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PEMODELAN BERKETENTUAN TERUBAHSUAI BAGI JANGKITAN

BATUK KERING

ABSTRAK

Batuk kering, disebabkan oleh Mycobacterium tuberculosis, ialah salah satu pe-

nyakit berjangkit yang menyerang paru-paru manusia dan menyebabkan 10 juta jang-

kitan baru di seluruh dunia, dengan rata-rata 1.2 juta kematian. Pemodelan matematik

telah digunakan untuk memahami corak penularan jangkitan serta mengenalpasti ka-

walan yang sesuai dalam mencegah penularan. Melalui pemodelan matematik juga,

dinamik sesuatu jangkitan dapat diramal dengan lebih berkesan. Ini seterusnya mem-

bawa kepada tujuan utama tesis ini yang mana empat model jangkitan batuk kering

berketentuan berpetak diperkenalkan. Model yang dibangunkan ini mengambil kira

faktor-faktor penularan jangkitan batuk kering, seperti pendidikan kesihatan masyara-

kat dan rawatan di hospital, vaksin yang tidak sempurna, pemulihan tepu (rawatan)

serta kawalan optimum. Ketaknegatifan dan keterbatasan penyelesaian akan dianalisis

untuk setiap model yang diperkenalkan. Kaedah matriks generasi-hadapan digunakan

untuk menentukan kuantiti ambang yang dikenali sebagai nombor reproduksi asas, R0

untuk setiap model. Analisis manifold berpusat digunakan untuk memperoleh ambang

percabangan transkritikal Hopf ke belakang secara tepat. Keseimbangan unik ende-

mik terbukti stabil secara asimptot sejagat menggunakan teori fungsi Lyapunov untuk

setiap model. Model asas menunjukkan bahawa keseimbangan bebas penyakit adalah

stabil secara asimptot sejagat jika R0 < 1. Analisis kestabilan menunjukkan percabang-

an normal (ke depan) atau dikenali sebagai percabangan transkritikal terhasil apabila

R0 = 1. Dalam model kedua, pendidikan kesihatan awam dan rawatan hospital diga-
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bungkan ke dalam model asas. Analisis yang sama dijalankan, dan model ini memper-

lihatkan fenomena percabangan ke belakang yang menunjukkan kewujudan bersama

kestabilan keseimbangan bebas penyakit dan keseimbangan endemik. Kesan epidemi-

ologi yang didapati daripada hasil dapatan ini ialah Rph < 1 tidak lagi mencukupi bagi

mengawal penularan batuk kering secara efektif dalam populasi. Simulasi berangka

menunjukkan bahawa pendidikan kesihatan awam dan rawatan di hospital mempunyai

pengaruh besar dalam mengurangkan beban penyebaran batuk kering. Model keti-

ga mempertimbangkan dinamik jangkitan batuk kering yang menggabungkan vaksin

yang tidak sempurna dan faktor-faktor eksogenus lain seperti jangkitan semula pada

individu yang dirawat dan jangkitan semula eksogenus. Cerapan model yang didapati

menunjukkan pencabangan ke belakang, walaupun RV < 1. Keputusan ini mende-

dahkan bahawa vaksin batuk kering tak sempurna boleh secara efektif mengurangkan

penyebaran penyakit dalam populasi walaupun terdapat peningkatan dalam keberke-

sanan dan liputan kesan am. Secara spesifiknya ia menunjukkan keberkesanan vak-

sin pada sebilangan kecil manusia pada keadaan mantap dapat mengurangkan beban

penyakit. Dalam model keempat, pemulihan tepu tak linear (rawatan) dipertimbangk-

an. Syarat-syarat kestabilan keseimbangan tempatan dan kewujudan pencabangan ke

belakang serta pencabangan Hopf ditetapkan. Keputusan menunjukkan bahawa ga-

bungan pemulihan tepu tak linear (rawatan) ke dalam model akan menyebabkan di-

namik yang kompleks. Akhirnya, teori kawalan optimum diaplikasikan pada model

asas menggunakan Prinsip Maksimum Pontryagins untuk mengkaji strategi optimum

bagi mengawal dan menghilangkan jangkitan batuk kering. Keputusan mencadangkan

bahawa strategi-strategi kawalan sangat bermanfaat dalam mengurangkan beban penu-

laran jangkitan batuk kering di dalam sesuatu populasi.
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MODIFIED DETERMINISTIC MODELLING FOR TUBERCULOSIS

INFECTION

ABSTRACT

Tuberculosis (TB), caused by the Mycobacterium tuberculosis, is one of the conta-

gious disease that mainly attacks human lungs and caused 10.6 million new infection

globally, with an average of 1.6 million people dying. In general, mathematical mod-

elling can serve to understand the transmission pattern and identify suitable controls in

preventing the infections. Through mathematical modelling as well, the dynamics of

an infection can be predicted more effectively. This in turn leads to the main purpose

of this thesis where four compartmental deterministic models for tuberculosis infec-

tion is proposed. The developed models addressed the important factors related to the

transmission of tuberculosis infection, such as public health education and hospital

treatment, an imperfect vaccine, nonlinear saturated recovery (treatment) and optimal

control. The non-negativity and boundedness of the solutions are analysed for each

presented model. The next generation matrix is employed to determine the threshold

value known as basic reproduction number, R0, for each model. The center manifold

analysis are used to derive an exact transcritical and backward bifurcation threshold.

The unique endemic equilibrium is shown to be globally asymptotically stable using

a suitable Lyapunov function theory for each model, respectively. Numerical experi-

ments are also are conducted to illustrate the analytical results. The basic model reveals

that the disease-free equilibrium is globally-asymptotically stable whenever R0 < 1.

The stability analysis demonstrates that a normal (i.e., forward) bifurcation known as

transcritical bifurcation emerges at R0 = 1. In the second model, we incorporate public
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health education and hospital treatment into the basic model. Similar analysis was per-

formed, the model exhibits the phenomenon of backward bifurcation, where the stable

disease-free equilibrium co-exists with a stable endemic equilibrium. The epidemio-

logical consequence of this result are that the Rph < 1 is no longer sufficient, although

necessary, for effectively controlling the spread of TB in a population. Numerical sim-

ulation indicates that public health education and hospital treatment have a significant

effect on reducing the prevalence of TB burden. The third model considers dynamics

of the TB infection that incorporated an imperfect vaccine and other exogenous factors

such as re-infection among the treated individuals and exogenous re-infection. The

proposed model is observed to show a backward bifurcation, even when RV < 1. The

results reveal that an imperfect tuberculosis vaccine can effectively reduce the spread

of infectious diseases within the population, although an increase in the effectiveness

and coverage increases the general effect. It is specifically shown that the effective vac-

cination of very few people at steady state decreases the disease burden. In the fourth

model, nonlinear saturated recovery (treatment) model is considered. The conditions

for the local stability of equilibria and the existence of backward bifurcation and Hopf

bifurcation are established. The results showed that the incorporation of the nonlin-

ear saturated recover into TB models lead to rich dynamics. Finally, optimal control

theory is applied on the basic model using the Pontryagins’ Maximum Principle to

investigate optimal strategies for controlling and eliminating TB. The results suggest

that the control strategy is advantageous in reducing the burdens of TB transmission in

the population.
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CHAPTER 1

INTRODUCTION

1.1 Background

Tuberculosis (TB) is one of the hazardous infectious diseases that has become a

significant widespread phenomenon, claiming more lives more than any other conta-

gious disease every day according to (World Health Organization, 2022). Approxi-

mately 1/3 of the total population has a TB infection, resulting in millions of deaths

and new cases annually (World Health Organization, 2022). The report corroborates

that TB is one of the tops ten causes of mortality globally of both human and animal

populations (World Health Organization, 2019; Ullah et al., 2019; Sudre et al., 1992;

Dolin et al., 1994; Castillo-Chavez and Song, 2004). In 2021, for instance, 10.6 million

individuals developed TB, and more than 1.6 million died from it, including 187000

HIV-positive persons (Kabunga et al., 2020; World Health Organization, 2022). Typ-

ically, the signs may not be instantaneous when an individual contracts the disease.

Thus the individual remains asymptomatic for a long time or is latently infected for

life (Adebiyi, 2016). Young adult may get infected by TB when they are most active

(World Health Organization, 2021). Generally, the TB-related deaths often happen in

the middle-income countries, for example, India, which leads the count, followed by

Indonesia, China, Philippines, Pakistan, Nigeria, Bangladesh, and South Africa. Such

countries accounted for over 87% of the entire TB trouble in the world. As a result, it

is vital to implement techniques and methods that make it simple to understand how

this disease spreads and predict its progression.
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TB is a communicable disease caused by Mycobacterium tuberculosis affecting

mostly the lungs (Jaramillo, 1999; Daniel et al., 1994). However, it can also attack

different organs including the brain, kidney, spine, central nervous system, or the lym-

phatic system (World Health Organization, 2022; Ullah et al., 2019; Khan et al., 2019;

Khajanchi et al., 2018; Zhang et al., 2015). It is important to note that the active lung

TB disease typically begins with a cough, with sputum or blood on occasion, chest

pains, fatigue, unexpected weight reduction, fever, and night sweats, which may last at

least three or more weeks at times. It has been reported by Bar (1922) that a pregnant

woman who is infected may infect the foetus in some situations. Only individual who

have active TB can spread the disease. The latently infected individuals do not spread

the bacteria (World Health Organization, 2022; Kabunga et al., 2020). Transmission

starts with one individual then onto the next relies upon the number of infected and

expelled drops, the period of contaminated risk exposure, the virulence of the My-

cobacterium tuberculosis, and the activity of environmental ventilation (World Health

Organization, 2020; Daniel et al., 1994; Kabunga et al., 2020).

1.2 History of TB

From the beginning of time, the sickness of TB has differently known as consump-

tion, phthisis, and the great white plague. It is widely accepted that the causative

agent, Mycobacterium tuberculosis began from other, more primitive organisms of the

identical bacteria genus. In 2014, consequences of another DNA investigation of a

tuberculosis genome recreated from in southern Peru suggest that human tuberculosis

is under 6,000 years of age. Regardless of whether scientists theorize that people ini-

tially obtained it in Africa around 5,000 years ago (Zimmer, 2014), there is evidence

2



that the foremost TB infection happened about 9,000 years before then (Hershkovitz

et al., 2008). The infection spread more along trading routes, including to domestic

animals, such as dairy animals and goats in Africa. It has believed that seals and ocean

lions on African seashores became infected and spread it over the Atlantic to South

America (Zimmer, 2014).

1.2.1 Re-infection TB, Recurrent TB and Endogenous Reactivation

Re-infection TB, also known exogenous re-infection, is a TB episode caused by

getting re-infected with a new TB strain from another infectious person (Feng et al.,

2000; Chiang and Riley, 2005). Recurrent TB is branded as the incidence of a repeat

episode of TB after the successful treatment of the first infection (Kar and Mondal,

2012; Wangari et al., 2016). Notably, there are two systems by which recurrent TB

can happen: (i) relapse with the previously responsible strain or (ii) exogenous re-

infection from a new exposure (Chaisson and Churchyard, 2010; Luzze et al., 2013;

Guerra-Assunção et al., 2015). Remember that re-infection of the individuals who

have latent state TB is not viewed as recurrent TB (Wangari, 2017).

The differences between these two terms is that with re-infection TB, a person does

not require recovery from the initial episode, whereas for recurrent TB a person must

have been cured of the first incidence of TB. Endogenous reactivation is described

as reactivating an initial latent infection (Styblo and Enarson, 1991; Bloom, 1994).

Endogenous reactivation happens among latently infected individuals in the context of

TB (Feng et al., 2000).
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1.2.2 Biology of TB

TB is a disease, fundamentally in the lungs (pneumonia), generally caused by bac-

teria known as Mycobacterium tuberculosis. TB is primarily transmitted from person

to person by inhaling contaminated air during close contact. The life cycle of this bac-

terial is introduced in Figure 1.1. The infection can stay inactive (dormant) for quite a

Figure 1.1: Life cycle of Mycobacterium tuberculosis. Demonstrations from Kumar
et al. (2011).

long time without causing side effects or spreading to others. When a patient immune

system is dormant debilitated, the TB can end up active (reactivate) and cause infection

within the lungs or other parts of the body. We can contact TB through close contact,

alcohol and medication misuse, certain illnesses (such as diabetes, cancer, HIV), and
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occupations (healthcare workers). The most widely recognized symptoms and signs

of TB are coughs, fatigue, weight loss, fever, and night sweat. The diagnosis of TB

includes skin tests, chest X-rays, Polymerase Chain Reaction (PCR) tests to detect the

genetic material of the causative bacteria, and sputum analysis (smear and culture)

(World Health Organization, 2022).

1.2.3 Treatment of TB

TB is a treatable and curable illness. It is fundamental to treat individuals who

are contagious with TB. Whenever left untreated, a particular individual may become

ill, which may prompt life-threatening circumstances. If treatment is not administered

correctly, TB can develop resistance. Indeed, suppose patients quit taking medicine

before time. In that case, they may become infected once more, and the TB bacteria

that are still alive may become resistant to the treatment, known as multi-drug resis-

tant tuberculosis (MDR-TB) in the worst cases (World Health Organization, 2019). A

MDR-TB is a type of TB caused by bacteria that can not react to the four most effective

first-line anti-TB drugs, namely, isoniazid, rifampicin, ethambutol, and pyrazinamide.

A MDR-TB is hard to treat, particularly in old age.

Castillo-Chavez and Feng (1997) have investigated a two strains mathematical

model, where treatment of multi-drug resistant individuals has been excluded as it is

hard to treat. Furthermore, individuals with HIV/AIDS are at great danger of develop-

ing MDR-TB. In 2015, the World Health Organization estimated about 450,000 MDR-

TB and 170,000 deaths worldwide (World Health Organization and others, 2011).

There is also another sickness that comes after MDR-TB, which is called extensively
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drug-resistant (XDR-TB). The XDR-TB happens when resistance from second-line

drugs develops on top of MDR-TB. Most instances of XDR-TB happening are in de-

veloping countries (World Health Organization and others, 2011). Numerous individ-

ual in developing countries do not take a physical test due to the significant expense

(World Health Organization, 2001, 1988). Subsequently, some exposed people can not

be detected. The key to TB control is to comply with and successfully complete a

treatment plan (Wares et al., 2003; Cheng et al., 1997; Fox, 1958). Nonadherence to

treatment has been referred to as a significant obstruction to the control of TB, and it

assumes a huge part in the association with high transmission rate, morbidity, and cost

of TB (Cramm et al., 2010; Munro et al., 2007).

Commonly, there are three types of medical interventions for treating TB, which

are treating latently infected TB individuals to avert endogenous reactivation, treating

active TB patients, and vaccination to reduce TB epidemics (Gomes et al., 2007). Pre-

vious studies assert that vaccinating susceptible individuals can effectively control the

spread (Liu et al., 2008; Anderson and May, 1992). Vaccination can be denoted in

mathematical compartmental models as an exchange between susceptible individuals

and the recovered compartment (Buonomo and Lacitignola, 2011). Some vaccinations

prevent infection but the vaccinated individual can still spread the infection (Buonomo

and Della Marca, 2019). Bacille Calmette-Guerin (BCG) is the primary effective TB

vaccine commonly administered (Andersen and Doherty, 2005), with above 50% ef-

ficiency against lung infections and over 80% types of TB in children. Considerably,

adults are more prone to spreading TB than children (Nadolinskaia et al., 2020). Re-

grettably, BCG has not effectively protect adults against TB. As such, there is a need
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for new vaccines that target both children and adult population (Fine et al., 1999).

1.3 Modelling of TB

There is an increase in TB modelling research in recent decades. Mathematical

modeling enlightens policymakers on the probable population-level effect and cost-

effectiveness related to executing new diagnostic tests. Notably, models consider nu-

merous settings, populations, and diagnostic algorithms to ensure that the right di-

agnostic approach is chosen for the right setting. This implies that models aid the

understanding of population characteristics that will lead to different approaches and

impact. To identify approaches to control the infectious diseases in the population, sev-

eral investigation have been carried out in mathematics (Kabunga et al., 2020; Ndondo

et al., 2021; Ullah et al., 2019; Xiang et al., 2016). Mathematical model are designed

and applied in study of epidemiological phenomena, as well as to explain the ecologi-

cal problems (Martcheva, 2015). Mathematical epidemiology is now well-established

in the academic literature, and mathematical modelling is contributing significantly to

both mathematics and public health (Martcheva, 2015; Hethcote, 2000, 1994; Vyn-

nycky and White, 2010; Keeling and Rohani, 2011). One of the fundamental goals

of these mathematical models is to see how a certain disease spreads in the popula-

tion, so that in the future the disease can be eradicated. In other words, mathematical

model attempt to respond to the question of how to control infection in the population

(prevention and monitoring) (Martcheva, 2015; Vynnycky and White, 2010; Kabunga

et al., 2020).

Mathematical modeling has recently received a lot of interest in both epidemiol-
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ogy and ecology. Mathematical modeling can aid in the explanation of real-world

systems and the investigating the impact of various components (Martcheva, 2015;

Keeling and Rohani, 2011). This thesis focuses on the use of mathematical modeling

to investigate TB infections and how they spread in populations using various control

strategies. Models can be categorised in a variety of ways such as linear and nonlin-

ear, static/dynamic, discrete/continuous, deterministic/stochastic (Martcheva, 2015;

Keeling and Rohani, 2011). In this thesis, we will focus on deterministic models.

A deterministic model is one in which every set of variable states is uniquely deter-

mined by the parameters in the model and the initial state of the variables (Martcheva,

2015).

1.4 Motivation

In recent years, many researchers have focused mostly on epidemiology of TB

transmission based on susceptible, infected and recovered SIR and susceptible, ex-

posed, infected and recovered SEIR models with the aim to slow down the transmis-

sion. Additionally, researchers have also collected enormous amounts of information

about the disease, and how it is transferred, and individuals affected with it (Ade-

biyi, 2016; Kar and Mondal, 2012; McCluskey and van den Driessche, 2004; Rohaeti

et al., 2015; Blower et al., 1995; Fatimaa and Mishra, 2020). Comparing with pre-

vious results, our study take into the account, the aspects of re-infections, exogenous

re-infections, public health education, vaccination, saturated treatment and optimal

control. The present study sought to complement and broaden the previously men-

tioned studies. To the author’s knowledge, there are still lack of studies that focus

on the dynamics of the TB infection by incorporating different dynamical features as

8



introduced in this thesis, public health education together with hospital treatment and

saturated treatment. Considering the abovementioned, we are motivated to construct

and qualitatively investigate a new enhancement thus more comprehensive determin-

istic model using ordinary differential equation, to better understand the global burden

and control of TB in the population.

1.5 Problem Statement

Despite numerous efforts and control strategies at present set up aimed at achiev-

ing a TB-free world (World Health Organization, 2019), TB keeps on causing a major

public health issue worldwide. It is projected that one-fourth of the population is in-

fected with Mycobacterium tuberculosis. Perhaps 5-15 percent of these individuals

will develop active tuberculosis. According to a WHO report, every year, 10 million

individuals become sick and 1.5 million individuals die from TB, making it the world’s

leading infectious killer. Therefore, tackling TB and assessing control measures to

minimize and eradicate TB is critically important. For the last two decades, several

researches have been conducted on TB particularly. Still more research is needed to

minimize the burden of TB to a minimal level. As a result, it is essential to formulate

a mathematical model to investigate the dynamics of tuberculosis as well as the effects

of different types of control strategies in terms of dynamical behaviour. This study

will also examine into how public health education and hospital treatment, as well as

an imperfect vaccine, saturated treatment, and optimal control, can help to decrease

the TB burden faster.
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1.6 Research Questions

The thesis aims to address some of the key mathematical and epidemiological ques-

tions:

1. How many equilibria does the basic TB model exhibit? Furthermore, under

what conditions are the obtained equilibrium points locally and globally asymp-

totically stable? And which type of bifurcation will the system experience?

2. What is the role of public health education and hospital treatment to eliminate

tuberculosis or at least reducing its prevalence? And how can we determine the

most influence parameters in the dynamical behaviour?

3. What is the impact of an imperfect vaccine on the transmission dynamics of

tuberculosis disease?

4. What is the dynamical behaviour of the basic model with the mass action and sat-

urated recovery (treatment)? Will the use of mass action and saturated treatment

have any impact on the theoretical outcome obtained in such a scenario?

5. What is the impact of personal protection, chemoprophylaxis, and treatment

strategies to eradicate TB disease?

1.7 Research Aim and Objectives

The main aim of this thesis was to design and analyse a various deterministic model

of transmission dynamics of TB infection. To succeed the aim of this research, the

following objectives will be achieved, these include:
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1. to develop a basic SEIRE TB model and qualitatively analyze it. The basic

SEIRE model monitors the dynamic of susceptible (S), Exposed (E), Infectious

(I), and Recovered (R) individuals.

2. to extend the basic SEIRE TB model to study the role of public health education

and hospital treatment. Similar analysis will be carried out as in the case of the

basic TB model. To perform sensitivity analysis to identify the most influential

parameter in the dynamical behavior of the TB model

3. to construct a TB model with mass action that incorporated an imperfect vaccine

and other exogenous factors such as re-infection among the treated individuals

and exogenous re-infection. Some of the properties to be consider include, the

model equilibrium points and the phenomenon of backward bifurcation;

4. to develop TB model with nonlinear saturated recovery (treatment). The local

and global stabilities of disease-free equilibrium points as well as co-existing

equilibrium points will be investigated;

5. to formulate optimal control strategies for TB model based on personal pro-

tection and chemoprophylaxis of exposed individuals and treatment of infected

individuals using the basic model.

1.8 Methodology

This thesis focuses on the development of of deterministic models of TB infection

that is based on systems of ordinary differential equations. These mathematical models

improve on the previous studies’ model for TB infection. In addition, the models are

then analysed by using a standard qualitative methods given below:
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• Model formulation, where the population is broken down into epidemiological

classes.

• The boundedness and non-negativity of the solutions of TB models are investi-

gated by using the standard comparison theorem and positivity property.

• The basic reproduction number of TB models is calculated by employing the

next-generation matrix approach.

• The existence conditions of both disease-free and endemic equilibrium points of

the TB models are obtained.

• The theory of stability analysis is used to explain the qualitative study of the

proposed model.

• The global stability of the equilibrium points of TB models is studied by con-

structing suitable Lyapunov functions.

• The proof of the existence of backward bifurcation and transcritical bifurcation

is determined by employing the center manifold theorem.

• A Hopf bifurcation of TB models is illustrated by taking the saturated recovery

and some other TB parameters as bifurcation parameters.

• The theoretical results of TB models are demonstrated numerically by using

MATLAB-R2020b, MAPLE and XPPAUT.

1.9 Scope of the Research

This thesis covers the deterministic models of TB infection based on ordinary dif-

ferential equations incorporating various control strategies. In this thesis all individuals
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with TB infection have to go through the latent period. The theoretical analysis and

numerical simulations are conducted to ensure the quality of the proposed models.

1.10 Limitation of the Research

This study has a limitations. Validation process of the model is in fact, a crucial

part of the whole model development process. Once the model development phases are

completed, model validation occurs. This thesis does not consider model validation

due to the lack of access to real data of TB.

1.11 Significant of the Study

The ideas and findings provided in this thesis will be helpful to relevant authorities

in assessing the effect of different control strategies for minimizing the prevalence of

the global burden of TB. The results on the different control strategies in TB dynamics

will also be necessary for raising awareness among decision-makers to ensure that the

national health network is prepared and equipped to prevent, limit or eradicate TB.

This study will however, serve as a foundation for future studies into the transmission

dynamics of TB and other related infectious diereses.

1.12 Thesis Organization

The organisation of this thesis is shown in Figure 1.2. Chapter 1 presented the bio-

logical history of TB, statement of the problem, the research questions, the significant

of study, the aim of this study as well as research methodology. Chapter 2 is dedicated

to the related literature review on various TB models. In Chapter 3, the appropriate
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mathematical tools to be used in Chapters 4–8 are derived. From Chapters 4 to 8, the

details of the five objectives concerned in this thesis are discussed. In Chapter 4 we

presented the basic model of TB with standard incidence rate. The basic reproduc-

tion number was computed and analyzed. The existence of bifurcations is considered

and the result on the stability of the disease-free equilibrium (DFE) and endemic equi-

librium (EE) are investigated. The stability of the endemic equilibrium was explored

using the centre manifold theorem. Global stability using Lyapunov function are also

presented. In Chapter 5, we incorporated the public health education and hospital treat-

ment of TB in to the basic model. Sensitivity analysis are also investigated. In Chapter

6, we incorporated an imperfect vaccine in to dynamics of TB and other exogenous

factors such as re-infection among the treated individuals and exogenous re-infection

using bilinear incidence rate. Both the theoretically and numerically findings are pre-

sented in Chapter 6. The saturated recovery (treatment) function was introduced into

the dynamics of TB infection in Chapter 7. The conditions for the local stability of

equilibria and the existence of backward bifurcation and Hopf bifurcation are estab-

lished. The influences of varying the saturated recovery (treatment) function are also

demonstrated. In Chapter 8, we introduced chemoprophylaxis treatment into the first

model studied in Chapter 1. We considered an optimal control techniques. We aimed

at minimizing the population of those exposed and infected with TB disease while

minimizing costs. The overall concluding remarks, as well as suggestions for future

works, are offered in Chapter 9.
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Figure 1.2: Flowchart of the thesis.

15



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Tuberculosis is one of the most contagious disease, affecting one-quarter of the

global population. A lot of people are infected with TB bacteria but do not develop the

disease or spread it. In 2021, 10.6 million individuals were infected with TB infection

and 1.6 million died from TB-related infections, including 187000 people with HIV

(World Health Organization, 2022). Mathematical models are extremely helpful in un-

derstanding the control and effect of infectious diseases and making potential forecasts

about the spread. There are three stages to be understood while working with math-

ematical modeling of biological systems. The initial stage is to form a mathematical

model that correctly describes the biological process being studied. Then, one should

apply mathematical techniques in order to understand the model’s behaviour. Finally,

the appropriate translation of the results of the model is needed to decide whether the

biological results obtained is significant. Differential equations have been applied to

many types of biological systems ranging through population, epidemics and physio-

logical systems (Allen, 2007b).

There are three different states of the disease, which are endemic, epidemic, and

pandemic Grennan (2019). Endemic refers to a disease that is constantly present in

a given location or population. The number of the affected individuals is generally

low, and it does not significantly increase or decrease overtime but it is always there.
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Examples are chickenpox which affect children at a regular predictable rate, dengue

in tropical and subtropical regions, and malaria which is permanently present in many

part of Africa. Epidemic is a widespread occurrence of an infectious disease in a com-

munity at a particular time. Examples include Zika virus infection, starting in Brazil in

2014 and spreading to most of Latin America and the Caribbean; the 2014–2016 Ebola

outbreak in West Africa, which was large enough to be considered an epidemic, and

yellow fever. Pandemic refers to an epidemic that has spread over several countries or

continents, usually affecting a large number of people. Examples are HIV/AIDS which

claimed the lives of more than 36 million since 1981 and with over 30 million cases,

and COVID-19 pandemic which was declared by the WHO as a global outbreak. TB

is considered as endemic. The focal point of this thesis will be on the endemic.

2.2 Foundation of Mathematical Modelling of Infectious Diseases

The foundation of mathematical modelling of infectious diseases is typically made

through one for the main epidemic models introduced by Kermack and McKendrick

(1927), notable as the SIR epidemic model. In epidemiology, mathematical modeling

continues to play a key contribution in gaining a better understanding of the underlying

mechanism both for spread of emerging and re-emerging infectious disease, as well as

recommending a powerful control measures (Sharomi, 2010). Despite the fact that

TB is a major public health concern, substantial progress has been made in terms of

employing mathematical modeling and analysis to obtain understanding into its trans-

mission patterns (Kabunga et al., 2020; Kim et al., 2018; Egonmwan and Okuonghae,

2019a; Kar and Mondal, 2012; Wangari, 2017).
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Kermack and McKendrick (1927) developed an SIR mathematical model that ad-

dresses infectious disease transmission. It comprises the susceptible (S), infected (I)

and recovered (R) compartments. The original SIR model constructed by Kermack

and McKendrick (1927) was based on the idea that people may be divided into one of

three groups: those who are susceptible to infection, those who are infected and hence

infectious, and those who have recovered and therefore immune. The SIR model is the

foundation of mathematical epidemiology. Figure 2.1 depicts the model in Kermack

and McKendrick (1927) and it is represented by the following system of ODEs:

dS
dt =−

βSI
N ,

dI
dt =

βSI
N − γI,

dR
dt = γI,

(2.1)

where N denotes the total population, S, I and R represents the susceptible, infected

Figure 2.1: Schematic diagram of SIR model (Kermack and McKendrick, 1927).

and recovered individuals, respectively. The parameters β , and γ are the transmission

and recovery rates, respectively. The SIR model equations (2.1) have been modified to

include vital and convincing biological and epidemiological characteristics including

vulnerability and latent or exposed people who do not yet exhibit disease symptoms
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(Wangari, 2017). Simple SIR models are often unable to capture such possibilities.

Some modified SIR models includes susceptible, infected and susceptible individuals

(SIS), susceptible, infected, recovered and susceptible individuals (SIRS), susceptible,

exposed, infected and recovered individuals (SEIR), susceptible, exposed, infected,

recovered and susceptible individuals (SEIRS), susceptible, exposed, infected, recov-

ered and exposed individuals (SEIRE) and susceptible, exposed, infected, recovered

and infected individuals (SEIRI), respectively, are the most popular abbreviations for

models. The modified SIR models will be considered in further detail in Section 3.

2.3 Epidemic Models and Control Strategies

Mathematical models describe how to control diseases in great detail. They are

powerful techniques for evaluating the potential influence of various control interven-

tion strategies (Garba, 2008). The critical threshold known as the basic reproductive

number, R0, refers to the number of new infections created by a single infected per-

son introduced into a completely susceptible population over the duration of disease

is the main parameters in these models. Models give an orderly method of design-

ing and representing significant aspects in epidemiology and control by investigating

their impacts. One of the most significant control strategies to reduce the spread of

disease is the assessment of public health measures. Clearly, the main goal of public

health interventions is to reduce R0, below unity to make infectious prevention pos-

sible (Garba, 2008; Wangari, 2017). This gives a criterion towards enhancing control

strategies including vaccination, which lowers the susceptibility of the population and

quarantine/isolation, which brings down the occurrence of disease.
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2.4 Review of Tuberculosis Infection Models and Their Results

Deterministic models comprising ODEs are used to explain and monitor TB trans-

mission. These models help in understanding the processes involved in the dynamics

of TB infection. The parameters presented in this chapter are given in Table 2.1

The first TB infection model was built by Waaler et al. (1962). The population

was classified into susceptible (S), exposed (E) and infected (I) compartments. They

evaluated parameters inside the model for South India, and concluded that the future

trend of TB was unlikely to grow. The transmission mechanism was ignored from their

model. The model constructed by Waaler et al. (1962), Blower et al. (1995), Wangari

(2017) and Kar and Mondal (2012) is given by

dS
dt = Λ−βSI−µS,

dE
dt = (1− f )βSI− (µ +κ)E,

dI
dt = f βSI +κE− (µ +δ + γ)I.

(2.2)

Here, Λ denotes the recruitment rate, β denotes the transmission rate, µ is the rate of

natural death, f is the proportion of those who get TB fast (that is the proportion of

new cases that are classified as infectious), γ is the recovery rate, δ is the death rate

due to TB, and κ is the progression rate from E to I.

Blower et al. (1995), Kar and Mondal (2012) and Wangari (2017) used the same as-

sumptions that infected individuals who recover from the disease can move to the re-

covered class. Therefore, they included the recovered compartment (R). The model
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Table 2.1: Description of parameters used in Chapter 2.

State Variables Description
Λ Recruitment rate
N Total population
β Transmission rate
β1 Transmission rate without media alert
β2 Transmission rate with media alert among the susceptible individuals
β3 Transmission rate with media alert among the exposed individuals
µ Natural death rate
κ Progression rate from E to I
m Half saturation constant of infection
α Progression from E to R due chemoprophylaxis treatment
γ Recovery rate
γ3 Ineffective therapy rate
θ Rate at which vaccine wanes
c Saturation form of treatment
c1 Contact rate
ϖ Impact of delaying the treatment of infected individuals
ξ Rate at which susceptible individuals are vaccinated
g Progression rate to the early exposed stage
ϕ Progression rate from E2 to I
j Probability of treatment failure

ω Reduction in risk of infection due to vaccination rate
ω1 Successful treatment rate
ω2 Unsuccessful treatment rate
ε Saturated incidence rate
g Rate of progression to the early exposed stage
p Exogenous re-infection
f Fast progression rate
q Relapsed rate
b Birth rate
ψ Information dissemination (awareness rate)
φ Rate at which educated susceptible become susceptible again
ν Reduction in infection as a result of awareness rate
l Natural TB recovery rate
σ Modification parameter for re-infection
v1 Effort of preventing susceptible individuals from TB exposure
v2 Latent case finding interventions
v3 Case holding control
v4 Active case finding control
δ TB induced death rate

µDT B Death rate as a result of coinfection
µD Death rate as a result of AIDS

developed by Blower et al. (1995) is given by
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dS
dt = Λ−βSI−µS,

dE
dt = (1− f )βSI− (µ +κ)E,

dI
dt = f βSI +κE− (µ +δ + γ)I,

dR
dt = γI−µR.

(2.3)

2.4.1 TB Treatment Models

Between 2000 and 2021, TB treatments saved the lives of 74 million people glob-

ally, resulting in a 20 percent reduction in TB mortality (World Health Organization,

2021). Using a deterministic approach, Rohaeti et al. (2015) developed and analysed

SIR TB dynamics in West Java, Indonesia. Their model assessed the impact of TB

treatment. They investigated the case in which R0 > 1, in which the disease-free equi-

librium is unstable and a positive (endemic) equilibrium emerges. Their findings also

revealed that the most relevant parameters in the spread of TB are γ and β . They

demonstrated that in Bogor, the spread of TB can be controlled by increasing the re-

covery rate γ and reducing the transmission rate, β . The Rohaeti et al. (2015) model

22



are as follows:
dS
dt = Λ−βSI−µS,

dI
dt = βSI− (µ +δ + γ)I,

dR
dt = γI−µR.

(2.4)

Fatimaa and Mishra (2020) formulated a mathematical model of TB with an early

treatment for latent patients, α, and treatment of infectives, γ, as strategies in reducing

the TB transmission. They studied the following deterministic model of TB:

dS
dt = bN− βSI

N +σR−µS,

dE
dt = βSI

N − (κ +α +µ)E,

dI
dt = κE− (µ +δ + l + γ) I,

dR
dt = αE +(l + γ)I− (σ +µ)R,

(2.5)

where the parameters b represent birth rate, κ is the progression rate from E to I, α is

the chemoprophylaxis treatment (treatment for those that have been exposed), respec-

tively, the parameters l, and σ are natural TB recovery, and re-infection, respectively.

The local stability of equilibrium points was investigated. They found that α and γ

lower the effective reproduction number to less than one. It indicates that early treat-

ment of TB patients is more beneficial in reducing the spread of TB burden. However,

they did not proved the conditions that guarantee the existence, uniqueness and bound-
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edness of solution of the TB model (2.5). The criteria for the existence of bifurcation

analysis and the global stability of any equilibrium point were also not investigated in

their work.

A deterministic model for the TB infection that combines chemoprophylaxis as

treatment of exposed and treatment of infected individuals was formulated and ana-

lyzed by Bhunu et al. (2008). Results showed that treatment of is most successful in

the first years of introduction as it clears active TB quickly. After that, chemopro-

phylaxis will do its best to control the number of infectious diseases due to reduced

progression to active TB. Bhunu et al. (2008) presented the following compartmental

model of TB infection:

dS
dt = Λ− βc1SI

N −µS,

dE
dt = f βc1SI

N − pβc1EI
N − (κ +α +µ)E + σβc1RI

N ,

dI
dt =

(1− f )βc1SI
N + pβc1EI

N +κE− (µ +δ + l + γ) I +qR,

dR
dt = αE +(l + γ)I− (q+µ)R− σβc1RI

N ,

(2.6)

where c1 corresponds to the contact rate, q represents the relapsed rate and p is the

exogenous re-infection.
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