THE STRUCTURE OF ACCELERATED SULPHUR VULCANIZATES

OF

STYRENE-BUTADIENE RUBBER

AND

ACRYLONITRILE-BUTADIENE RUBBER

by

WONG KWAI WAH

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

[School of Applied Sciences]

Pebruary 1934

ACKNOWLEDGEMENTS

I wish to convey my sincere and grateful thanks to my supervisor Dr. W.S. Wong for all the invaluable help and encouragement she gave throughout the course of my work.

I would also like to express my appreciation to the laboratory staff of the School of Applied Sciences for making available the facilities necessary to the project and also to the Rubber Research Institute of Malaysia for the invaluable triphenylphosphine reagent and sulphur determination service.

My thanks also goes to Dr. C.T. Loo of the latter for his helpful advice and discussion on my thesis presentation.

Last, but not least, I wish to thank those who are not mentioned above but have helped to make my MSc. project a success and also to Universiti Sains Malaysia for giving me this opportunity to conduct research leading to a Master of Science degree.

egy og trænd i degjogre fod ølde hyd træd i egyse tad yte

gaj nestro e i struktur. Eliku serit tir sekir tir silatesia gali tirak gajajet gat

. The state of th

the grant of the second of the

್ರಾಗದ ಗಳಲ್ಲಿ ಇದ್ದಾರೆ ಇವರಿಗೆ ಬೆಂದರು ಕಾರ್ಮಿಸಿಕೆ ಕಿರುಗಳು ಕಾರ್ಮಿಸಿಕೆ ಕಿರುಗಳು ಕಾರ್ಮಿಸಿಕೆ ಕಿರುಗಳು ಕಾರ್ಮಿಸಿಕೆ ಕಾರ್ಯ

Structural characterisation OÊ CBS-accelerated vulcanizates of SBR and NBR as a function of type of cure system and cure time was investigated. It was found that SBR and NBR vulcanizates obtained from cure systems with accelerator to sulphur (A/S) ratio of).6/2.5 have higher crosslink densities than that obtained from A/S ratio of 1/2. SBR and NBR valcanizates were found to exhibit modulus reversion on prolonged curing. For the same cure system, SBR vulcanizates were found to show greater degree modulus reversion than the NBR vulcanizates and the degree of modulus reversion in both rubbers increased with decrease in A/S ratio. As expected, the proportion of monosulphidic crosslinks increased at the expense of poly- and disulphidic increasing cure time crosslinks with although dissimilarities in detail behaviour were observed. The crosslinking efficiency for both cure systems used were relatively low. The crosslinking efficiency parameter, E, was observed to decrease for NBA but the E value for SBR vulcanizates exhibited different tendencies. The amount of main chain modifications occuring was found to increase on prolonged curing and this increase was much greater in vulcanizates obtained from A/S ratio of 0.6/2.5.

The polymer-benzene interaction parameter, χ , was observed to vary with cure systems and cure time. Chemical

ទាន ខណៈ បានដែលគេជា ភាពណ៍ណារំ 2000 គ្នា សម្រាល់ និង នេះ បានដែលសុក្ស និងសេស ស្ថិត្តមាន ដែលស្នងក្នុងក្ Santa Pirika - Bajayaha - Israina -

Pencirian struktur vulkanisat 33R dan NBR pang direcutkan oleh CB3 sebagai fungsi sistem-sistem pematangan dan masa pematangan akan diselidiki. Vulkanisat SBR dan NBR dari sistem pematangan dengan nisbah pemecut kepada sulfur (A/S) 0.6/2.5 dilapati mempunyai ketumpatan sambung-silang yang lebih tinggi dari sistem pematanyan dengan nisbah (A/S) Pematangan yang berlanjutan terhadap vulkanisat 1/2. menunjukkan penerbalikan modulus. dan Untuk sistem pematangan yang sama. vulkanisat SBR menunjukkan penerhalikan modulus yang lebih tinggi daripada vulkanisat dan darjah penerbalikan modulus bagi kedua-dua bertambah dengan pengurangan nisbah A/S. Seperti dijangkakan, kadaran sambung-silang monosulfida bertambah dan kadaran sambung-silang poli- dan disulfida berkurangan dengan pertambahan dalam masa pematangan walaupun terdapat ketaksamaan dalam kelakuan detil. Secara relatif kecekapan sambung-silang bagi kedua-dua sistem pematangan yang diselidiki didapati rendah. Parameter kecekapan samburg-silang, F, didapati berkurang untuk NBR tetapi nilai E untuk vulkanisat SBR menunjukkan kecenderungan berlainan. Pengubahsuaian rantai utama didapati bertambah dengan pematangan yang berlanjutan dan pertambahannya adalah lebih tinggi dalam vulkanisat yang bernisbah (A/S) 0.6/2.5.

Parameter saling-tindakan polimer-benzena, X, didapati

herubah dengan sistem pematanyan lan masa pematanyan. Pengolahan bahan kimia ujiselidik terhadap vulkanisat mengurangkan nilai X.

TABLE OF CONTENTS

CHAPTER CNI	E INTRODUCTION	Fage 1
1. 1	Vulcanization	2
1 • 2	Accelerated Sulphur Vulcanization	3
	1.2.1 Sulphur vulcanizing system	3
	1.2.2 Chemical structure of accelerated sulphur vulcanizate	7
	1.2.3 Mechanism of accelerated sulphur vulcanization	10
1 • 3	Relationship between some Vulcanizates Properties and Network Structure	16
1-4	Characterisation of Vulcanizate Structure	21
	1.4.1 Determination of crosslink concentration	21
	1.4.2 The efficiency parameter, E	27
	1.4.3 Use of chemical probes	29
CHAPTER TWO	O EXERRIMENTAL	42
2.1	Laboratory Preparation of Gum Vulcanizates	43
	2.1.1 Compounding ingredients	43
	2.1.2 Test systems	43
	2.1.3 Mixing technique	44
	2.1.4 Curing technique	46
2.2	Preparation and Purification of Test Samples	46
2.3	Application of Chemical probes	47
	2.3.1 Materials	47

	7.3	2.3.2	Treatment of test samples with propane-2-thiol and piperidine	47
		2.3.3	Ireatment of test samples with n-hexanethiol in piperidine	48
		2.3.4	Treatment with triphenylphosphine	49
	2-4	Chemica	l Analysis and Derived Parameters	51
		2.4.1	Determination of total sulphur, St	51
		2.4.2	Determination of sulphide sulphur, S	52
		2.4.3	Determination of network-combined sulphur before (S _c) and after (S _c) triphenylphosphine treatment	52
	2.5	Physica	1 Measurements and Derived Parameters	5 3
		2.5.1	Determination of elastic constant, C	53
		2.5.2	Swelling	54
		2.5.3	Determination of X for gum vulcanizates	55
		2.5.4	Determination of the effective crosslink density	56
			Determination of the polysulphidic crosslink density	57
		2.5.6	Determination of mono- and disulphidic crosslink densities	57
	2.€	E and E	• Parameters	58
CHAPT	ER THI	REE RE	SULTS AND DISCUSSION	59
	3.1		nk Density and Distribution of E Crosslinks	61
	3 • 2	Crossli and E	nking Efficiency Parameters, E	69
	3• 3		stic Interpretation of the ation of SBR and NBR	74

	3.4	The Pol		nt (Benzene)	Interaction	81
		3.4.1	The effect	of network	structure on X	91
		3.4.2	The effect	of probe to	reatments on X	9.3
CHAPT	R FOU	R CONC	NOIEUI			91
BEFERE		10, mel				9 4
AFFENI						99
1-5						
7.1						
2 -		istaa 4 Maa 18 1				
			i sa enviror L'Amarian es nalissociet	in privital Preside poi		
1.7		7) (2) 10 0 CHIE 0				
		rioiri i				
			a () 5. 25. 2 148 25 3 2			
2 , 1						

LIST OF FIGURES

Figure	Title validation of the state	Page
1.1	General features of sulphur vulcanizate of NR	8
1.2	The course of the overall vulcanization process	11
1.3	Effect of crosslink density on vulcanizate properties	19
1.4	The relationship between tensile strength of pure gum NE vulcanizates and (1/M2) for various vulcanizing systems shown	13
1.5	Rate of reaction of disulphides (J.1M) with butane-1-thiol (1M) in piperidine at 25°C	35
1.6	linear swelling measurements	36
2.1	Mixing procedures for SBR mixes	45
2.2	Mixing procedures for NBR mixes	45
2•3	Apparatus used in the treatment of vulcanizate with thiol-amine reagent	50
2.4	Apparatus used in the treatment of vulcanizate with triphenylphosphine	50
3 • 1.	Summary of the process to obtain the structural characterisation parameter for each vulcanizate	6)
3.2	Distribution of crosslink types as a function of cure time at 155°C for mix 3A	62
3.3	Distribution of crosslink types as a function of cure time at 155°C for mix 38	63
3.4	Distribution of crosslink types as a function of cure time at 155°C for mix NA	64
3.5	Distribution of crosslink types as a function of cure time at 155°C for mix NB	63

3.6	Relationship of elastic constant (C_1) to volume fraction (V_{rr}) of vulcanizates from mix SB	86
3.7	Relationship of elastic constant (C_1) to volume fraction (V_r) of vulcanizates from mix NB	87
3.8	Variation of polymer-solvent interaction parameter (X) with volume fraction (Vr) for mix SB	88
3.9	Variation of polymer-solvent interaction parameter (x) with volume fraction (V _r) for mix NB	8)
2.1	Production of all contents of my self and the self and th	
	e Mandroll and sale to the selection of	
· , ,	CONTINUE THAT BUT TO THE RESIDENCE OF A STATE OF THE STAT	
1, 4	kusemi ng pagra rendaraka portuso eto kusekalasi kompaka kembasa ka	
	Charles I committee the state of present the second state of the second	

LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
1-1	Sulphur and accelerator concentrations for different vulcanizing systems	5
2.1	Characteristics of the rubbers used	43
2.2	Mix formulations	44
3•1	Distribution of mono-, di-, and polysulphidic crosslinks at maximum	
	crosslink density	68
3.2	Chemical characterisation parameters of vulcanizates derived from mix 3A	70
3.3	Chemical characterisation parameters of vulcanizates derived from mix 3B	70
3.4	Chemical characterisation parameters of vulcanizates derivel from mix NA	71
3.5	Chemical characterisation parameters of vulcanizates derived from mix NB	71
3.6	Fffect of network structures and probe treatments on X for mix SA	82
3.7	Fffect of network structures and probe treatments on X for mix SB	3 3
3.8	Fffect of network structures and probe treatments on X for mix NA	84
3.9	Effect of network structures and probe treatments on X. for mix NB	8.5

LIST OF ABBREVIATIONS

A/S Accelerator to sulphur

BR High cis-1,4-polybutadiene rubber

CV Conventional vulcanizing

CBS N-cyclonexylbenzothiazole-2-sulphenamide

EV Efficient vulcanizing

MRPRA Malaysian Rubber Producers Research Association

MBT 2-Mercaptobenzothiazole

NE Natural rubber

NBR Nitrile rubber

pphr Part per hundred parts of rubber

S Sulphur

SBR Styrene-butadiene rubber

SEV Semi-efficient vulcanizing

S_{Ni} Internal allylic substitution reaction without

rearrangement

 S_{NL}^{T} Internal allylic substitution reaction with

rearrangement

1.1 Vulcanization

Raw rubber is a tough resilient material at room temperature but when placed under stress it plastic or irrecoverable flow, especially at high temperatures. By introducing a relatively small number of chemical crosslinks between individual polymer chains, the plastic flow of the rubber is overcome while the elastic recovery of the material is unimpaired. The insertion of these chemical crosslinks is known as vulcanization. This process results in several fundamental changes in the physical properties of the rubber. In particular, the rubber becomes insoluble in normal solvents like heptane, toluene, benzene and chloroform; instead, it swells, often considerably but to an equilibrium volume. Also, the load-hearing characteristic improves since the crosslinks introduced prevent viscous flow of the rubber chains. The crosslinks produced may be chains of sulphur atoms, single sulphur atom, carbon-carbon bonds, polycovalent organic radicals, or polycovalent metal ions.

There are various ways to crosslink rubbers, namely using elemental sulphur, sulphur donors, organic peroxides, phenolic resins, metal oxides, and high energy radiation. These methods have already been extensively reviewed by Elliot & Tidd(1974) and Kirkham(1973). Ine choice of method depends on the properties required by the end product for a particular application. Since accelerated sulphur

vulcanization was used in this project, it will be discussed in detail here.

1.2 Accelerated Sulphur Vulcanization

Accelerated sulphur vulcanization, which had its origin in the well known discoveries of Goodyear and Hancock, is still the most widely used crosslinking method today. This method is suitable for the following rubbers: rubber [Na), synthetic isoprene rubber, natural polybutadiene (BF), styrene-butadiene rubber (SBR), nitrile (NBR), butyl rubber, chloroprene, and rubber ethylene-propylene-diene modified rubber. The process of vulcanization involves the blending of masticated raw rubber with a vulcanizing system consisting of a pre-formulated mixture of vulcanizing agents, accelerators, and activators. Vulcanization is effected by curing the mix in a mould under pressure at a specified temperature and time. Heating is usually at 140°C for NR and somewhat higher for SBR and NBB (up to 150-160°C); much lower temperatures are possible if specially active accelerators are use i.

1.2.1 Sulphur vulcanizing system

A vulcanizing system is a mixture of additives required to vulcanize an elastomer. The system generally

employed for curing rubber goods consists of three main classes of chemicals, namely valcanizing agents, accelerators, and activators.

(a) Vulcanizing agents

A vulcanizing agent is any chemical which can initiate the chemical crosslinking of the rubber molecules leading to the formation of a three-dimensional network. The most common vulcanizing agent used is sulphur.

(b) Accelerators

As the name implies, these are substances which can increase the rate of vulcanization of rubber with sulphur. They are also capable of promoting more efficient utilization of sulphur for crosslinking, thereby improving the properties of the vulcanizates. Most of these are organo-nitrogen or organo-sulphur compounds like amines, guanilines, thioureas, thiazoles, sulphenamides, thiurams, ditmiocarbamates, and xanthates.

(c) Activators

These are used to increase the vulcanization rate by activating the accelerator so that it becomes more efficient. Activators can be grouped as follows:

(1) - Inorganic compounds (mainly metal oxides) such as

zinc cxile, hydrated lime, litharge, red lead, magnesium oxide, and alkali carbonates. Zinc oxide is the most commonly used inorganic activator.

in combination with metal oxides. They are generally high molecular weight monobasic acids such as stearic, oleic, lauric, palmitic, and myristic acids.

Apart from the above, there are other compounding ingredients, present mostly in industrial rubber compounds, such as fillers, reinforcing agents, antidegradants, retarders, and scfteners.

Generally, the vulcanizing systems used in the vulcanization of NR can be divided into three different types based on the ratio of accelerator concentration to sulphur concentration (A/S ratio) as shown in Table 1.1.

Table 1.1 Sulphur and accelerator concentrations for different vulcanizing systems (Elliot & Tidd, 1974)

Systems	Sulphur (pphr) *	Accelerator (pphr)*
Conventional	2.0 to 3.5	1.0 to 0.4
Efficient	0.3 to 0.8	6.0 to 2.5
Semi-efficient	1.0 to 1.7	2.5 to 1.0

^{*}pphr - part per hundred parts of rubber

Conventional vulcanizing (CV) systems

The A/S ratio is low in these systems. At optimum cure, the crosslinks are predominantly poly- and disulphidic with a small number of monosulphidic crosslinks. At the same time, much of the sulphur is confined with rubber molecules in the intramolecular cyclic groups and pendent groups and hence wasted as far as crosslinking is concerned. A typical example of CV systems that had been studied in detail is as follows(Moore, 1964): sulphur=2.5, CBS=0.6, zinc oxide=5.0, fatty acid=0.7 (all pphr).

Efficient vulcanizing (EV) systems

dayya hii maay ka ilaa ka baraa daabaa, ilaa ka baraa ka baraa baraa ka baraa ka baraa ka baraa ka baraa ka ba

These systems have high A/S ratios. At optimum cure the crosslinks are mainly monosulphidic with little di- and polysulphidic types. The amounts of cyclic and pendent groups in EV systems are relatively small compared with those present in CV systems. A typical example of EV systems that had been studied in detail is as follows (Moore, 1964): sulphur=).1, CBS=6.0, zinc oxide=5.0, fatty acid=1.0 (all pphr).

Semi-efficient vulcanizing (3EV) systems

These systems produce vulcanizates whose network structures and thermal stability are intermediate to those from CV and EV systems. It can be used in cases where it can offer a compromise, in terms of cost and certain properties, between CV and EV systems. A typical example of

SEV systems that had been studied in detail is as follows (Skinner, 1972): sulpaur=1.8, CBS=1.0, zinc oxide=5.0, fatty acil=1.4 (all pphr).

It should be noted that Table 1.1 is a very simplified presentation. In practice the amount of accelerator required to obtain an optimum degree of crosslinking for any given sulphur level, will lepend on several factors such as the activity of the accelerator, the presence of inorganic and/or organic activator(s), and whether just one or a combination of two or more accelerators is used.

The terms CV, EV, and SEV are similarly applicable to describe the vulcanizing systems used in the vulcanization of synthetic ruthers. However, as shown by Rodger (1979), the A/S ratio used in CV systems for any synthetic rubhers is generally higher than that used in NR.

1.2.2 Chemical structure of accelerated sulphur vulcanizate

As a result of chemical reactions that take place during vulcanization, the primary rubber molecules of NR are converted into a three-dimensional covalently bonded vulcanizate network having the structural features as illustrated in Fig. 1.1. The network itself consists of:

- (a) the main chain of original rubber molecules
- (b) crosslinks with variations defined by knowledge of both actual atom interlinking main chains and

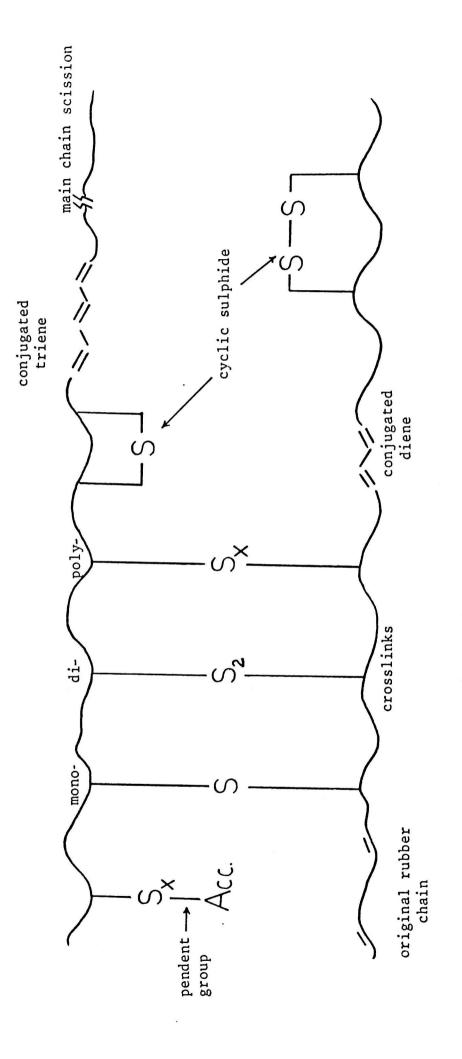


Fig. 1.1: General features of sulphur vulcanizates of NR (Moore, 1964).

immediate vicinity of the crosslink.

(c) chemical modifications of the main chain, for example cyclic sulphides, pendent sulphur/accelerator fragments, olefinic pattern changes in parent molecules (diene and triene), and main chain scission.

Not all groupings of the above structures are present in every case. Relative concentrations of each may vary widely depending particularly on the molar accelerator to sulphur used, activator concentrations, time and temperature of vulcanization.

The covalent sulphide linkages produced join together neighbouring rubber chains at randomly selected points along each primary molecule. The points of attachment of the sulphide linkages to the molecular chain depend on the nature of the chain. Model system studies by Porter(1968) have shown that the point of attachment is either at carbon atoms α -methylic or α -methylenic to the double bond as shown telow:

 $\{A_1 S-\}$ is a simple set of the size $\{B_1 S-\}$

S-) (B₂S-)

The terminal alkenyl groups are designated A, or B, and their allylic-iscmeric forms A_2 or B_2 according to their point of attachment of olefin to sulphur.

In contrast to the amount of information concerning the structure of N3 vulcanizates, there is very little information available on synthetic rubbers. Limited studies by Brour & Vorohkov (1947) for SBR, Zakharov & Kostrykina(1968), and Zakharov et al.(1971) for NBR have suggested that the point of attachment for the sulphidic linkages occurs at the carbon atom &-methylenic to the double bond and grenyl ring, and at the carbon atom adjacent to the nitrile group for SBR and NBR respectively as shown below:

1.2.3 Mechanism of accelerated sulphur vulcanization

Vulcanization of NR with sulphur in the presence of accelerators is believed to follow the reaction sequence represented in Fig. 1.2.

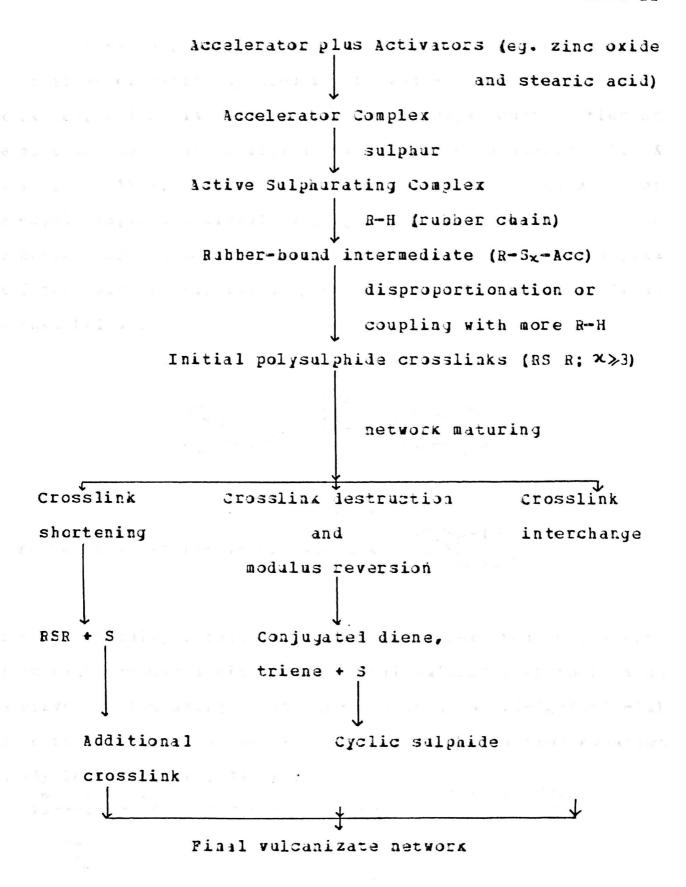


Fig. 1.2 The course of the overall vulcanization process (Moore, 1964)

In the early stage of the vulcanization process, the actual accelerator species is formed - a zinc/accelerator complex, which is rendered soluble through coordination of amine or carboxylate ligands to the zinc atom[Campbell & wise. 1964: 1971). In the case of N-cyclohexylbenzcthiazole-2-sulphenamide (CBS), the accelerator species is possibly the cyclohexylamine complex of the zinc mercaptide of 2-mercaptobenzothiazole (MBT) as shown below:

$$\bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigvee_{\substack{N \mid H_2 \\ \downarrow \\ S}} C - S - Z \cdot D - S - C \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc$$

represented as NS-Zn-SX, where
$$X = \bigcup_{3}^{N} C$$

It is generally recognised that the complex then reacts with the eight-membered ring of elemental sulphur (S_8) to form an active sulphurating agent (represented as $XS-S_{x}-Zn-S_{x}-SX$) for the NB hydrocarbon as shown in the reaction equation (R1) below (Porter, 1968):

$$XS-S_{x}-Zn-SX \longleftrightarrow XS-S_{x}-Zn-S_{x}-SX + XS-Zn-SX$$

$$\dots \qquad (R1)$$

Thus the activator serves two important functions:

- ruther hydrocarbon and
- (2) it increases the polarization of the Zn---s bond in the accelerator complex and thus the nucleophilic reactivity of incipient mercaptide ion with the S-s bond in the Sg ring and hence facilitates the production of the active sulphurating agent.

The active sulphurating agent then reacts with the rubber hydrocarbon (represented as R-H) to form polysulphidic pendent groups (represented as $R-S-S_x-X$), which are believed to be the intermediate precursors of polysulphidic crosslinks. The proposed mechanism involves nucleophilic attack by terminal persulphenyl anions in the sulphurating complex on α - carbon atom; this is accompanied by the simultaneous displacement of hydride ions towards penultimate persulphenyl cations and formation of zinc sulphide as illustrated in reaction equation R2 below (Bateman et al., 1953b):

Substitution takes place either at α -methylic or α -methylenic carbon atoms according to factors such as

electronic character of the sulphuration complex, the steric accessibility of \propto -carbon atom and the polarizability of F-B bonds.

In contrast to NR, information on the mechanism of vulcanization of SBB and NBR are limited. For SBR, Ghosh et al. (1977) proposed that sulphuration proceeds through a polar mechanism and the reaction site is at the carbon atom α -methylenic to the double bond and phenyl ring. However, for NBR, Zakharov & Kostrykina (1969) and Zakharov et al. (1971) found that the mechanism of sulphuration is via a radical reaction with the participation of the -CH group adjacent to the nitrile group.

In the vulcanization of NR, the initial crosslinks are thought to be formed either by disproportionation between pendent groups on neighbouring chains or by direct reaction of pendent intermediate groups with rubber hydrocarbon. The fate of the initial polysuiphidic crosslinks has been revealed by experiments with model dialkenyl di- and trisulphides (Porter, 1968). It was found that the initial polysulphide crosslinks formed can undergo any of the competitive routes as shown in Fig. 1.2. One of these routes is polysulphile crosslink shortening which can occur repetitively until the eventual formation of stable monosulphidic crosslinks. This releases sulphur for further crosslinking.

Alternatively, the polysulphide crosslinks may suffer destruction, resulting in main chain modifications. A third

route is an interchange reaction occurring between polysulphide crosslinks at their point of attachment to the ruther chain which does not alter the crosslink composition of the network but leads to stress relaxation. These competitive routes together constitute the maturing process which controls the final structure of the vulcanizate network.

The predominance of any one of the maturing reactions depends on a number of factors. One of the important factors is the hydrocarbon structure of the terminating the crosslink. Model system studies have shown that B, sulphides (see section 1.2.1) desulphurate faster than the A sulphiles. When the rate of desulphuration is high, there is little opportunity for thermal destruction of the initial polysulphide crosslinks and the associated formation of main chain modifications. Then the crosslink shortening reaction will dominate the maturing process and lead to the fermation of additional crosslinks and a thermally stable network predominantly crosslinked by monosulphide. If, however, tae rate of desulphuration is slow, the crosslinks will be retained in the polysulphide form for a longer period and hence become more susceptible to thermal destruction which will lead to modulus reversion and main chain mcdifications.

The maturing process will also be influenced by other factors:

- (1) the structure and the concentration, and thus reactivity of the accelerator-activator complex which is responsible for the conversion of the elemental sulphur into the active sulphurating agent for the desulphuration of the polysulphide crosslinks.
- (2) the length of the sulphur chain which is determined by the A/S ratio used; and
- (3) the temperature and time of vulcanization.

1.3 Relationship between some Vulcanizates Properties and Network Structure

Fig. 1.3 illustrates some of the major effects of vulcanization. It can be seen that the modulus of a vulcanizate is substantially lirectly proportional to the number of crosslinks formed and hence the crosslink density. The relation between modulus and the degree of crosslinking is shown by the following equation (E1):

$$f = \beta B F A_0 M_c^{-1} (\lambda - \lambda^{-2}) \dots (E1)$$

where f is the force applied, ρ is the density of the rubber network, A_0 is the area of unstrained cross-section of the test piece, R is the gas constant, T is the absolute

temperature, M_c is the number average molecular weight of the network chains between physically effective crosslinks, and N is the extension ratio. According to the equation, when ρ , T, A_o , and N are kept constant, the force applied, T, at the extension ratio N depends on the reciprocal of M_c and, therefore, on the degree of crosslinking.

Hardness of the vulcanizate, like modulus, increases progressively as the number of crosslinks increases until the material becomes ebonite. As is the case with modulus, a constant deformation (in this case, compression) is produced when hardness is measured. Therefore, what has been said about modulus also applies substantially to hardness.

Fig. 1.3 shows that tear strength and fatigue life increase with crosslink density until a maximum is reached after which these properties decrease with further increase in crosslink density. These properties are related to energy-at-break. Hysteresis and permanent set diminish as the degree of crosslinking increases. Since hysteresis is a measure of energy loss in a loading cycle, then those properties related to energy-at-break will increase with increase in crosslink density and hysteresis. However, hysteresis decreases as more crosslinks are formed. Therefore, the energy-at-break properties peak at some intermediate crosslink density.

Tensile strength does not increase continuously with the crosslink density (Fig. 1.3). Instead, it increases with the number of crosslinks until a maximum is reached, after which it falls with further crosslink formation. Qualitatively this can be explained from the fact that first an increase in strength wil be achieved as more network chains are to bear the stress. However, as vulcanization proceeds, the network chains become shorter and, therefore, less extensible and hence more prone to rupture before appreciable orientation of network as a whole cccurs(Mullins, 1964).

The properties represented in Fig. 1.3 are influenced by crosslink density alone but are also affected by the nature of crosslinks, the nature of base polymer, and the amount and type of filler used (if any). For example, when a given base polymer of a given initial molecular weight is crosslinked to the same extent by different vulcanizing systems, the resulting vulcanizates have varying tensile strength (Fig. 1.4). These differences are mainly because of the difference in the nature of crosslinks. 1.4 shows that CV systems give rubbers with higher tensile strength than ruthers cured with EV systems which, in turn, are stronger than peroxide or high energy radiation-cured rubbers. These three types of vulcanizates contain mainly polysulphidic, monosulphidic and carbon-carbon crosslinks respectively. Further, bond energy for rupture of the carbon-carbon, carbon-sulphur and sulphur-sulphur decreases in this order.

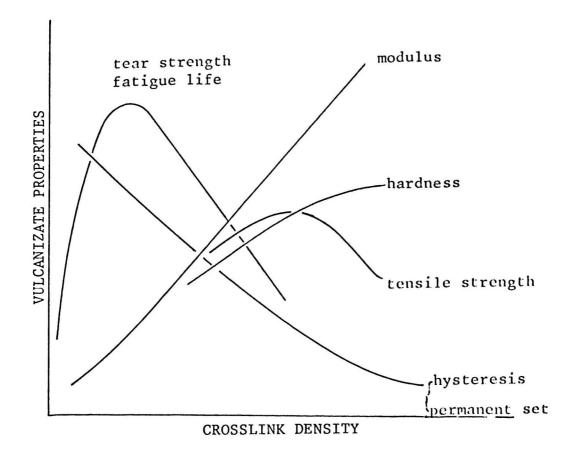


Fig. 1.3: Effect of crosslink density on various vulcanizate properties (Elrich, 1978).

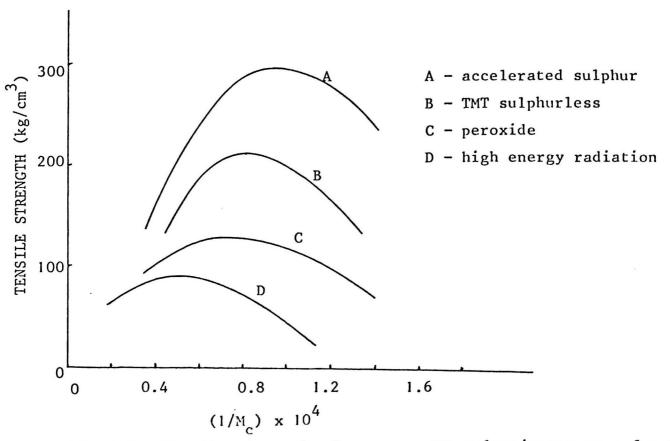
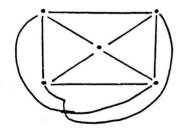


Fig. 1.4: Tensile strength of pure gum NR vulcanizates as a function of $(1/M_c)$ for various vulcanizing systems (Mullins, 1964).

A hypothesis has been developed to account for the relative strengths of vulcanizate with crosslinks of different mechanical strength (Bateman et al., 1963a; Mullins, 1964). Since crosslinks are randomly introduced into the network, they will be unevenly distributed. This will lead to wide variation in the length of chain segments about the mean. Accordingly, when a stress is applied to the network, it will not be evenly supported and will cause some of the chains to be subjected to abnormally high stress because of their unfavourable geometrical disposition. If the crosslinks are mechanically strong, these chains will break leading to an increase in stress on neighbouring chains and, ultimately, catastropnic rupture.


However, if the crosslinks are weaker than the bonds in the main chains (for example S-5 bonds), they could relieve localized high stress concentrations permitting a more uniform distribution of stress resulting from the breakages of the weaker bonds. This will prevent the start of the rupture process at relatively low elongation. Hence, it will allow the deformed network as a whole to bear higher stresses at higher elongations.

1.4 Characterisation Of Vulcanizate Structure

1.4.1 Determination of crosslink concentration

The macromolecular structure of a vulcanizate network may be specified in terms of basic network elements, namely network chains (macromolecular segments bound at each end by a crosslink) and chain ends (macromolecular segments bound at one end only to a crosslink). The latter represents network defects arising from the finite molecular weight of the primary rubber molecules. In a network free from chain ends, the relationship between the concentration of network chains and the crosslink density may be determined directly from the functionality of the crosslinks, that is the number of network chains terminated by each crosslinks.

For tetrafunctional crosslinks, in the absence of chain ends, each crosslink is associated with one-half of the four network chains bound to it as shown below:

. = crosslink

- = network chain

Hence, if Mc is the number average molecular weight of the network chains between crosslinks, [2Mc/N] grams of rubber

will contain one crosslink where N is the Avogadro's Number. Therefore, one gram of rubber will contain $[N/(2M_c)]$ crosslinks or $1/(2M_c)$ gram mole of crosslinks.

The parameter, M_c, may be determined experimentally from stress-strain measurements and the use of the relationship E1 (see section 1.3).

$$f/A_0 = \rho RTMc^{-1}(\lambda - \lambda^{-2}) \dots (E1)$$

However, in practice, stress-strain relationships are found to deviate considerably from the ideal behaviour predicted by equation E1, and in most cases, it is better described by the Mooney-Rivlin equation (Mooney, 1940; Rivlin & Saunders, 1951) as shown below (E2):

$$f/2A_0 = IC_1 + C_2 \lambda^{-1} (\lambda - \lambda^{-2})$$
 ... (E2)

where C_1 and C_2 are constants characterising the network. Equation E2 may be rewritten in the form:

$$f/2A_o \left(\lambda - \lambda^{-2}\right) = C_1 + C_2 \lambda^{-1} \dots (E3)$$

At moderate strains, a linear relationship is obtained when results obtained from stress-strain measurements are plotted in the form of $f/2A_0$ ($\lambda = \lambda^{-2}$) versus λ^{-1} . The constants C, and C₂ are identified with the intercept and slope respectively.

For vulcarizates swollen in liquid, equation E2 tecomes:

$$f/2A_0 = V_1(C_1 + C_2\lambda^{-1})(\lambda - \lambda^{-2})$$
 ... (E4)

film is no .. the incl

re VI for aboration was public, there a

where V₁ is the volume fraction of rubber vulcanizate in the swellen state. Studies by Gumbrell et <u>al</u>. (1953) have shown that C₂ (swollen) progressively decreases to zero as the degree of swelling increases. Thus equation E4 will reduce to equation E1 if

$$C_1(swollen) = \rho RT(2M_c)^{-1} \dots (E5)$$

In practice, values of C₁ obtained for dry networks are found to agree well with those obtained in the swollen state (Mullins, 1959). Hence, the C₁ values obtained from a dry network may be used to obtain M_c (using equation E5). This will give the number of physically effective crosslinks, provided allowance is made for the effect of chain ends.

Alternatively, M_c can be obtained from equilibrium degree of swelling and the application of the Flory-Behner equation (Flory & Behner, 1943), thus:

$$-\ln(1-V_r)-V_r-\chi V_r^2 = \rho V_0 M_c^{-1}(V_r^{1/3}) \dots (E6)$$

where V_r is the equilibrium volume fraction of rubber in the

ಶಾರತಿಕುವರು ಹತ್ತು ಎಲ್.ಕಾರ್ಗಳಲ್ಲಿ ಇತ್ತಿ ಅಗೃಳ ಸಂತ್ರವಾಗಿ ಹಾಗಳಿಗೆ ಎಂದು ಎಂದು ಸಂಗೀತಕಾಗಿತ್ತಾಗಿದ್ದು. ಅನ

swollen network, \times the polymer-solvent interaction parameter, v_o the molar volume of swelling agent, and ρ the density of rubber vulcanizate.

Equation Fó was later modified by Flory(1950) to give:

$$-\ln (1-V_r) - V_r - \times V_r^2 = \int V_o M_c^{-1} \left(V_r^{1/3} - V_r / 2 \right) \dots (E7)$$

By substituting equation E5 into equation E7, an expression could be obtained with C_1 , thus:

$$-\ln(1-V_r)-V_r-\chi V_r^2 = 2C_1 V_o (RT)^{-1} (V_r^{1/3}-V_r/2) ... (E8)$$

Values of M_c obtained from swelling (equations E6 and E7) and stress-strain measurements (equations E1 and E2) strictly relate to ideal networks of infinite primary molecular weight. Hence allowance has to be made for the presence of chain ends in real networks. In NR, the correction given by Ellis & Welding(1964) takes the form of a replacement of M_c⁻¹ in equation E5 by M_c⁻¹ (1- \propto M_n⁻¹ M_c) where \propto is a constant and M_n is the number average molecular weight of the primary molecules.

Although allowance is made for the effect of chain ends, there are loubts concerning the validity of the M_{C} values as obtained by the above methods. For example, no account is taken of the effect of network entanglements on