolescents, aiming to improve adolescents' ability to participate in physical activity, enhance their relevant knowledge, and improve their physical health through systematic guidance and intervention. The study's results would provide empirical support for the formulation of scientific and practical strategies to promote physical activity among adolescents and contribute necessary evidence to improving the level of physical activity among Chinese adolescents and promoting their physical and mental health development.

1.2 Problem statement

Globally, many children and adolescents were relatively inactive, and most did not even meet the recommended amount of physical activity (Ferreira de Moraes et al., 2013). The trend of insufficient physical activity is rapidly increasing in most societies around the world (Hallal et al., 2012; Müller et al., 2013). A study based on 1.6 million school-age adolescents explored adolescents' physical activity in 146 countries and regions and assessed the global, regional, and national trends in insufficient physical activity. The results showed that most adolescents do not meet the physical activity guidelines, risking their current and future health (Guthold et al., 2020). In China, as in other parts of the world, insufficient physical activity is considered a key factor affecting human health (Guthold et al., 2010; Shangyi Guan, 2013). There is now sufficient evidence to show that insufficient physical activity is an essential cause of poor health among adolescents (Lu et al., 2017). Therefore, it is very necessary to pay attention to their health behaviours during adolescence and cultivate an active and healthy lifestyle for adolescents. Promoting physical activity is an integral part of health intervention measures.

Promoting adolescent physical activity has become a key public health concern (World Health Organization, 2020). However, most current approaches still heavily rely on traditional methods. Regular physical education classes follow standardized curricula, focusing on everyday sports activities (You et al., 2021). The main drawback of these conventional methods is their lack of individualization. Adolescents exhibit significant differences in cognition, physical fitness, interests, and sports skills. Yet, traditional approaches fail to account for these factors, leading to a lack of enthusiasm for physical activity among some students (Zhu et al., 2021).

The interaction of many complex factors affects adolescents' physical activity levels. Individual cognitive factors are crucial. Adolescents' interest and mental level in sports determine their willingness to participate in physical activities. If adolescents clearly understand the benefits of sports and are interested in a particular sport, they will participate more actively in related physical activities (Hallal et al., 2012); the individual's physical fitness level will also affect their participation in physical activities. Studies have found that a higher level of physical fitness in adolescence often encourages individuals to maintain active physical activity habits in adulthood (Mohlala, 2019). The family environment plays a vital role in this. Parents' attitudes and participation directly affect adolescents' cognition and behaviour towards physical activity. Parents who actively participate in sports and encourage their children to exercise are more likely to have children who develop good exercise habits (Niermann et al., 2015). Friends' support is also an essential factor affecting adolescent physical activity. Adolescents are in a stage of eagerness to socialize, and the social interaction and sports atmosphere between peers has a significant impact on their participation in sports. When peers around them are actively involved in physical activities, adolescents are more likely to be infected and take the initiative to participate in them (Biddle et al., 2011). The school atmosphere should not be ignored either. Reasonable sports curriculum settings and prosperous activity organization can give adolescents more opportunities and motivation to participate in sports. For example, increasing the diversity of sports courses, introducing novel projects, and holding various sports competitions can all help create a positive sports atmosphere (Rezende et al., 2015).

Although many studies have focused on factors related to adolescent physical activity, few studies have comprehensively explored the combined effects of individual cognition, physical fitness level, family environment, peer influence, school

atmosphere, and adolescent physical activity. Previous studies have often focused on analysing a single factor or a few factors and have failed to fully consider the complex interactions between these factors (Hearst et al., 2012; Lu et al., 2017), resulting in a lack of in-depth understanding of adolescent physical activity behaviour. This limitation in understanding adolescent physical activity behaviour is also reflected in actual intervention measures.

In recent years, traditional intervention measures to promote physical activity, such as simply increasing physical education classes and holding sports games, have improved adolescents' participation in physical activity to a certain extent. Still, there are significant limitations (Salmon et al., 2007). Health education based on the PRECEDE-PROCEED model, widely applied and proven effective in health promotion (Gielen et al., 2008; Green et al., 2005; Kim et al., 2022), remains underexplored in adolescent physical activity interventions in China. This model overcomes the limitations of traditional approaches, aiming to provide a comprehensive and targeted solution for enhancing adolescent physical activity levels and achieving long-term improvements.

Therefore, this study is based on the overall theoretical framework of the PRECEDE-PROCEED model, which follows the nine steps outlined in the model. First, the study analyzed the scores of adolescents (high school students) regarding physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level. To summarize the predisposing, enabling, and reinforcing factors affecting physical activity (PA) based on the literature analysis and analysis results. Then, we constructed

a structural equation model to examine the relationships among the variables. Finally, a targeted health education intervention program was designed and implemented.

1.3 Rationale and Significance of the Study

1.3.1 Rationale of the Study

This study employs the PRECEDE-PROCEED model (Green et al., 2005), an internationally recognized framework for developing and evaluating systematic health promotion programs (Crosby et al., 2011; Green et al., 2005; Kim et al., 2022), as its theoretical foundation. The model constructs a multidimensional analytical framework encompassing predisposing factors (individual-level factors, such as knowledge and attitudes), enabling factors (environmental factors, including resources and skills), and reinforcing factors (macro-level factors, including social support and policies). Through assessments in the PRECEDE phase, factors influencing health behaviors are systematically identified. In the PROCEED phase, targeted interventions are implemented, with comprehensive evaluations of the process, effects, and outcomes. This study applied the model's systematic methodology to conduct an empirical survey of insufficient physical activity among adolescents in Yunnan Province, China, providing scientific theoretical support for the design and evaluation of intervention strategies.

Insufficient physical activity among adolescents has become a global public health concern. According to data from the World Health Organization, 81% of adolescents worldwide fail to meet the recommended daily level of physical activity (World Health Organization, 2010). Studies in China have likewise revealed increasing prevalence of sedentary behavior and excessive screen time among adolescents (Chinese Health Education Center & Chinese Center for Disease Control

and Prevention, 2017; Zhang et al., 2020; Department of Physical, Health and Arts Education, Ministry of Education of the People's Republic of China, 2022). In response, the WHO Guidelines on Physical Activity, Sedentary Behaviour and Sleep explicitly recommend that adolescents engage in at least 60 minutes of moderate-to-vigorous physical activity per day (World Health Organization, 2020). In China, the *Healthy China 2030* blueprint and relevant local policy documents in Yunnan Province have identified "strengthening school health education" and "improving adolescent physical fitness" as key development objectives (Central Committee of the Communist Party of China & State Council of the People's Republic of China., 2016; Yunnan Provincial People's Government., 2017; Yunnan Provincial Committee of the Communist Party of China., 2020), providing both policy support and practical guidance for the implementation of this study.

1.3.2 Significance of the Study

The significance of this study is to address a critical public health issue: insufficient physical activity levels among adolescents. Regular physical activity is essential for maintaining physical and mental health, but many adolescents fail to meet recommended activity levels. The findings of this study may have important implications in several ways: First, confirmatory factor analysis (CFA) conducted to validate the Chinese versions of the Assess Social Support for Physical Activity scale (ASAFA), Questionnaire-School Physical Activity Environment (Q-SPACE), Exercise Benefits/Barriers Scale (EBBS), Physical Activity Questionnaire (PAQ), and Physical Activity Self-efficacy Scale (PASES) scales, thereby enriching the research tools for promoting physical activity among Chinese adolescents.

Secondly, this study aims to improve adolescents' physical and mental health by promoting physical exercise and provides a basis for designing effective intervention measures. The research helps policymakers understand the key conditions for promoting physical exercise among adolescents and supports the development of policies that encourage physical exercise in schools. Based on the PRECEDE-PROCEED model and considering the actual situation in China, the study uses structural equation models to construct a model of factors influencing physical exercise among Chinese adolescents. It analyses the relationships and interactions between these factors and exercise levels, ultimately forming a health education program suitable for promoting physical exercise among Chinese adolescents.

In addition, this study would help develop educational programs suitable for implementation in schools to help students understand the benefits of physical activity and how to overcome barriers to exercise. By systematically improving the physical activity level of adolescents in multiple dimensions, exercise can become an indispensable part of their lives. This study is also likely to have a broad and farreaching impact on the long-term health of adolescents. As adolescents develop physical exercise habits and the effects of exercise gradually emerge, in the future, they will be able to significantly reduce their risk of chronic diseases such as obesity, diabetes, and heart disease in adulthood, laying a solid foundation for building a healthier and more vibrant society. In summary, this study explored the impact of health education based on the PRECEDE-PROCEED model on promoting physical activity among adolescents, aiming to fully understand the factors affecting physical activity and develop effective intervention measures to increase physical activity levels and ultimately promote the physical and mental health of adolescents.

1.4 Research question

Phase 1

1. Is the Chinese version questionnaire of ASAFA-C, Q-SPACE-C, PASES-C, PAQ-CN, EBBS-CN valid and reliable among adolescents with high school students in Kunming, Yunnan, China, based on confirmatory factor analysis?

Phase 2

- 2. What are the scores of physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents, Yunnan, China?
- 3. Are there any significant path relationships between physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China?

Phase 3

- 4. Is there any time effect of the PRECEDE-PROCEED model health education program intervention on physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China?
- 5. Is there any group effect of the PRECEDE-PROCEED model health education program intervention on physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China?
- 6. Is there any interaction effect (group*time) of the PRECEDE-PROCEED model health education program intervention on physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China?

1.5 Research objective

General objective:

This study had three main objectives. First, to translate the Chinese versions of the ASAFA and Q-SPACE scales and verify the reliability and validity of the Chinese versions of ASAFA-C, Q-SPACE-C, PASES-C, PAQ-CN, and EBBS-CN. The second objective was to construct Structural Equation Modelling (SEM) to determine the interrelationships among social support for physical activity, physical activity self-efficacy, exercise benefits/barriers, school physical activity environment, physical fitness, and physical fitness level. The third objective was to develop a PRECEDE-PROCEED model health education intervention plan and implement the intervention to determine its impact on the measured variables among adolescents in Yunnan, China.

Specific objective:

Phase 1

- 1. To translate the ASAFA and Q-SPACE into Chinese versions, and support ASAFA, Q-SPACE literature search, content validity, and pre-testing.
- 2. To validate the translated Chinese version questionnaire ASAFA-C, Q-SPACE-C, PASES-C, PAQ-CN, EBBS-CN as valid and reliable among adolescents in high school students in Kunming, Yunnan, using Confirmatory Factor Analysis (CFA).

Phase 2

3. To analyse the scores of physical activity social support, physical activity self-efficacy, exercise benefits/barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan Province.

4. To develop a Structural Equation Modelling (significant path relationship) of physical activity social support, physical activity self-efficacy, exercise benefits/barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China.

Phase 3

- 5. To determine the group effect of the PRECEDE-PROCEED model health education program intervention on physical activity social support, physical activity self-efficacy, exercise benefits/barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China.
- 6. To examine the group effects (between groups) of the PRECEDE-PROCEED model health education program intervention on physical activity social support, physical activity self-efficacy, exercise benefits/barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China.
- 7. To examine the interaction effects (within and between groups) of the PRECEDE-PROCEED model health education program intervention on physical activity social support, physical activity self-efficacy, exercise benefits/barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China.

1.6 Research hypothesis

Phase 1

1. The translated Chinese version questionnaire ASAFA-C, Q-SPACE, PASES-C-C, PAQ-CN, and EBBS-CN are valid among adolescents with high school students in Kunming, Yunnan, based on confirmatory factor analysis.

Phase 2

- 2. There are significant path relationships between physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents in Kunming, Yunnan, China.
- 3. There are significant indirect relationships between physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents in Kunming, Yunnan, China.

Phase 3

- 4. There is a significant time effect on the PRECEDE-PROCEED model health education program intervention on physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China.
- 5. There is a significant group effect on the PRECEDE-PROCEED model health education program intervention on physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China.
- 6. There is a significant interaction effect (group*time) on the PRECEDE-PROCEED model health education program intervention on physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level among adolescents in Yunnan, China.

1.7 Operational definition

1.7.1 PRECEDE phase (evaluation phase)

The researchers evaluated the current status of physical activity and health problems based on the PRECEDE stage of the PRECEDE-PROCEED model among adolescents in Yunnan Province, China. This evaluation is conducted through a series of steps, including sociological assessment, epidemiological assessment, behavioural and environmental assessment, educational assessment, organisational assessment, and management policy assessment.

1.7.1(a) Sociological assessment

Sociological assessment uses qualitative or quantitative research to understand all sociological characteristics that may affect the target population (Gielen et al., 2008; Green et al., 2005). This study effectively elucidates sociological assessment by analysing key social factors such as family or peer support. Family support may encompass parental encouragement for physical activity and providing resources for exercise. In contrast, peer support manifests through interactions with friends. This study used the *A Social Support for Physical Activity Scale for Adolescents* (ASAFA-C) for assessment.

1.7.1(b) Epidemiological assessment

Epidemiological assessment is based on existing health problem incidence data to assess the most pressing and vulnerable issues affecting quality of life (Gielen et al., 2008; Green et al., 2005). The epidemiological assessment of this study involved analysing the overall physical activity level and physical fitness level of adolescents. We assessed adolescents' overall physical activity levels using the PAQ-CN (*Physical Activity Questionnaire for Adolescents*). The evaluation followed the National Student

Physical Health Standard (2014 revision) (Ministry of Education., 2014), which includes test indicators such as BMI, vital capacity, 50-meter sprint, standing long jump, sit-ups, 1000-meter run (for boys) / 800-meter run (for girls), pull-ups (for boys) / sit-ups (for girls), and other physical fitness tests.

1.7.1(c) Behavioural environment assessment

Behavioural environment assessment is an assessment of the target population's physical activity, behavioural cognition, and environmental factors that may lead to health problems (Gielen et al., 2008; Green et al., 2005). The behavioural environment assessment in this study mainly refers to the behavioural patterns and environments that are particularly related to adolescents' cognition of physical activity, including exercise self-efficacy, exercise benefits and barriers, and the school physical activity environment. The *Physical Activity Self-efficacy Scale* (PASES-C), the *Exercise Benefits/Barriers Scale-Chinese* (EBBS-CN), and the *School Physical Activity Environment Questionnaire* (Q-SPACE-C) were used for assessment.

1.7.1(d) Educational organization assessment

The educational and organizational assessment involves identifying predisposing, reinforcing, and enabling factors through literature analysis after selecting relevant behavioural and environmental intervention factors to initiate and sustain the change process (Gielen et al., 2008; Green et al., 2005). These factors collectively influence the likelihood of behavioural and environmental changes occurring.

Predisposing factors are antecedents of behavior, providing reasons or motivation for the behaviour (Green et al., 2005). They include personal knowledge, attitudes, beliefs, personal preferences, existing skills, and self-efficacy beliefs. Reinforcing factors are subsequent to the behaviour, providing continuing rewards or incentives for the persistence or repetition of the behaviour (Green et al., 2005). Examples include

social support, peer influence, significant others, and vicarious reinforcement. Enabling factors are prerequisites for behaviour or environmental change, facilitating the realization of motivation or environmental policy (Green et al., 2005). Enabling factors can directly or indirectly influence behaviour through environmental factors. They include programs, services, and resources required to achieve behavioural and environmental outcomes.

1.7.1(e) Administrative and policy assessment

Administrative and policy assessment policies, regulations, and organisational management capabilities and resources that affect the implementation of intervention measures (Gielen et al., 2008; Green et al., 2005). The study will review relevant policies on physical activity at the national, provincial, municipal, and school levels through literature research to provide policy support for implementing intervention measures for youth physical activity.

1.7.2 PROCEED phase (experimental intervention)

The second stage is the PROCEED stage, which uses policies, regulations and organisational means to implement education and environmental interventions, including four steps: implementation, process evaluation, impact evaluation and outcome evaluation (Gielen et al., 2008; Green et al., 2005). Based on the assessment results of the PRECEDE phase, we developed a health education program and implementation plan to promote physical activity among adolescents using the PRECEDE-PROCEED model. We used a randomised controlled trial (RCT) method to evaluate the changes in research variables (physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level) before and after the intervention of the PRECEDE-PROCEED model health education program.

1.7.2(a) Implementation

Based on the evaluation results of the PRECEDE stage, formulate a health education intervention plan and determine in detail the implementation steps, timetable, and person in charge of the intervention plan (Gielen et al., 2008; Green et al., 2005); conduct training mobilization and train the personnel participating in the intervention plan to improve their execution ability and enthusiasm; carry out health education activities according to the plan to ensure that all activities are completed on time, with quality, and in quantity.

1.7.2(b) Process evaluation

In implementing the intervention plan, process evaluation is essential to ensure that the plan proceeds as intended (Gielen et al., 2008; Green et al., 2005). We monitored the implementation progress through observation, recording, and interviews, providing real-time oversight of intervention activities. We collected feedback to understand participants' opinions and evaluate the effectiveness of the intervention activities while identifying any existing issues. Based on the evaluation results, we promptly adjusted the intervention measures to enhance the implementation's effectiveness.

1.7.2(c) Impact evaluation

After a period of implementing the intervention plan, conduct an impact assessment to understand the short-term effects of the intervention measures (Gielen et al., 2008; Green et al., 2005). We assessed behaviour changes by evaluating the target population's health behaviour changes through questionnaires and fitness tests. We evaluated changes in health knowledge and attitudes by assessing shifts in the target population's health knowledge and attitudes through questionnaires. Additionally, we summarised the impact effects by evaluating the short-term effects

on the target population's health behaviours, health knowledge, and attitudes through questionnaires and fitness tests.

1.7.2(d) Outcome evaluation

After completing the intervention plan, a results evaluation should be conducted to understand the long-term effects of the interventions (Gielen et al., 2008; Green et al., 2005). We assessed adolescents' physical activity levels and related variables through questionnaires and fitness tests, evaluating the changes in these variables. We then compiled a summary report to evaluate the overall effectiveness of the intervention plan.

1.7.3 Physical activity social support (PASS)

PASS, which stands for "Physical Activity Social Support", was used in this study, and we used the ASAFA scale for measurement. It assesses the level of social support adolescents receive in physical activity. The ASAFA scale is a specially designed measurement tool that quantifies the support adolescents receive from various social relationships, such as parental and friend support (Farias et al., 2014). Through the ASAFA scale, we can gain a comprehensive understanding of the support system for adolescents in physical activity, providing data support and guidance for promoting adolescent physical activity.

1.7.4 Physical activity self-efficacy (PASE)

The PASE, which stands for "Physical Activity Self-Efficacy", reflects adolescents' confidence and cognitive abilities in initiating and maintaining physical activities. This study used the PASES-C scale to measure and assess adolescents' self-confidence levels when facing various situations and challenges, helping researchers

understand their psychological motivation and beliefs in physical activity (Chen et al., 2019).

1.7.5 Exercise benefits and barriers (EBBS)

EBB, which refers to "Exercise Benefits and Barriers", is used to assess adolescents' perception of the potential benefits and possible barriers to physical exercise. This concept reflects how adolescents view the positive impact of exercise on their health and quality of life when considering participating in exercise, as well as the barriers that may be encountered in the actual participation process. This study adopted the EBBS-CN scale to measure this area more comprehensively (Guo, 2016). This scale is designed to quantify adolescents' perceptions of the benefits and barriers of exercise in order to gain a deeper understanding of their exercise attitudes and behaviours.

1.7.6 School physical activity environment (SPAE)

SPAE stands for "School Physical Activity Environment" and covers the resources and facilities that schools provide to promote students' participation in physical activities. This includes the physical education curriculum, the organization of physical activities, the availability of sports equipment, the accessibility of sports facilities, the importance of physical activities in schools, and the attitudes of teachers and students towards physical activities. This study used the Q-SPACE scale to measure and evaluate the environmental conditions and support systems related to physical activities within schools (Martin et al., 2011). The scale is designed to quantify the different dimensions of the school physical activity environment (physical environment and social environment), thereby helping researchers to gain a deeper understanding of its role in promoting students' participation in physical activities.

1.7.7 Physical fitness (PF)

PF, which stands for "Physical fitness", reflects the physical health level of adolescents. According to the National Student Physical Fitness Standard (revised in 2014) issued by the Ministry of Education of China (Ministry of Education, 2014), physical fitness level is divided into three aspects: body composition, body function, and physical quality. The comprehensive evaluation of the physical health of high school students is based on the Physical Fitness Standard formulated by the Ministry of Education in 2014. In Kunming, Yunnan Province, the physical fitness level assessment of high school students includes the measurement of BMI, vital capacity, 50-meter sprint, standing long jump, sit-ups, 800-meter run for girls/1000-meter run for boys, pull-ups for boys/sit-ups for girls. In this study, the PF comprehensive score is calculated by the weighted sum of the scores of various indicators (BMI, VC, 50 meters, SLJ, SFB, 800/1000 meters, PU/SU).

1.7.8 Physical activity level (PA)

PA, which stands for "physical activity level", reflects the frequency and intensity of an individual's participation in physical exercise. This indicator demonstrates the extent to which an individual engages in various physical activities in daily life, including sports, exercise, and everyday tasks. In this study, we utilised the PAQ-CN scale to assess the level of physical activity among adolescents (high school students), as it is designed to quantify participants' physical activity levels systematically.

1.7.9 Confirmatory factor analysis (CFA)

CFA is a structural equation that deals with measurement models: the relationships between observed variables or indicators (items, test scores, social cognitive assessments) and latent variables or factors (Brown et al., 2012). It gives a

narrower understanding of covariation between multiple indicators since the number of factors differs from the number of measured variables.

1.7.10 Structural equation modelling (SEM)

SEM combines factor and multiple regression analyses to analyze the structural relationships between measured variables and latent constructs (Kline, 2023). SEM was used to examine the structural relationships between physical activity social support, physical activity self-efficacy, exercise benefits and barriers, school physical activity environment, physical fitness, and PA level.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

To understand the research topic comprehensively, the researcher conducted an extensive review of existing literature, encompassing both published and unpublished studies in the relevant field. The findings from this meticulous review have been synthesised and presented in this chapter to provide readers with invaluable insights into the current research. Subchapters will comprehensively address all pertinent variables and concepts.

The previous research articles were obtained from well-known online databases, including authoritative journals such as Google Scholar, PubMed, Sport Discus (EBSCO), Web of Science, Scopus, and CNKI. Researchers utilized these databases to collect relevant studies comprehensively. The literature search process involved the use of keywords related to various aspects, including the definition of adolescents and physical activity, the PRECEDE-PROCEED model, health promotion programs for adolescent physical activity, fitness levels, exercise-related social support and selfefficacy, barriers, and benefits of exercise participation. Factors in designing and evaluating school sports environments were also considered. Additionally taken into account were factors influencing program implementation (predisposing factors), factors supporting program effectiveness (enabling factors), reinforcing factors for promoting healthy behaviour intervention measures in health education programs, randomized controlled trials (RCTs), confirmatory factor analysis (CFA); structural equation modelling (SEM); Mixed-design Analysis of Variance (ANOVA) and Mixeddesign multivariate analysis of variance (MANOVA). In the literature search process, Boolean operators "AND" or "OR" were combined with keywords.

2.2 Definitions of relevant concepts

2.2.1 Adolescents

The age group of "adolescents" varies from organization to organization, region to region, and from research literature to research literature. The World Health Organization (WHO) defines children and adolescents as 5-17 years old and adolescents as 11-17 years old (World Health Organization, 2020). The Australian Department of Health defines the adolescent group as 13-17 (Okely et al., 2019). The UK Chief Medical Officer Recommendation - Physical Activity Guidelines defines children and adolescents as 5-18 years old, with adolescents aged 11-18 (Moore, 2019). German National Physical Activity Recommendations and Physical Activity Promotion divides the age group of children and adolescents into 5-18 years old, among which 12-18 years old are adolescents (Rütten et al., 2016). The Physical Activity Guidelines for Americans (Second Edition) formulated by the US Department of Health and Human Services defines the age range of 3-5 years as preschool children, the age range of 6-17 years as children and adolescents, and the age range of 11-17 years as adolescents (Piercy et al., 2018). Guo defined adolescents in the age range of 11-22 years in their doctoral thesis (Guo, 2016), while Hu defined adolescents in the age range of 11-18 years in their doctoral dissertation (Hu, 2022). This study refers to the definition of adolescents by scholars at home and abroad. It combines with the object of this study to define the age range of adolescents as 15-18 years old, which is mainly Chinese students in the stage of high school education.

2.2.2 Physical activity

Physical activity (PA) is widely defined as any form of body movement that requires energy expenditure and involves skeletal muscle contractions (World Health Organization, 2010). This definition encompasses a range of activities from daily basic