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REKABENTUK, SINTESIS DAN PENILAIAN BIOLOGI ANALGESIK 

OPIOID BARU BERDASARKAN KERANGKA TETRAHIDRO-Β-

CARBOLINA DALAM LARVA IKAN ZEBRA (DANIO RERIO) 

ABSTRAK 

 Pengurusan kesakitan yang berkesan memerlukan pendekatan menyeluruh 

yang merangkumi gabungan campuran intervensi farmakologi dan bukan farmakologi. 

Analgesik opioid mengurangkan kesakitan dengan bertindak melalui reseptor opioid 

Mu (MOR) tetapi dikaitkan dengan kesan sampingan yang tidak diingini. Alkaloid 

tetrahidro-beta-karbolina (THβC) dilaporkan mempunyai pelbagai aktiviti, termasuk 

kesan analgesik. Mitraginina, suatu struktur berasaskan THBC terbukti mempunyai 

kurang kesan samping kerana isyarat intraselularnya cenderung terhadap protein G. 

Kajian ini bertujuan untuk mereka bentuk, mensintesis, dan menilai aktiviti analgesik 

terbitan THβC. Pangkalan data sebanyak 25,227 analog THβC disediakan daripada 

saringan maya pangkalan data ZINC untuk fragmen bromin dan seterusnya fragmen 

tersebut dihubungkan pada kedudukan N2 kerangka THβC. Dengan bantuan 

pengedokan molekul terhadap keadaan aktif MOR (PDB ID: 6DDE), 20 analog THβC 

yang mempunyai Gscores daripada pengedokan XP yang lebih baik daripada morfin 

telah dipilih. Pengubahsuaian lanjut pada sebatian terpilih dengan memasukkan 

kumpulan metoksi di kedudukan C6 kerangka THβC menghasilkan satu set lagi 20 

sebatian analog bagi 6-metoksi THβC (6MTHβC), kesemuanya diramalkan 

mempunyai sifat ADMET yang baik. Daripada jumlah 40 sebatian THβC/6MTHβC, 

38 terbitan berjaya disintesis dan dielusidasikan strukturnya menggunakan kaedah 

pencirian GC-MS, FTIR, spektroskopi 1D dan 2D NMR. Penilaian toksisiti in vivo 10 

wakil terpilih secara rawak daripada analog yang disintesis menggunakan embrio ikan 
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Zebra menunjukkan bahawa mereka adalah selamat. Aktiviti analgesik menggunakan 

pergerakan bebas larva ikan Zebra menunjukkan bahawa pendedahan larva kepada 

pengaruh rasa sakit, formalina merosakkan pergerakan mereka seperti yang 

ditunjukkan oleh purata halaju 1.60 mm/s berbanding 0.60 mm/s bagi kawalan. 

Terutamanya, dua daripada 10 sebatian (W25 dan W32) menunjukkan profil analgesik 

yang paling berpotensi. Halaju, purata larva berkurangan kepada 0.6 mm/s dan 0.7 

mm/s apabila terdedah kepada W25 pada kepekatan 1 µM dan 6 µM masing-masing. 

Ini konsisten dengan kesan yang direkodkan (0.6 mm/s) oleh fentanil 3 µM. Begitu 

juga, W32 menunjukkan halaju purata 0.4 mm/s dan 0.5 mm/s pada kepekatan 1 µM 

dan 6 µM masing-masing. Kedua sebatian, W25 dan W32 mengikat kepada MOR 

(PDB ID 6DDE), dengan berinteraksi kepada asid amino penting untuk pengaktifan 

afiniti ikatan yang kuat semasa simulasi MD 100 ns. Penyiasatan teori yang lebih lanjut 

menyokong potensi mereka sebagai sebatian analgesik yang bertindak melalui 

pengaktifan MOR. Kesimpulannya, analog THβC yang direka mewakili titik 

permulaan yang baik untuk merancang agonis reseptor opioid sebagai analgesik masa 

hadapan. Kajian ini mendedahkan prinsip-prinsip kimia perubatan dari atas ke bawah 

dalam mereka bentuk drug. 
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DESIGN, SYNTHESIS AND BIOLOGICAL EVALUATION OF NEW 

OPIOID ANALGESICS BASED ON TETRAHYDRO-Β-CARBOLINE 

SCAFFOLD IN ZEBRAFISH (DANIO RERIO) LARVAE 

ABSTRACT 

Effective pain management requires a comprehensive approach that includes a 

combination of pharmacological and non-pharmacological interventions. Opioid 

analgesics reduce the pain acting through the Mu opioid receptors (MORs) but are 

found to be associated with undesired side effects. Tetrahydro-beta-carboline (THβC) 

alkaloids are reported to possess various biological activities, including analgesic 

effects. Mitragynine, a THβC-based structure, has been proven to have reduced side 

effects, as it was found to bias intracellular signaling towards G proteins. The present 

study aims to design, synthesise, and evaluate the analgesic activities of THβC 

derivatives. A database of 25,227 THβC analogues was prepared from structure based 

virtual screening of the ZINC database for bromine fragments and linking the 

fragments at the N2 position of the THβC scaffold.  By the aid of molecular docking 

against the active state of MOR (PDB ID: 6DDE), 20 THβC analogues had 

comparatively better XP docking Gscores than morphine were selected. Further 

modification of the selected compounds by inserting a methoxy group at position C6 

of their THβC scaffold afforded another set of 20 compounds of the 6-methoxy THβC 

(6MTHβC) analogues, altogether predicted with good ADMET properties. From the 

total 40 THβC/6MTHβC compounds, 38 derivatives were successfully synthesised 

and structurally elucidated using GC-MS, FTIR, 1D and 2D NMR spectroscopy 

characterisation methods. In vivo toxicity evaluation of selected 10 representatives of 

the synthesised analogues using Zebrafish embryos propelled them as non-toxic. Their 
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analgesic activities using the locomotion activity of freely behaving larval zebrafish 

showed that exposure of the larvae to a pain inducer, formalin (pain inducer) increased 

their movement as indicated by an average velocity of 1.60 mm/s compared to the 0.60 

mm/s of the control. Notably, two out of the 10 compounds (W25 and W32) 

demonstrated promising analgesic profiles. The average velocities of the larvae were 

reduced to 0.6 mm/s and 0.7 mm/s when exposed to W25 at 1 µM and 6 µM 

respectively. These are consistent with the recorded effects (0.6 mm/s) of the 3 µM 

fentanyl.  Similarly, W32 showed average velocities of 0.4 mm/s and 0.5 mm/s at 

concentrations of 1 µM and 6 µM respectively. The two compounds, W25 and W32 

conferred stability upon binding to the MOR (PDB ID 6DDE), interacting with 

essential amino acids for activation with strong binding affinities during a 100 ns MD 

simulation. The theoretical investigation further supports their potential as promising 

analgesics that suggestively act via MOR activation. In conclusion, the designed THβC 

analogues represent a good starting point for designing opioid receptor agonists as 

future analgesics. The study reveals the fundamentals of top-down medicinal 

chemistry approaches in drug design. 
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CHAPTER 1  
INTRODUCTION 

1.1 Background 

Pain is an unpleasant feeling resulting from injury, damage or changes in any 

physiological system requiring medical care for millions worldwide (Pratik et al., 

2018). Pain can be classified into two main categories; tissue damage level (i.e. 

nociceptive, neuropathic and nociplastic pain) and duration of pain (i.e. chronic and 

acute pain) (Chary, 2020). Many reports globally addressed chronic pain as a 

significant concern due to its impact on patients’ quality of life. For example, the 

estimated prevalence of chronic pain in developed countries was reported in the range 

of 11% to 40% in the United States (Dahlhamer et al., 2018), 16% to 41% in Canada 

(Foley et al., 2021; Schopflocher et al., 2011) and 35.0% to 51.3% in the United 

Kingdom (Fayaz et al., 2016). However, in developing countries like Malaysia, an age-

based study estimated the prevalence of chronic pain in the range of 7.0% to 15.3% 

(Lem et al., 2021; Mohamed & Hairi, 2014), with the highest prevalence of 15.3% 

among older people.   

The experience of pain is the final step in a complex information-processing 

network of pain mechanisms processed via different stages (i.e. transduction, 

transmission and perception) involving the spinal cord, spinal gating and the brain 

(Bridgestock, 2013). Antinociceptive (analgesics) are chemicals that reduce pain 

sensation through a series of processes that occur mainly in the brain (Woolf, 2010) 

and through the activation of opioid receptors (ORs) (Stein, 2016). 
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G protein-coupled receptors (GPCRs) represent the largest superfamily of cell 

transmembrane (TM) receptors (Rosenbaum et al., 2009). Being a bundle of flexible 

helices of two sides, the extracellular side of GPCRs can bind with a wide range of 

extracellular molecules at orthosteric and allosteric sites. In contrast, the intracellular 

side binds mediators, mainly G proteins and beta-arrestins (Mahmod Al-Qattan & 

Mordi, 2019). The opioid receptors which are members of the GPCR are expressed 

and distributed within the central nervous system (Sora et al., 1997), peripheral 

nervous system (Ozawa et al., 2015), the gastrointestinal tract (Galligan, 2016; 

Sobczak et al., 2014).  The mu, delta and kappa opioid receptor subtypes, which are 

encoded by Oprm1, Oprd1 and Oprk1 genes, respectively (Kieffer & Gavériaux-ruff, 

2002; Stevens, 2009), have been identified to be closely associated with pain 

perception (Kaserer et al., 2020), reward (Rodrıguez-Arias et al., 2010) and 

neuroprotection (Chao & Xia, 2010). In addition, opioid receptors were found to be 

activated endogenously by different types of opioid peptides (i.e., enkephalins, b-

endorphin and dynorphins) (Akil et al., 1998).  

The Mu Opioid Receptor (MOR) mediates the most potent antinociceptive 

effects, the most powerful analgesic and addictive properties of opiate alkaloids (Darcq 

& Kieffer, 2018). Hence, the MOR is a primary target in developing new analgesics 

(Law et al., 2013; Pradhan et al., 2012). Binding of the ligand to MOR may result in 

the intracellular interaction of the Gi protein or induce interaction with beta-arrestin. 

Upon MOR activation, intracellular interaction with the Gi protein alleviates pain, 

while interaction with beta-arrestin induces respiratory depression, as illustrated in 

Figure 1.1(Azzam et al., 2019).   



3 

 

Figure 1.1 Intracellular pathways that follow agonist binding to opioid receptors 

adapted from Azzam et al., 2019. 

Activation of MOR can fall into two opposing pathways: agonist and 

antagonist. Based on their pharmacological response, agonists fall into two categories: 

full and partial agonists (Manglik et al., 2015; Nygaard et al., 2013). Full agonists bind 

to the orthosteric site and stabilise the active conformation of the MOR, leading to a 

full biological response. While partial agonists bind to the same site but lead to a partial 

biological response even at higher concentrations (Nygaard et al., 2013). In contrast, 

antagonists bind to the same orthosteric site without affecting the equilibrium between 

an active or inactive state and its basal activity. Neutral antagonists block the binding 

of other ligands without imposing a biological response. Molecules that can suppress 

basal activity but stabilise the inactive state are called inverse agonists  (Manglik et al., 
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2015; Nygaard et al., 2013).  Signalling through the heterotrimeric G protein Gi results 

in analgesia, sedation, euphoria, and physical dependence (Chan et al., 2017). MOR 

can also signal through arrestin, and this pathway has been attributed to the non-desired 

effects of opioid analgesics (Bohn et al., 2000; Raehal et al., 2005).  

Opiates (MOR agonists) are the most common drugs used for treating moderate 

to severe chronic pain (Trescot et al., 2008). Although they significantly affect pain 

modulations, they are also associated with several undesired effects, such as 

respiratory depression, constipation, and nausea. The limitations posed by these 

undesirable effects restrict the clinical significance of opiates, prompting a quest for 

opioid drugs that are safer and more suitable for use (Martínez-Navarro et al., 2018). 

Opioid chemistry has, over time, focused on thebaine-derived alkaloids isolated from 

poppy (Papaver somniferum). Opioids can be divided into four major classes; (1) 

endogenous opioid peptides such as dynorphin and met-enkephalin, (2) opium 

alkaloids such as morphine, (3) semi-synthetic opioids which are derivatives of 

morphine (4) synthetic derivatives of structures different than morphine such as 

pethidine, fentanyl, methadone, pentazocine and buprenorphine (Mcdonald & 

Lambert, 2016; Carlin et al., 2020). Most of the known MOR agonists were discovered 

through traditional approaches, including; isolation from a natural product such as 

morphine, by natural product derivatisation such as oxycodone and hydromorphone, 

or by synthetic manipulation of natural product scaffolds such as fentanyl (Poli et al., 

2019). However, as mentioned above, these are potent MOR agonists with addictive 

abilities and undesired side effects. To overcome the morphine-like side effects, novel 

approaches are being used, such as biasing the GPCRs over β-arrestin2,  designing 

MOR-positive allosteric modulators (PAMs) (Kandasamy et al., 2021), and designing 
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ligands that possess functional activities such as the NOP/MOR agonists (Ding et al., 

2018) and MOR agonists/KOR antagonists (Nastase et al., 2019).  

The MOR activation involves several effectors, and biased agonism is 

considered one of the strategies currently used in drug discovery for safer MOR-

targeted therapeutics in pain management with lower side effects (Thompson et al., 

2016). Generally, biased agonism, which could refer to ligand functional selectivity 

upon binding with its receptor, can lead to favouring one signalling pathway over 

another (i.e., Gi or β-arrestin) (Figure 1.1), which in turn produces either wanted or 

unwanted effects of the ligand (drug) (Li et al., 2017). 

Drug discovery and development efforts have been advanced to discover 

analgesics that will provide more effective pain relief with selective activation of the 

Gi/o pathway over the beta-arrestin pathway by biased signalling. These include the 

designing of analgesics that are deprived of respiratory and addictive side effects. The 

reported strategies used in designing MOR-biased agonists include:  

(1) Measurement of biased agonism of existing opioid drugs. It has been 

reported that buprenorphine, despite being a partial agonist against MOR, produces an 

analgesic effect similar to morphine (Davis et al., 2018). It was the only drug not 

showing β-arrestin recruitment (Butler, 2013).  

(2) Screening of an internal compound collection of small molecule methods 

has afforded Oliceridine (TRV130) 2 (Figure 1.2) as a MOR-biased agonist (Chen et 

al., 2013; Dewire et al., 2013). 

(3) From natural products: The first known biased MOR agonist derived from 

natural products is Herkinorin 3, obtained as a derivative of salvinorin A 4 (active 
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substituent from Salvia divinorum) (Butelman et al., 2008). Other renowned MOR 

agonists from natural products include the active constituents of Mitragyna speciosa; 

mitragynine 5, 7-hydroxy mitragynine 6, and mitragynine pseudoindoxyl 7, found to 

be a biased agonist against MOR (Kruegel et al., 2016; Váradi et al., 2016; Zarembo 

et al., 1974). The chemical structures of these natural products are displayed in Figure 

1.2.   

 
Figure 1.2 Chemical structures of MOR-biased agonists from natural resources. 

 

(4) Using MOR structure (target) based drug design (SBDD). The SBDD methodology 

was applied in the discovery of the MOR-biased agonist PZM21, which was obtained 

through the docking of millions of compounds against MOR followed by lead 

optimisation (Manglik et al., 2016).  
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MOR agonists with a different structure other than the morphinan scaffold  (Figure 1.2) 

might serve as a better analgesic with reduced side effects related to morphine (Váradi 

et al., 2016). One of the naturally occurring substances that is non-morphinan and found 

to possess analgesic activity is mitragynine, which is found to exert its analgesic effect 

by binding with opioid receptors, especially MORs (Kruegel et al., 2016, 2019).  

Mitragynine is an indole-based alkaloid with four-fused rings (Figure 1.3). The THβC 

moiety is an integrated three-fused ring which represents a simplified indole-based 

alkaloids of four-fused rings of mitragynine as shown in Figure 1.3. 

  

Figure 1.3 Structures of mitragynine, and tetrahydro-beta-carbolines.  

THβCs, otherwise known as tetrahydronorharmane, are natural organic beta-

carbolines (βCs) derivatives.  They were initially isolated from Peganum harmala and 

subsequently from other various natural resources including Acanthostrongylophora 
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ingens, Annona foetida, Arenaria kansuensis, Eudistoma spp and Psilocybe 

mushrooms, (Blei et al., 2019; Cui et al., 2017; Ibrahim & Mohamed, 2017). Several 

derivatives of the THβCs have also been synthetically produced.   They generally 

possess a structure-supporting ability of their scaffold to interact with various 

biological targets. As such they have been reported with a broad spectrum of 

pharmacological effects against several diseases and disorders including cancer, 

inflammation and neuropsychiatric disorders (Dai et al., 2018). They also have been 

demonstrated with medicinally interesting analgesic activities with reduced side 

effects compared with opioids (Bertamino et al., 2020; Chavan et al., 2011; Nie et al., 

2020). 

 Problem statement 

Pain remains a debilitating health condition that is affecting millions of the 

global population. Its clinical complications result from the unavailability of versatile 

drugs for effective pain management. Opioid analgesics are effectively deployed in 

critical clinical situations and their common types mechanistically function through 

the mu-opioid receptors (MORs). However, despite their efficiency in clinical pain 

management, all currently approved MOR analgesics including the popular morphine 

analogues are subjects of adverse events. These include addiction, constipation, 

dependence, respiratory depression and tolerance (Faouzi et al., 2020). In addition, 

they are mostly abused, thereby constituting public health problems. These make the 

development of new and effective MOR analgesic drugs with minimal side effects and 

fewer tendencies for drug abuse a necessary challenge. Progressively, THβC 

analogues are gaining arrays of scientific interest as potential neuropharmacological 

agents (Ayipo et al., 2021). Relevantly, they have been recently reported with 
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promising analgesic activities and ideal safety (Al-Azzawi, 2018). However, their 

potential for effective analgesic pharmacology mechanistically through the MOR 

remains less explored. 

 This study aims to develop new MOR ligands based on the THβC scaffold and 

evaluate their analgesic and toxicity potentials in in vivo zebrafish model.  

1.2 Objectives 

i)  To design new THβC derivatives based on fragment substitution using virtual 

screening, molecular docking and in silico ADMET predictions. 

ii) To synthesise the designed THβC derivatives using the Pictet-Spengler 

approach. 

iii) To evaluate the MOR analgesic pharmacology and toxicity effects of the 

synthesised THβC derivatives using in silico and in vivo zebrafish embryo  
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Pain 

2.1.1 Definition of pain 

The International Association for the Study of Pain (IASP) defines pain as “an 

unpleasant sensory and emotional experience associated with actual or potential tissue 

damage or described in terms of such damage” (Merskey, 2007). The definition was 

revised as “Pain is a mutually recognisable somatic experience  that reflects a person’s 

apprehension of threat to their bodily or existential integrity” (Cohen et al., 2018). In 

2020, the IASP Council proposed a revised definition of pain: "An unpleasant sensory 

and emotional experience associated with or resembling that associated with actual or 

potential tissue damage” (Raja et al., 2020). This highlighted that pain remains a broad 

concept. 

2.1.2 Classification of pain 

There are several ways to classify pain. The following section summarises the 

general classifications based on duration and tissue damage. 

2.1.2(a) Pain classification based on duration.  

2.1.2(a)(i) Acute pain  

Acute pain is a healthy physiological response to a stimulus that ends with 

healing (Meyr & Steinberg, 2008) and usually lasts less than 3 to 6 months (Merskey, 

2007). 
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2.1.2(a)(ii) Chronic pain 

Chronic pain typically results from a disease or an injury (Mills et al., 2019). It 

can be defined as pain that lasts more than six months or until the injury is healed 

completely (Merskey, 2007).  

2.1.2(b) Pain classification based on tissue damage. 

2.1.2(b)(i) Nociceptive pain 

Nociceptive pain can be defined as the activity in neural pathways resulting from 

actual tissue or potential tissue damage from exclusive stimuli (Nicholson, 2006). It is 

usually considered protective (Woolf, 2010). These pathways are through which the 

pain sensation is transmitted from painful stimuli to the brain. The counter pathways, 

antinociceptive pathways, are the modulation pathways of painful stimuli. They control 

and modulate pain due to the secretion of 5-hydroxytryptamine (5HT) and 

noradrenaline that leads to the activation of opioid interneurons by secretion of 

endogenous opioid peptides, which effectively block the propagation of pain signals 

through the ascending pathway (Stamford, 1995; Yam et al., 2018). 

2.1.2(b)(ii) Neuropathic pain 

Neuropathic pain is a pathological process caused by damage to the nervous 

system (Woolf, 2010). It’s widely known as one of the most severe pain (Hecke et al., 

2014). A combination of peripheral and central sensitisation mechanisms causes 

neuropathic pain.  Abnormal signals are generated by injured axons and intact 

nociceptors that share the innervation territory of the injured nerve (Campbell & Meyer, 

2006). 



12 

2.1.2(b)(iii) Nociplastic pain 

A type of pain originating from modified nociception, even in the absence of 

definite signs of real or impending tissue harm, triggers the activation of peripheral 

nociceptors. Similarly, there is no proof of disease or injury in the somatosensory 

system causing this pain sensation as declared by IASP (IASP Terminology, 2018). 

2.1.3 Mechanism of pain 

The pain mechanism comprises four main stages: transduction, transmission, 

perception, and modulation through two main pain pathways progressing in opposite 

directions under the influence of stimuli. The ascending pathway is sometimes called 

the nociceptive pathway, whereas the opposite-direction pathway is termed the anti-

nociceptive or descending pathway (Figure 2.1) (Martyn et al., 2019).  

Painful stimuli are controlled and modulated through the pathways in which 

painful stimuli are converted into chemical tissue events from the place of injury to the 

somatosensory cortex, part of the cerebral cortex where the information is integrated, 

and the perception of pain is perceived. 

 Opioid receptors are expressed in pain-modulating descending pathways, which 

include the medulla locus coeruleus, and periaqueductal gray area (Al-Hasani & 

Bruchas, 2011). White blood cells, known as leukocytes, are released at the site of 

injury. These cells secrete naturally occurring opioid peptides, which then engage with 

the opioid receptors that have been up-regulated along nerve terminals due to the injury. 

As a result of this interaction, pain is diminished. This intricate process involves the 

body's innate response to injury, where the release of endogenous opioids serves as a 

mechanism to alleviate the discomfort associated with the damage. The heightened 
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presence of opioid receptors near nerve endings underscores the body's adaptive 

measures to modulate pain perception in response to injury. (Stein, 2016). 

 

 
Figure 2.1 Pain pathways and opioid receptors interfere in pain modulation, 

adopted from Martyn et al., 2019. 

2.2 G Protein-Coupled Receptors (GPCRs) Structure and Function  

G protein-coupled receptors (GPCRs) are a superfamily of membrane proteins, 

also called seven transmembrane receptors (7TMRs), found in all tissue types, including 

the central nervous system  (Rosenbaum et al., 2009). The GPCRs are encoded in about 

3% of the human genome (Fredriksson et al., 2003). In 2000, Palczewski and co-

workers determined the first three-dimensional (3D) structure of a GPCR rhodopsin 

with 2.8 angstroms (Å) resolution in its inactive, dark-adapted state (PDB ID: 1F88) 



14 

(Palczewski et al., 2000). After seven years, the crystal structures for the β- adrenergic 

receptor family members were identified. Due to the improvements in crystallisation 

techniques as well as its instrumentations (i.e., high-resolution X-ray, Nuclear Magnetic 

Resonance (NMR), and cryogenic electron microscopy (cryo-EM)), the number of 

GPCR crystal structures is believed to tremendously increase to about 793 by 2022 

(http://gpcrdb.org/structure/statistics)  (Kooistra et al., 2021). The GPCRs consist of 

seven transmembrane helices (TM1-TM7) connected by three intracellular loops (ICLs) 

ended with helix 8 (H8), and three extracellular loops (ICLs) ended with N-terminal 

pointed out (Figure 2.2). 

 
Figure 2.2 Structure of a G protein-coupled receptor (GPCR). (a) GPCR snake 

presentation (adopted from www.gpcrdb.org) showing the main structural features; 

transmembrane helices (TMs), C-terminal helix 8 (H8), extracellular loops (ECLs), 

and intracellular loops (ICLs) (b) Tertiary ribbon representation of the GPCR 

structural features including orthosteric binding site. 

The GPCRs recognise and respond to a variety of stimuli (exogenous and 

endogenous signals from ions to peptides) (Wu et al., 2017), which makes them crucial 

in regulating multi-physiological and biological processes required to coordinate 

cellular activities, including cardiovascular, neurological, and endocrinal functions 

(Galligan J.J., 2016; Nagarajan et al., 2014). Due to their importance and functions, the 

GPCRs are considered major therapeutic drug targets. However, GPCRs contain two 

http://gpcrdb.org/structure/statistics
file:///D:/chapters/Thesis%20Cobmined/www.gpcrdb.org
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druggable binding sites (orthosteric and allosteric). Endogenous ligand usually binds to 

orthosteric sites within the cavity exposed to the extracellular side of the TMs (Figure 

2.2). In contrast, modulators bind to allosteric sites, making them both accessible to 

different ligands, including drugs (Wootten et al., 2013). The extracellular ligands 

stabilise particular receptor conformational ensembles interacting with suitable 

intracellular mediators by defined affinities (Hauser et al., 2021). Thus each ligand has 

a specific affinity determined by its dissociation constant from the extracellular part of 

the receptor and specific efficacy determined by the type and extent of receptor-induced 

interaction with intracellular mediators (Mahmod Al-Qattan & Mordi, 2019). 

2.3 Mu Opioid Receptor (MOR) 

Opioid Receptors (OR), members of the GPCR, are expressed and distributed 

along the central nervous system (Sora et al., 1997), peripheral nervous system (Ozawa 

et al., 2015), the gastrointestinal tract (Galligan, 2016; Sobczak et al., 2014). The mu, 

delta, and kappa opioid receptor subtypes have been identified to be closely associated 

with pain perception and modulation (Higginbotham et al., 2022). The MOR mediates 

the most potent antinociceptive effects, the most powerful analgesic, and the addictive 

properties of opiate alkaloids. Therefore MOR are considered a primary target in 

developing new analgesics (Law et al., 2013; Pradhan et al., 2012). Currently,  MOR 

crystal structures are available with a bound agonist of BU72 (PDB ID: 5C1M), the 

bound antagonist of BF0 (PDB ID: 4DKL), and bound intracellular Gi protein (PDB 

ID: 6DDE) (Huang et al., 2015; Manglik et al., 2012; Koehl et al., 2018). 

Ligands binding to MOR may induce intracellular interaction of Gi protein, 

referred to as agonistic activity, or block the interaction of other agonists, referred to as 

antagonists. The activation of GPCR by extracellular ligands induces either transient or 
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long-lasting intracellular signals by activating either G proteins or beta-arrestins (van 

Gastel et al., 2018). Signalling through G proteins leads to pain relief while signalling 

through beta-arrestin induces respiratory depression (Law et al., 2013).  

 Activation of the MOR results in signalling through the heterotrimeric G 

protein Gi, resulting in analgesia, sedation, euphoria, and physical dependence (Chan 

et al., 2017). The classification of agonists is based on their pharmacological response, 

and it primarily distinguishes between two main categories: full agonists and partial 

agonists. These distinctions arise from the way these compounds interact with MOR. 

Full agonists exert their effects by binding to the orthosteric site of the receptor. Once 

bound, they effectively stabilise the active conformation of the MOR, inducing a 

comprehensive and maximal biological response. This means that when a full agonist 

engages with the receptor, it triggers the receptor to its maximum potential, resulting in 

a robust and complete physiological effect. This binding and stabilisation process elicits 

a response equivalent to the endogenous ligand's activation of the receptor. On the other 

hand, partial agonists also bind to the same orthosteric site on the receptor, but their 

impact on the biological response is distinct. Despite binding to the receptor, partial 

agonists do not induce the receptor to reach its maximum potential response, even when 

present at higher concentrations. Instead, they elicit a partial biological response 

compared to full agonists. This characteristic is a crucial aspect of their pharmacological 

profile, as partial agonists may act as modulators, exerting a more nuanced influence on 

receptor activity (Manglik et al., 2015; Nygaard et al., 2013). 

 MOR agonists, including morphine, are clinically used to treat moderate to 

severe chronic pain (Trescot et al., 2008). In contrast, the MOR antagonists 

competitively prevent resting MOR activation, while common antagonists, such as 
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naloxone and naltrexone, also bind to and block ligand-free MOR, acting as potent 

inverse agonists and serving as pain modulators (Sum et al., 2019). Selective activation 

of the Gi/o pathway over the beta-arrestin pathway by biased signalling is recommended 

for analgesics deprived of respiratory and addictive side effects.  

Opioid chemistry has been driven by thebaine-derived alkaloids isolated from 

poppy, such as morphine (Carlin et al., 2020). There is an increase in the number of 

opioids containing natural products with structures other than the morphinan scaffold 

and structures that are not closely related to morphine, such as mitragynine (Váradi et 

al., 2016). 

2.4 Structure-Based Drug Design (SBDD) 

In drug discovery and development, there is a continuous need to search for 

procedures that save money and time and reduce failure. This has led to the development 

of artificial intelligence (computational techniques) to serve as a complement to 

conventional drug discovery techniques. Therapeutic pharmacology aims to develop 

highly selective drugs with no side effects. Phenotypic screening-based drug design was 

the major method used in drug discoveries where leading compounds are developed 

based on disease models (Eder et al., 2014). Until target-based screening came into 

existence first in 1976 (Beddell et al., 1976), target-based drug design was termed 

Computer-Aided Drug Design (CADD) (Sotriffer & Klebe, 2002). In CADD, millions 

of compounds can be screened against target proteins effectively and efficiently. As a 

consequence of the development in methods concerning protein isolation, purification 

and crystallisation, 3-Dimensional (3D) structures of target proteins were determined 

with the aid of several techniques, including x-ray crystallography, Nuclear Magnetic 

Resonance Spectroscopy (NMR) and Cryo-cooling techniques(Verlinde & Hol, 1994; 



18 

Batool et al., 2019). Structure-Based Drug Design (SBDD) has been established as a 

new category in drug discovery and development (Wang et al., 2018). The SBDD is 

considered the most efficient tool in drug discovery and development (Verlinde & Hol, 

1994; Batool et al., 2019; Ballante et al., 2021), as well as convenient in terms of speed 

and cost. 

2.4.1 Structure-Based Drug Design Workflow 

The SBDD process starts first with identifying the target protein, followed by 

screening libraries of compounds against the target using docking. Following hit 

selection and evaluations, the most active compounds can be optimised (hit-to-lead) to 

improve their pharmacodynamical profile, such as efficacy and affinity. The main steps 

in the SBDD technique include; 3D protein structure preparation, binding site 

identification, ligands database generation, docking and scoring (Wang et al., 2018), 

testing of the hit compounds, and identifying the lead compound (Batool et al., 2019). 

The overall workflow of SBDD is shown in Figure 2.3. 
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Figure 2.3 A workflow diagram of the structure-based drug design (SBDD) 

process. Obtained from Batool et al., 2019. 

2.4.2 SBDD and opioid receptors ligands 

Opioid receptors (OR) are the G protein-coupled receptor (GPCR) superfamily 

members. The OR is composed of three main receptors: Mu Opioid Receptor (MOR), 

Kappa Opioid Receptor (KOR), and Delta Opioid Receptor (DOR). The most recently 

found member is the NOP receptor (nociceptin/orphanin’ opioid peptide receptor)  

(Manglik, 2020; Toll et al., 2016). The ORs are found mainly in the central nervous 

system (CNS) and peripheral nervous system, making them therapeutic targets in pain 

modulations (Manglik, 2020; Pasternak & Pan, 2013). It has been found that the great 

emphasis on pain modulation is referred to as MOR activation. However, the other ORs 
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have different degrees of pain modulation, considering the signalling pathways 

following their binding with the drugs (Valentino & Volkow, 2018).  

Herein, this study focused more on MOR as it was used as a target receptor. The 

first crystal structure of MOR to be determined was the in-active MOR binding to 

morphinan antagonist (PDB ID: 4DKL) by Manglik and coworkers (Manglik et al., 

2012) with 2.80 Å resolution using X-ray diffraction. In 2015, Huang and coworkers 

were able to crystalise active MOR binding to Agonist BU72 (PDB ID: 5C1M) with 

2.1 Å resolution using x-ray diffraction. In 2018, the Koehl research group obtained 

active MOR  bound to the agonist peptide DAMGO and nucleotide-free Gi (PDB ID: 

6DDE; 6DDF) (Koehl et al., 2018) with 3.5Å resolution using the Cryo-EM technique. 

Herein, the latest (i.e., 6DDE) was used as the target for SBDD. 

MOR activation via the Gi protein pathway is associated with desired analgesic 

effects. However, MOR can also signal through arrestin, contributing to the undesired 

effects of opioid analgesics such as tolerance, respiratory suppression, and 

constipation.(Bohn et al., 2000; Raehal et al., 2005). The efforts in drug discovery and 

development are to discover analgesics that will provide more effective relief of pain 

with minimum side effects reported for opioids, such as respiratory depression, 

addiction, constipation, nausea, and vomiting (Kalso et al., 2004). The use of SBDD to 

discover opioid receptor ligands became state-of-the-art (Lee et al., 2018).  An example 

of using SBDD to discover MOR ligand was a compound retrieved by Manglik et al., 

(2016) after screening more than 3 million compounds against MOR followed by hit-

to-lead optimisation, which led to the discovery of PZM21(EC50  = 4.6 nM, Ki =1.1 

nM) Gi-biased MOR agonist. This study aimed to perform a structure-based design of 

MOR ligands using a library of Tetrahydro-beta Carboline (THβC) analogues. 
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2.5 Tetrahydro-beta-carbolines (THβC`s) 

This section summarises the occurrence, synthesis, and biological activity of 

THβC`s, with a focus on its role in pain modulations.  

2.5.1 Tetrahydro-beta-carbolines (THβC`s) occurrence  

Organic compounds of natural origins are still the key to drug discovery and 

development (Harvey et al., 2015; Atanasov et al., 2015; Newman & Cragg, 2016). Beta 

carbolines (βCs), such as harmane, norharmane and harmine, are groups of indole 

alkaloids widespread in nature, such as plants, food, marine organisms, fungi, animal 

tissues, and human fluids (Dai et al., 2018). The βCs were originally isolated from 

Peganum harmala (Zygophillaceae, Syrian Rue), which was used as a traditional herbal 

drug in the Middle East and North Africa (Cao et al., 2007). βCs possess important 

pharmacological activities, including; anxiolytic, hypnotic, anticonvulsant, antitumor, 

antiviral, antiparasitic, or antimicrobial (Szabó et al., 2021). It is also known for its 

tricyclic pyrido[3,4-b]indole system with rings A, B and C (Figure 2.4) with different 

degrees of saturation at C-ring; fully saturated β-Carbolines (βCs), partially unsaturated 

3,4-dihydro-β-carbolines (DHβCs) and fully unsaturated 1,2,3,4-tetrahydro-β-

carbolines (THβCs). Here more focus will be given to the THβC as it’s the main purpose 

of this work. 

 
Figure 2.4 General structure of carboline alkaloids with the active sites for 

substitution. Adopted from Szabo et al., 2021. 
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Tetrahydro-β-carbolines (THβCs), or tetrahydronorharmane, are natural organic 

beta-carbolines (βCs) derivatives. They are a group of indole alkaloids with medicinally 

promising activities, including; anti-inflammatory (Demerson et al., 1975; Wrobleski et 

al., 2003), phosphodiesterase type 5-inhibitory (Daugan et al., 2003), antimalarial 

(Davis et al., 2010), antitumor (Skouta et al., 2012), antiviral, and analgesic activities 

(Chavan et al., 2011; Jinyu Li et al., 2019; Nie et al., 2020; S. Wang et al., 2016). 

2.5.2 Tetrahydro-beta-carbolines (THβC`s) methods of synthesis 

Ame Pictet and Theodor Spengler first introduced the most common protocol in  

THβC moiety synthesis in 1911, where 1,2,3,4-tetrahydroisoquinoline (THIQ) was 

produced by heating a mixture of β-phenylethylamine and formaldehyde dimethyl 

acetal in the presence of hydrochloric acid  (Pictet & Spengler, 1911). The first synthetic 

THβC (1-Methyl-1,2,3,4-tetrahydro-β-carboline) skeleton was reported in 1928 by 

Tatsui et al. (Tatsui, 1928)  when tryptamine was used as the amine structure instead of 

β-phenylethylamine with acetaldehyde in the presence of sulfuric acid (Scheme 2.1).  

 

 
                   Scheme 2.1 Synthesis of THIQ 2 and THβC 4 via Pictet-Spengler 

reaction. Obtained from Cox & Cook, 1995. 

The Pictet-Spengler reaction was later optimised by Cox et al. (Cox & Cook, 

1995) and validated with different amine components. Later on, a variety of catalysts 

were introduced, such as trifluoroacetic acid (TFA) (Miller et al., 2010), acetic acid 
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(AcOH) (Abdelwaly et al., 2017), p-toluenesulfonic acid (PTSA or p-TsOH) (Ye et al., 

2017). Another method, but rarely used, to synthesise THβC due to its multi-step 

reaction with low yields is Bischler-Napieralski cyclisation (Bischler & Napieralski, 

1893). In this method, tryptamine 5 is cyclised with a dehydration reagent (such as 

POCl3) to produce DHβC 6, followed by a further reduction to form the corresponding 

THβC 7, the reaction is presented in  Scheme 2.2, (Laine et al., 2014). 

 
 Scheme 2.2 Bischler-Napieralski reaction/cyclisation reaction scheme. 

Obtained from Laine et al., 2014. 

Although the conventional protocols of THβC synthesis are validated as a 

straightforward way to obtain desired THβC analogues, this strategy has been modified 

to meet the demands related to efficiency, stereochemistry, and selectivity. These 

modifications include transition metal catalysis, biocatalytic methods, and 

microwave/ultrasound-assisted methods were also reported. 

Bandini et al. reported the synthesis of THβC analogues in 2006 using Pd-

catalysed intramolecular allylic alkylation to replace conventional Freidel-Craft 

alkylation of indoles. The reaction was carried out under basic conditions (lithium 

carbonate (Li2CO3)) in dichloromethane (DCM) in the presence of [PdCl(π-allyl)]2 

catalysts at room temperature. The 4-Vinyl-THβCs 10a-h were obtained in high yields 

(45 – 98%) by inter- and intramolecular allylic alkylation of compounds 9a-h in a 

regioselective manner (Table 2.1) (Bandini et al., 2006).  
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Table 2.1 Proving the generality of the intramolecular allylic alkylation for the 

synthesis of 4-vinyl-THβCs  (Bandini et al., 2006).  

 

 

Entry  R/R1/R2 Yield (%)  Yield (%) Enantiomeric excess (%) 

8a H/H/H 9a (33) 10a (88) 92 (R) 

5 OMe/H/H 9c (37) 10c (95) 90 (R) 

8b OMe/H/H 9c (37) 10c (60) 94 (R) 

8d Cl/H/H 9d (52) 10d (80) 82 (R) 

8e Me/H/H 9e (41) 10e (98) 97 (R) 

8f pyrrole/H/H 9f (28) 10f (85) 95 (-) 

8a H/Me/H 9g (19) 10g (45) 90 (-) 

8a H/H/Me 9h (25) 10h (49) 94 (-) 

In 2012, Ascic et al. introduced a new method in the THβC synthesis that relies 

on metal-catalysed isomerisation of N-allyl tryptamines (Ascic et al., 2012) in the 

presence of various types of Rh-, Pd-and Ru-based catalysts without the need for an 

acidic or basic medium. In the Pectet-Spengler mechanism, N-allyl tryptamine 11 

condensed with an aldehyde in an acidic medium to form the iminium ion intermediate 

12, after which cyclisation occurs to form the THβC 13 (Scheme 2.3a). While in the 

metal-catalysed mechanism, allyl halide was condensed with N-allyl tryptamine 11 

instead of aldehyde, and the generation of the THβC 13 cyclisation process occurred 

under the influence of the metal catalyst. Wilkinson’s catalyst (Rh(PPh3)3Cl) and Ru 

alkylidene catalyst Ru(PCy3)(MPI)(PM)Cl2 were the most efficient. The THβCs were 

obtained in 26–94% yield with no diastereoselectivity of the applied catalysts (Scheme 

2.3b). 


