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PENYIASATAN DOSIMETRIK TERHADAP TOMOGRAFI
BERKOMPUTER ALUR KON PERGIGIAN (CBCT) SEBAGAI MODALITI

PENGIMEJAN UNTUK BIBIR DAN LELANGIT SUMBING PEDIATRIK

ABSTRAK

Kemajuan pengimejan perubatan telah meningkatkan perancangan diagnostik
dan rawatan dengan ketara untuk pelbagai keadaan perubatan, termasuk bibir sumbing
dan lelangit (CLP). Walau bagaimanapun, kebimbangan mengenai pendedahan sinaran
mengion dalam pesakit kanak-kanak, terutamanya mereka yang berumur di bawah 6
tahun, telah membawa kepada penyiasatan terhadap alternatif pengimejan yang lebih
selamat. Kajian ini memberi tumpuan kepada penggunaan Alur kon dental tomografi
berkomputer (CBCT) sebagai modaliti pengimejan untuk pesakit CLP pediatrik,
bertujuan untuk menilai keselamatan dan kebolehlaksanaannya melalui siasatan
dosimetrik yang komprehensif. Untuk mencapai objektif ini, fantom kepala dan leher
setara tisu (TE) terperinci yang mewakili bayi baru lahir dan 5 tahun telah dicipta
menggunakan teknik pembuatan termaju, terutamanya percetakan 3D. Simulasi Monte
Carlo digunakan untuk pemodelan interaksi sinaran, dan perbandingan antara
pengukuran dan simulasi empirikal telah dijalankan menggunakan perisian Geometri
dan Penjejakan, Versi 4 (Geant4), dan Aplikasi Geant4 untuk Pembebasan Tomografi
(GATE). Dos organ dinilai untuk kedua-dua CBCT dan imbasan tomografi terkira
(CT) konvensional. Hasilnya menunjukkan bahawa fantom TE yang dibangunkan
dengan tepat mereplikasi ciri anatomi dan radiografi kumpulan umur yang disasarkan.
Parameter seperti ketumpatan, nombor atom berkesan, nombor CT, ketumpatan
elektron, pekali pengecilan jisim, dan pekali penyerapan tenaga jisim hampir sepadan

dengan sistem fantom rujukan. Apabila dibandingkan dengan sampel rujukan Makmal
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Kebangsaan Oak Ridge (ORNL), penggantian TE yang baru lahir menunjukkan
percanggahan dalam julat yang boleh diterima merentas spektrum tenaga. Untuk
imbasan CBCT, purata dos Dosimeter Termo-Bercahaya (TLD) untuk fantom yang
baru lahir adalah antara 0.019 mSv hingga 1.84 mSv, bergantung pada parameter
pendedahan. Begitu juga, untuk fantom 5 tahun, dos berjulat dari 0.011 mSv hingga
0.46 mSv. Sebaliknya, imbasan CT merekodkan dos TLD yang lebih tinggi, dengan
dos berkesan 7.92 mSv untuk fantom yang baru lahir dan 10.46 mSv untuk fantom
berusia 5 tahun. Anggaran dos organ mencadangkan bahawa walaupun CBCT boleh
mentadbir dos yang lebih rendah daripada imbasan CT, terdapat pertukaran antara
pengurangan dos sinaran dan kualiti imej. Kajian itu menunjukkan bahawa protokol
pendedahan boleh mengurangkan nilai dos sinaran secara berkesan di bawah ambang
16.66 mSv, mengekalkan imej yang bernilai secara diagnostik. Keputusan ini
menggariskan potensi CBCT sebagai kaedah pengimejan alternatif yang boleh
dilaksanakan untuk campur tangan awal dalam kes CLP pediatrik, yang berpotensi

meningkatkan ketepatan perancangan rawatan dan hasil pesakit.
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DOSIMETRIC INVESTIGATION ON THE DENTAL CONE BEAM
COMPUTED TOMOGRAPHY (CBCT) AS AN IMAGING MODALITY FOR

PAEDIATRIC CLEFT LIP AND PALATE

ABSTRACT

Medical imaging advancements have significantly improved diagnostic and
treatment planning for various medical conditions, including cleft lip and palate (CLP).
However, concerns about ionising radiation exposure in paediatric patients, especially
those under 6 years old, have led to investigations into safer imaging alternatives. This
study focuses on using dental cone beam computed tomography (CBCT) as an imaging
modality for paediatric CLP patients, aiming to assess its safety and feasibility through
a comprehensive dosimetric inquiry. To achieve this objective, detailed tissue-
equivalent (TE) head and neck phantoms representing newborn and 5-year-olds were
created using advanced manufacturing techniques, particularly 3D printing. Monte
Carlo simulations were employed for radiation interaction modelling, and comparisons
between empirical measurements and simulations were conducted using Geometry and
Tracking, Version 4 (Geant4), and Geant4 Application for Tomographic Emission
(GATE) software. Organ doses were evaluated for both CBCT and conventional
computed tomography (CT) scans. The outcomes indicated that the developed TE
phantoms accurately replicated the anatomical and radiographic features of the
targeted age groups. Parameters such as density, effective atomic number, CT numbers,
electron densities, mass attenuation coefficients, and mass energy absorption
coefficients closely matched those of the reference phantom system. When compared
with the Oak Ridge National Laboratory (ORNL) reference samples, the newborn TE

substitutions demonstrated discrepancies within acceptable ranges across an energy
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spectrum. For the CBCT scans, the average Thermal-Luminescent Dosimeter (TLD)
doses for the newborn phantom ranged from 0.019 mSv to 1.84 mSv, depending on
exposure parameters. Similarly, for the 5-year-old phantom, doses ranged from 0.011
mSv to 0.46 mSv. In contrast, CT scans recorded higher TLD doses, with effective
doses of 7.92 mSv for the newborn phantom and 10.46 mSv for the 5-year-old
phantom. Estimations of organ doses suggested that while CBCT can administer lower
doses than CT scans, there is a trade-off between radiation dose reduction and image
quality. The study demonstrated that exposure protocols can effectively decrease
radiation dose values below the threshold of 16.66 mSv, maintaining diagnostically
valuable images. These results underscore the potential of CBCT as a feasible
alternative imaging method for early intervention in paediatric CLP cases, potentially

enhancing treatment planning precision and patient outcomes.
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CHAPTER 1

INTRODUCTION

1.1 Background

The second most common birth defect in the United States is cleft lip with or
without cleft palate, affecting 1 in every 940 births and resulting in 4,437 cases every
year [1]. Reported prevalence incidence extent from 7.75 to 10.63 per 10,000 live
births [1, 2]. The case of cleft lip and palate (CLP) varies particularly among different
racial groups. In the United States, 1 in 500 incidences involved the Asians and Native
Americans, 1 in 1,000 incidences involved the Caucasian Americans, and

approximately 1 in 2,400 to 2,500 incidences in the African Americans [3-6].

In Malaysia, majority of patients with CLP are of Malay ethnic group (88.6 %),
followed by Chinese (3.9 %), Indians (2.5 %) and others (0.2 %). CLP is one of the
major causes of increased infant deathrate and poor quality of life worldwide. CLP
patients in developing countries face larger problems, especially due to absence of
access to standard healthcare. Patients with CLP, if left untreated, may experience poor
nutrition, and speech difficulties. In addition, the risk of hearing loss and delayed

midface growth are also present [7, 8].

The diagnosis of cleft lip with or without cleft palate (CLP) presents significant
challenges due to its intricate etiological factors and the wide array of associated
symptoms. In this complex scenario, diagnostic imaging emerges as a crucial tool in
facilitating accurate diagnosis. Various diagnostic techniques have been employed for
CLP, including panoramic radiography, transcranial radiography, CT scan, and
magnetic resonance imaging (MRI) [9]. Historically, conventional radiography guided

treatment decisions, but the trend has shifted towards more precise diagnoses using



specialized imaging methods like CT, and MRI [10, 11], offering the potential for

improved accuracy in diagnosis and treatment planning.

However, the selection of appropriate imaging modalities may be influenced
by factors such as cost, time, and radiation exposure, prompting the need for imaging
guidelines. Among the available options, CBCT and CT stand out as suitable choices
for assessing changes related to sclerosis, flattening, erosion, and osteophyte formation
[12]. The superior advantages of CBCT, including lower radiation dose and isotropic
resolution, position it as a preferable choice over CT for evaluating hard tissue
structures [13]. This is particularly significant when distinguishing between hard and
soft tissue concerns based on a comprehensive clinical assessment of CLP patients.
Therefore, an informed decision can be made to opt for CBCT (or CT) or MRI for a

targeted imaging work-up.

Recent strides in prenatal imaging have enabled the in-utero diagnosis of CLP
and associated deformities [14, 15], contributing to earlier intervention. While clinical
diagnosis remains central postnatally, imaging assumes a pivotal role in identifying
related anomalies, aiding surgical planning, and managing minor deformities. While
general radiography lacks utility in diagnosing CLP, panoramic and dental radiographs

are employed to identify concomitant dental issues [16].

MRI emerges as valuable in confirming and characterizing CLP, particularly
when used alongside ultrasonography for prenatal assessment. However, postnatally,
MRI typically doesn't play a direct role in describing the cleft itself [14], although
coronal MRI images offer better depiction of the condition, and sagittal MR images
can also reveal CLP [17]. CT imaging, on the other hand, is frequently utilised prior to

corrective procedures for dentofacial deformities, particularly for showcasing bone



and dental anatomy [18]. Enhanced diagnostic accuracy is facilitated through
multiplanar reconstructions of helical CT images, aided by bone and soft-tissue

algorithms, contributing to the detailed description of anatomic abnormalities.

Considering the wide spectrum of diagnostic techniques, CBCT emerges as a
frontrunner due to its distinct advantages in terms of radiation dose and resolution for
hard tissue assessment. Hence, CBCT is recommended as the optimal imaging
modality for CLP in paediatric patients, providing a comprehensive diagnostic

approach that addresses the intricate aspects of this condition.

1.2 Problem Statement

Surgical planning of CLP typically starts when the patient reaches 6 years old
[19]. Although CT can be helpful in the 3D reconstruction of the patient's anatomy, it
uses ionising radiation in a significantly high dose, thus, has been of major concern for
patients younger than 6 years old. Quality of life especially in terms of feeding and
speech development are crucial for children at ages younger than 6, hence, earlier
treatment is essential to ensure that these skills are not affected. CBCT is one of the
recent advancements in CT technology, which has been increasingly used for patients
requiring dentofacial treatments. It has been reported that CBCT can provide image
quality as good as CT, with significantly lower dose [20]. Thus, this study proposes
dental CBCT to be used as an alternative imaging modality for the treatment
management of CLP in patients younger than 6 years old, i.e., newborn and 5-year-old
males. The key objective of this research is to perform a comprehensive investigation
into radiation dose, providing important data on radiation exposure through the
fabrication of two sets (newborn and 5-year-old) of anatomically accurate tissue-

equivalent head and neck physical phantoms. This data will be used to make informed



decisions on the practicality and safety of using dental CBCT for early intervention in
cleft lip and palate cases. This approach is in line with larger endeavours to reduce
radiation exposure, particularly in paediatric populations, and optimise CBCT
techniques to achieve a balance between diagnostic image quality and radiation
amount [21-23]. In addition, the study includes a thorough comparison, evaluating the
advantages and disadvantages of dental CBCT in paediatric use in relation to other
imaging techniques such as conventional CT or MRI [23, 24]. The research seeks to
provide significant insights into the possible benefits and limitations of using oral
CBCT for early intervention in CLP patients. The study seeks strategies to increase
patient comfort, minimise the need for anaesthesia, and enhance safety during CBCT
scans in paediatric patients [25, 26]. This strategy is in line with the overarching
objective of resolving patient safety issues and protecting the welfare of young kids
with CLP who are having dental CBCT treatments. In summary, this research seeks to
tackle the significant obstacles related to concerns about radiation dose, imaging
quality, and patient safety when it comes to early intervention for CLP patients who
are under 6 years old. The effort intends to use dental CBCT to enhance decision-

making in paediatric dentofacial treatments.

1.3  Aim & Objective of Research

The aim of this study was to develop paediatric head and neck physical
phantoms that can be used to investigate the safety of dental CBCT as the main
imaging modality for the purpose of treatment planning for CLP in paediatric patients

younger than 6 years old. This can be achieved by fulfilling the following objectives:



1.4

iii)

v)

To fabricate two sets (newborn and S5-year-old) of anatomically
accurate tissue-equivalent head and neck physical phantoms for
radiation dosimetry studies.

To evaluate the radiation absorbed doses to OARs in the head and neck
region following dental CBCT exposures using the fabricated physical
phantoms.

Validate the measured absorbed dose obtained from the CBCT
exposures using Geant4 and GATE Monte Carlo (MC) simulations and
assess the magnitude of radiation risk in paediatric patients.

Perform a comparative analysis of CBCT and CT scan protocols.

Scope of Study

The scope of this study encompasses a comprehensive evaluation of radiation

doses to organs at risk (OARs) in the head and neck of paediatric patients with cleft

lip and palate (CLP) undergoing dental CBCT and conventional CT scans under

various exposure parameters. The primary aims of this study are two-fold: firstly, to

develop anatomically accurate tissue-equivalent head and neck phantoms for radiation

dosimetry studies, and secondly, to assess radiation doses received by OARs during

these imaging procedures.

Phantom Development: A significant aspect of the study involves the
creation of two sets of anatomically accurate tissue-equivalent head and
neck phantoms representing newborn and 5-year-old paediatric
patients. These phantoms will be constructed using epoxy resin
combined with various filler materials. The development of these

phantoms allows for accurate radiation dosimetry studies, providing



ii.

iii.

1v.

insights into the radiation doses received by paediatric patients during

imaging procedures.

Utilisation of 3D Printing: The construction of paediatric phantoms
involves the utilisation of 3D printing technology to create moulds
based on ICRP voxel data. The moulds will be processed using
3DSlicer and (X)Medcon software to achieve high anatomical fidelity

in the resulting phantoms.

Dosimetric Modelling: Paediatric head and neck MIRD-5 and voxel
models will be developed for Monte Carlo (MC) dosimetric studies.
These models will aid in simulating and predicting absorbed doses to

various tissues and organs during imaging procedures.

Radiation Dose Evaluation: The primary focus is to quantify the
radiation doses to organs at risk (OARs) in the head and neck region of
paediatric patients with CLP undergoing dental CBCT and CT scans.
The study encompasses variations in exposure parameters to
understand their impact on dose distribution. The absorbed doses to
OARs will be measured using thermoluminescence detectors (TLDs)
placed within the anatomically accurate phantoms during exposure.
These measured doses will then be compared with doses simulated
using MIRD-5 and ICRP voxel phantoms. Additionally, a comparison
will be made with absorbed doses resulting from standard CT scan
protocols, assessing the potential radiation risks associated with the

procedures.



1.5  Significance of Study

This study will provide a database of radiation absorbed doses to the head and
neck organs of newborn and 5-year-old patients from dental CBCT exposure during
the planning of CLP treatment. These organs at risk (OARs) include the brain,
brainstem, cochlea, eyeballs, eye lens, parotid glands, optic chiasm, optic nerve, and
thyroid. Dental CBCT exposures representing all the steps involved during the
planning of CLP treatment will be performed on two sets of newborn and 5-year-old
head and neck phantoms (tissue-equivalent materials that represent the radiation
properties similar to actual human tissues), which will be developed and installed using

3D-printed moulds, representing the CLP patients.

Thermoluminescence detectors (TLDs) will be placed inside the OARs during
the exposures to record the absorbed doses received by these OARs. The absorbed
doses will then be compared with a computer-based simulation based on MIRD-5 and
ICRP voxel phantoms, where the recorded absorbed dose will be verified.
Additionally, the dose will be compared with the absorbed doses of the standard CT
scan protocols recommended for those patients. The dose will then be evaluated in

relation to the magnitude of radiation risk.

1.6 Outline of Thesis

There are five chapters in this thesis. Chapter 1 consists of the introduction,
which includes the background of the study, the problem statement, the aims and
objectives of the research, and the scope and significance of the study. Chapter 2
consists of the literature review, covering theoretical aspects related to cleft lip and
palate (types, staging, definition, epidemiology, treatment, and diagnosis), an overview

of imaging modalities for paediatric cleft lip and palate, advantages and disadvantages



for each modality, dose limit, and radiation risks, an overview of previous studies on
dental CBCT, strengths, and limitations of previous studies, history, application, and
current research of paediatric physical phantoms, Monte Carlo method, and voxel
phantom. Chapter 3 describes the technical aspects related to the development of
paediatric head and neck MIRD models for MC dosimetric study, the development of
paediatric head and neck voxel models for MC GATE dosimetric study, the process of
3D printing phantom moulds, the development of physical paediatric phantom
materials, construction of head and neck physical paediatric models, assessment of
TLD properties and calibration examination, and organ dose estimation by CBCT and
CT scan. The results and discussions are reported in Chapter 4. Finally, the study

concludes in Chapter 5, along with recommendations to improve this study.



CHAPTER 2

LITERATURE REVIEW

2.1 Cleft Lip and Palate

Cleft lip and palate (CLP) are a common congenital craniofacial anomaly that
affects approximately 1 in 700 live births worldwide [27, 28]. The condition arises
during foetal development when there is incomplete fusion of the lip and/or palate
structures, leading to a range of clinical presentations. The severity and type of cleft
vary, encompassing unilateral or bilateral cleft lips, cleft palates, or a combination of
both. Proper understanding of the types and staging of cleft lips and palates is crucial
for clinicians, surgeons, and researchers alike, as it influences the treatment approach,

timing, and outcomes [27-29].

2.1.1 Type of CLP

2.1.1(a)  Unilateral and bilateral cleft lip

Cleft lips can be categorized into unilateral (affecting one side of the lip) or
bilateral (affecting both sides), as shown in Figure 2.1. The prevalence of these types

may vary among populations [29, 30].

Figure 2.1 [lustration of Unilateral and Bilateral Cleft Lip Variants
(Adapted from /31]).



2.1.1(b)  Cleft palate

Cleft palate can occur as an isolated anomaly or in conjunction with cleft lip,
as shown in Figure 2.2. It can further be categorized into subtypes, including the
complete cleft palate, incomplete cleft palate, and submucous cleft palate, each with

its own anatomical characteristics and clinical implications [32-34].

Figure 2.2 [lustration of cleft palate (Adapted from /31]).
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2.1.1(¢) CLP combination

Some individuals may have both cleft lip and cleft palate, leading to a more
complex condition, as shown in Figure 2.3. Understanding the specific combination

and the extent of involvement is essential for treatment planning [30, 33].

Figure 2.3 [lustration of both cleft lip and cleft palate (Adapted from /317]).
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2.1.2 Epidemiology of CLP

The epidemiology of cleft lips and palate is well documented in the literature.
According to the National Institute of Dental and Craniofacial Research, the annual
prevalence of infants born with cleft lip with or without cleft palate is 10 in 10,000
[35]. A comprehensive systematic review and meta-analysis found that the prevalence
of cleft lip and palate based on the studies reviewed in each 1000 live births was 0.45
[36]. Cleft lip and/or cleft palate is one of the most common birth defects in the U.S.,
affecting approximately one in 700 babies [37]. The prevalence of cleft lip and palate
varies across geographic origin, racial and ethnic groups, as well as environmental
exposures and socioeconomic status [38]. Parents with a family history of cleft lip or
cleft palate face a higher risk of having a baby with a cleft [31]. Environmental factors
such as maternal smoking and alcohol consumption have also been associated with
cleft lip and palate [39]. Cleft lip and palate are a multifactorial disease caused by the
interaction of genetic and environmental factors [40]. Vander Woude syndrome, which
is an autosomal dominant disease, has an incidence rate of 1 in 70,000 and is closely
associated with CLP or CP. This syndrome is recorded for up to 1% of all syndromic

CLP cases [41].

The aetiology of non-syndromic cleft lip and palate (NS-CLP) is not well-
understood, but it is known to be a multifactorial condition that involves both genetic
and environmental factors during facial growth [41-44]. NS-CLP is often associated
with various, bone skeletal, soft tissue, and dental deformities, such as absent or
deformed teeth and skeletal abnormalities in multiple planes [45, 46]. The palatal scar
tissues in NS-CLP patients can affect oral hygiene and alter the growth of the maxilla
[47, 48], leading to decreased arch dimensions, particularly in the anterior region [48].

NS-CLP is a significant health anxiety that affects the life quality, status of

12



socioeconomic, and psychological well-being of affected individuals and their
families. Although preventative measures have been focused on environmental risk
factors, such as avoiding smoking and drinking during pregnancy and taking folic acid
or multivitamin supplements, there is a need to identify genetic risk factors for NS-
CLP as no genetic authentic counselling test has been recorded to estimate the
likelihood of couples having a child with this condition [49]. Because of the cleft, the
structural integrity of the palate is impaired, causing the minor part of the maxilla to
rotate medio-lingually. It is believed that this rotation is brought on by the soft tissues
of the face moulding around the cleft, which leads to a constricted palatal arch and a
substantial anterior crossbite, with or without a posterior crossbite on the cleft side [50,
51]. The craniofacial system, maxillary morphometry, dental connections, and CLP
characteristics may all be assessed in various methods. Previous studies have shown
that individual CLP measures exist [52-54]. Numerous factors, including the
connection between the dental arches [55], cephalograms [56-58], maxillary
morphometry [59], and CBCT [60], can be used to assess the craniofacial features of

CLP.

2.1.3 Treatment of CLP

Surgical interventions for CLP have evolved significantly, with modern
techniques and improved anaesthesia contributing to better outcomes. Typically, lip
repair occurs between 2 to 3 months of age [61], followed by palate repair at around 9
to 12 months [62]. The repair of a cleft palate requires careful repositioning of tissue
and muscles to close the cleft and rebuild the roof of the mouth. Incisions are made on
either side of the cleft to create flaps of skin, muscle, and intraoral tissue that are then

drawn together and stitched to close the cleft and recreate typical lip and nose anatomy
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[63]. Innovations like minimally invasive procedures, tissue engineering, and suturing

techniques have reduced scarring and enhanced aesthetic results.

Orthodontic care plays a pivotal role in overall treatment, benefiting from
digital technology and orthodontic appliances to streamline planning and progress
monitoring. Patients with a cleft lip and/or palate may require multiple episodes of
orthodontic treatment, e.g., before alveolar bone grafting, upper arch alignment,
orthodontic camouflage, and in combination with orthognathic surgery. The duration
of treatment varies depending on the type of cleft diagnosis and whether orthognathic
surgery will be required. From one study, a patient with cleft lip and/or palate required
an average of 44 orthodontic appointments and a mean duration of treatment of 3.4

years in order to complete their treatment [64-66].

Recent advancements in the diagnosis and treatment of cleft lip and palate
(CLP) have transformed the landscape of care for affected individuals [67]. Early
diagnosis remains central to a multidisciplinary approach, encompassing surgical,
orthodontic, and speech therapy interventions [68]. These advancements have led to
improved outcomes and quality of life for those with CLP, with ongoing research and
healthcare collaboration offering the promise of further progress in the future [69].
Additionally, psychosocial support for both patients and families is now well-
recognized as an essential aspect of CLP treatment, with support groups, counselling
services, and online communities emerging to provide emotional assistance, share

experiences, and alleviate the psychosocial burden associated with CLP [70].

2.2 Imaging Modalities for CLP

Imaging modalities are an essential component of the diagnosis and treatment

of paediatric CLP. These imaging techniques allow doctors and specialists to examine
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the structures of the face and mouth in detail, providing critical information that guides
treatment planning. In CLP topic, we will explore the various imaging modalities used
in the diagnosis and treatment of cleft lip and palate in children. We will discuss the
benefits and limitations of each technique, as well as the factors that influence the

choice of imaging modality in specific cases.

2.2.1 Overview of Imaging Modalities

The complex underlying causes and diverse range of symptoms associated with
CLP make clinical diagnosis of this condition challenging. In this regard, diagnostic
imaging modalities such as panoramic radiography, transcranial radiography, CBCT,
CT, and MRI have emerged as critical tools that can aid in the accurate diagnosis of
CLP [9]. In the past, conventional radiography findings were used as a basis for
conservative treatment. However, with the advent of specialized imaging modalities
such as CT and MRI, it has become more common to pursue a precise diagnosis to
facilitate accurate and appropriate treatment. While these modalities offer increased
diagnostic accuracy, their utility may be limited by factors such as cost, time, and
radiation exposure. Therefore, the development of imaging guidelines could prove
beneficial to guide the selection of appropriate imaging modalities for different clinical

scenarios.

CBCT is a novel advancement in CT technology that is progressively being
utilised for the treatment of dentofacial conditions. It is incumbent on all stakeholders
to implement this technology in a responsible manner to ensure maximum diagnostic
efficacy while minimising radiation exposure to patients. Despite this, the overall trend
of case series within the literature implies that CBCT may offer a promising role in

managing intricate defects that necessitate surgical intervention [71].
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Surgical planning of CLP typically starts when the patient reaches 6 years old
[19]. Multi-slice computed tomography (MSCT) is an extensively adopted technique
for evaluating clefts. Although CT scans are beneficial in constructing a 3D
visualisation of the patient's anatomy, the usage of ionising radiation in considerably
high dosages has raised significant apprehensions regarding its utilisation in patients
younger than 6 years old. Consequently, several non-systematic reviews and
descriptive studies have investigated the applicability of CBCT in this context [72-78].
The acquisition of three-dimensional data allows for the assessment of bone volume
required for grafting and the subsequent evaluation of bone-fill adequacy following

surgical intervention [79-83].

The Guideline Development Panel of SEDENTEXCT concluded that the
utilisation of CBCT for this particular application was the most straightforward to
endorse, owing to the well-established utilisation of three-dimensional images and the
potential for lower radiation exposure associated with CBCT [71]. It has been reported
that CBCT can provide image quality as good as CT, with significantly lower dose

[20].

2.2.2 Advantages and Disadvantages of Each Modality

Advancements in prenatal imaging technology have enabled the detection of
cleft lip and palate (CLP), as well as associated deformities, during in-utero
development [84]. Although clinical assessment is the primary means of diagnosing
cleft lip, imaging remains an important tool for detecting associated anomalies,
planning surgical interventions, and screening for secondary deformities. General
radiography is not generally useful for diagnosing cleft lip and palate (CLP) and is

therefore not typically employed for postnatal diagnosis and treatment planning
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purposes [85], Nonetheless, panoramic and dental radiographs are commonly utilised
for identifying dental abnormalities associated with CLP. In contrast, MRI is a valuable
tool that can confirm and characterise CLP, in conjunction with prenatal
ultrasonography, during prenatal diagnosis [86, 87], Postnatal MRI is generally not
necessary for characterizing the cleft itself. While cleft lip and palate (CL/P) can be
visualised on sagittal MRI images, coronal MRI images are better suited for depicting
these abnormalities. Nevertheless, the potential risks associated with administering
anaesthesia to children undergoing MRI examinations should be taken into

consideration [88].

In numerous developed nations, the utilisation of X-ray technology has led to
a circumstance where the cumulative and individualized yearly doses of ionising
radiation as a consequence of diagnostic radiology have surpassed those originating
from the previous primary source of natural background radiation [89]. Therefore, it
is crucial that all radiological assessments are appropriately justified and optimised
concerning radiation protection for every patient, with a special emphasis on paediatric
patients. In particular, MSCT imaging for cleft lip and palate (CL/P) is highly
advantageous for Visualising bone [71], Dental anatomy plays a crucial role in the
repair of dentofacial anomalies, and helical CT imaging is frequently utilised for this
purpose. Multiplanar reformations, utilising bone and soft-tissue algorithms, of the
acquired CT images can provide an enhanced visualisation of anatomic anomalies.
Furthermore, 3D reconstructions can aid in surgical planning as well as patient and

family education.

CT scans may entail notably elevated radiation dosages, and roughly 7-10% of
CT scans are carried out on the paediatric population [90, 91]. The organs and tissues

of paediatric patients are subjected to significantly elevated absorbed doses from CT
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scans, which commonly range between approximately 2 and 30 mGy for the exposed

organs [88, 92].

2.3 Dose Limit and Radiation Risks

Radiation detriment encompasses the cumulative deleterious -effects,
quantified in terms of their severity, inflicted on a cohort and its offspring due to
exposure to radiation. The magnitude of this harm is contingent on the sex and age of
the affected population, thereby requiring the risk assessment to be population specific.
Stochastic effects further contribute to the detriment by altering the nominal risk of
cancer and heritable effects. The risk factor for the entire population, adjusted for
detriment, is 5.7 x 1072 Sv~!. With regards to cancer, radiation detriment
encompasses the cancer incidence rate, adjusted for its associated lethality and impact
on quality of life. Table 2.1, derived from ICRP publication 103, provides a
comprehensive delineation of the individual components that contribute to this
aggregate value [93]. The heritable effects of dental radiography, including dental

CBCT, are widely regarded as insignificant [94].

The magnitude of radiation risk is contingent upon the age of the affected
individual, with younger individuals being more susceptible to its detrimental effects.
Notably, in adult populations exposed to radiation doses below 50 mSv, no discernible
increase in the prevalence of neoplasia has been reported. However, the risk for this
age group is believed to be 2-3 times higher for foetuses, children, and adolescents
[95]. The multiplication factors detailed in Table 2.2, which was derived from ICRP
publication 60, ought to be employed to adjust these values [96]. Clinical procedures
that entail exposure to a substantial dose of radiation, such as CT scans of the abdomen

and pelvis, are associated with a dose of approximately 10 mSv. Theoretically, in a
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hypothetical cohort of patients who had each undergone a single CT scan, there would
be a 0.05% (1:2,000) risk of developing a fatal radiation-induced malignancy over the
course of their lifetime [95]. The risk estimates provided pertain to the mean values
for both sexes, with female individuals exhibiting slightly higher risks across all age

groups and male individuals showing marginally lower risks.

Table 2.1 Quantifying Radiation Risks: Incorporating
Detriment-Adjusted Nominal Risk Coefficients for Stochastic Effects

Detriment (1072 Sv™1)

Cancer 5.5
Hereditable effects 0.2
Total 5.7

Table 2.2 The risk estimates were adapted from the ICRP 1990
publication and are based on the multiplicative risk projection model.

Age group (years) Multiplication factor for risk
< 10 X 3
10- 20 X 2
20- 30 X 1.5
30- 50 x 0.5
50 - 80 x 0.3
+ 80 Negligible risk

The values presented are representative of the mean risks for both male and

female individuals across different age groups.

2.4 Previous Studies on Dental CBCT

CBCT has become a vital tool in dentistry imaging, significantly transforming
the field of diagnosis and treatment planning. CBCT generates highly detailed three-
dimensional pictures of oral tissues while minimising the risk of radiation, making it

well-suited for a range of dental applications. The use of this technology has shown to
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be highly advantageous in the field of implantology, as it enables precise evaluation of
the implant site and effectively minimises the occurrence of implant failures. CBCT
has been extensively utilised in diverse dental disciplines, including endodontics,
orthodontics, and maxillofacial surgery, to augment precision and accuracy in
treatment planning. By evaluating existing studies, researchers get an essential insight
about the changing field of dental imaging and its potential influence on the care of

patients [97-99].

2.4.1 Overview of Studies

Our research project conducted a comprehensive review of 14 studies focused
on dosimetry for CBCT, where the effective dose was calculated either by employing
the ICRP publication 103 tissue weighting factors or the ICRP publication 60 tissue
weighting factors, accounting for the radiosensitivity of the salivary glands and brain.
The lower dose range observed for the adult phantom studies is attributed to the
relatively limited range of equipment evaluated in the reviewed literature, as well as
the exclusion of higher-dose equipment included in Table 2.3.

Table 2.3 Effective dose range of dental CBCT for adult phantoms: comparing

large >15 cm height, medium 10 -15 cm height, and small < 10 cm height field of view
exposures.

Effective dose

Model type CBCT unit type FOV (uSV) Reference
Adult phantom  ILUMA Ultra Large 157, 94, 46 [100]
Large 84 to 194
Adult phantom  different CBCT devices =~ Medium 68 to 83 [101]

Small 19to 73

Large 25 to 66
Adult phantom  i-CAT NG 360° [102]
Small 29

Large 123 to 303.66
Adult phantom  Alphard VEGA [103]
Medium 68 to 184.33
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Small 20 to 93.67
Large 46 to 1073

Adult phantom  different CBCT devices =~ Medium 9 to 560 [104]
Small 5to0 652

Adult phantom  Accuitomo 170 Small ;é;;g to [105]
Medium 240 to 250

Adult phantom 3D Accuitomo 170 Small 13 10 105 [106]
Large 174 to 2216

Adult phantom  Alphard VEGA Medium 289 to 366 [107]
Small 152 to 187

Adult phantom  CS9300 Medium 90.7 to 181.4 [108]

Adult phantom  RAYSCAN Medium 195 to 228.5
Large 34

Adult phantom  different CBCT devices = Medium 88 [109]
Small 131

Table 2.4 presents data pertaining to the effective doses calculated for dental

CBCT procedures utilising paediatric phantoms, as reported in the SEDENTEXCT

project by Theodorakou et al. (2012) [110], and other relevant literature reviews.

Table 2.4

field of view exposures.

Effective dose range of dental CBCT for paediatric phantoms:
comparing large >15 cm height, medium 10 -15 cm height, and small < 10 cm height

Effective dose

Model type CBCT unit type FOV Reference
yp yp (uSv)
. Small and

Child phantom Dento-alveolar . 16-214 [110]
medium

Child phantom Craniofacial Large 81-282 [110]
Largeand 5 769

Child phantom  different CBCT devices medium [104]
small 7 to 521
Large 210 to 428.3

Child phantom Alphard 3030 Medium 171 to 273.7 [111]
Small 50 to 81.46

Child phantom Rayscan Symphony Medium 133 to 160.3 [111]
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Small 141 to 154.5

Child phantom Accuitomo 170 Small 81.54 to0 126.68 [105]
ProMax3D Small 88
Child phantom [112]
NewTom5G Small 166 to 172
Small 17.1to 155.9
Child phantom ProMax 3D [113]
Large 64.7 t0 392.2

Pauwels et al. (2012) reported on the mean proportion of organ doses that
contribute to the effective dose in dental CBCT, which is illustrated in Figure 2.4 [101].
The primary contributors to the effective dose are the remainder organs, salivary
glands, thyroid gland, and red bone marrow. In the case of the paediatric phantom, the
contributions from the remainder organs, salivary glands, and thyroid gland are
comparable, whereas for the adolescent phantom, the greatest contribution comes from
the remainder organs and salivary glands, as reported by Theodorakou et al. (2012)

[110].

Skin Bone surface
1%

Remainder
38%

Salivary glands ___
25%

Thyroid ‘ Red bone
19% marrow
14%

Figure 2.4 Average contribution of organ doses to effective dose calculations for
CBCT.
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In a recent literature review conducted by Lee et al. (2021), data was presented
on the proportion of dose allocation to various tissue types, including muscle, bone,
skin, soft tissue, cerebrospinal fluid, eye lens, and brain, for the CBCT imaging
modality (refer to Figure 2.5). The findings indicated that a greater proportion of the
total dose was administered to bone and soft tissue, whereas lower doses were
distributed to the brain and cerebrospinal fluid, with percentages of 2% and 1%,

respectively [114].

Eye lens Brain
o 2% Muscle
9%
Cerebro spinal fluid \
1%

11%

Figure 2.5 Percent fraction of radiation dose for the different tissues in the head
derived from the MC-GPU simulation of the human head exposed to cone-beam
computed tomography.

Table 2.5 displays a literature review comparing effective doses for
conventional imaging and MSCT imaging with dental CBCT data. The studies
included in this review primarily utilised thermos luminescent dosimetry (TLD)
techniques with anthropomorphic phantoms. A significant degree of methodological
variation was observed, particularly with respect to the phantom type used, as well as

the number and positioning of TLDs. Pauwels et al. (2012), as part of the
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SEDENTEXCT project, evaluated the impact of TLD number and positioning on the

accuracy of dose assessments [101].

Table 2.5 Effective dose comparison among conventional dental devices
Conventional dental devices Effective dose (uSv) References
Intraoral radiograph <1.5 [115]
Panoramic radiograph 2.7-243 [115-119]
Cephalometric radiograph <6 [115]
MSCT maxillo-mandibular 280 - 1410 [116, 119-122]

In brief, dental CBCT typically results in greater radiation doses (and
consequent risks) compared to conventional intraoral and panoramic dental
radiography, yet lower doses compared to MSCT scans of the dental region. The dose
level is influenced by factors such as equipment type and exposure parameters, with
the field of view chosen playing a crucial role. Notably, employment of "low dose"
protocols on modern MSCT equipment can significantly reduce the radiation dose.
This information may be of value for researchers and practitioners seeking to optimise
patient safety while obtaining necessary imaging information [120, 123-125]. The
effectiveness of equipment-specific dose calculations presented in this study may
quickly become obsolete, especially with the constant emergence of new equipment
manufacturers. Some of the studies analysed in this review feature dental CBCT
equipment that has already been replaced by newer models, although it is anticipated
that current equipment will continue to be used in clinical settings for several years to
come. To address the issue of ensuring current and reliable data on dental CBCT doses,
computed dose simulations provide notable advantages. The SEDENTEXCT project
has employed Monte Carlo modelling of computational phantoms to estimate effective
doses for various dental CBCT machines and imaging protocols, eliminating the need

for repeated dosimetry on anthropomorphic phantoms.
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