IMPACT OF GLYPHOSATE (HERBICIDE) AND CHLORPYRIFOS (INSECTICIDE) CONTAMINATION ON NECROPHAGOUS FLY LIFECYCLE ON PORK

CHANG ZHI LIN

UNIVERSITI SAINS MALAYSIA 2025

IMPACT OF GLYPHOSATE (HERBICIDE) AND CHLORPYRIFOS (INSECTICIDE) CONTAMINATION ON NECROPHAGOUS FLY LIFECYCLE ON PORK

by

CHANG ZHI LIN

Thesis submitted in partial fulfilment of the requirements for the Bachelor of Science (Honours) (Forensic Science)

FEBRUARY 2025

CERTIFICATE

This is to certify that the dissertation entitled "IMPACT OF GLYPHOSATE (HERBICIDE)

AND CHLORPYRIFOS (INSECTICIDE) CONTAMINATION ON NECROPHAGOUS FLY

LIFECYCLE ON PORK" is the bonafide record of research work done by Chang Zhi Lin

(matric number: 157930) during the period from October 2024 to February 2025 under my

supervision. I have read this dissertation and that in my opinion it confirms to acceptable

standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation

to be submitted in partial fulfilment for the degree of Bachelor of Science (Honours) (Forensic

Science).

Supervisor,

Dr. Helmi Mohd. Hadi Pritam,

Lecturer of Health Science,

Universiti Sains Malaysia,

Health Campus,

16150 Kubang Kerian,

Kelantan, Malaysia.

Tel: 09-7677834

Date: 25/02/2025

i

DECLARATION

I hereby declare that this dissertation is the result of my investigations, except where otherwise

stated and duly acknowledged. I also declare that it has not been previously or concurrently

submitted as a whole for any other degrees at Universiti Sains Malaysia or other institutions.

I grant Universiti Sains Malaysia the right to use the dissertation for teaching, research, and

promotional purposes.

Chang Zhi Lin

Date: 25/02/2025

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr Helmi, for his invaluable support. Regardless of the time—morning, noon, evening, night, or even during his personal breaks—he always responded promptly, providing guidance and clarification. He has been incredibly generous with his time, often engaging in face-to-face discussions to help resolve my uncertainties regarding my thesis and placing immense trust in me. I am grateful not only for his academic mentorship but also for the engaging conversations we have had about life and the world. I sincerely appreciate his patience, and at the same time, I feel apologetic for often disturbing him during his well-deserved rest time.

Next, I would like to extend my heartfelt appreciation to Dr Chang Kah Haw. Despite his heavy workload and numerous students to supervise, he always made time for me, guiding me from scratch and patiently teaching me how to carry out my final year project. I am especially grateful for his willingness to stay back after working hours to assist me in running different samples, meticulously troubleshooting issues, and helping me find effective solutions.

I am also deeply thankful to Dr Helmi's PhD student, Miss Puvana. She has always been eager to share her experiences with me and provided invaluable assistance during my experiments, helping me to quickly adapt and complete them accurately. Beyond the laboratory, she has also been a caring and supportive sister figure in my life. I would also like to thank Dr Chang's PhD student, Miss Adriana, for frequently coming to the Analytical Laboratory to assist me. Even when many issues arose with the GC, she continuously provided me with positive guidance.

My sincere appreciation extends to all the lab staff at Forensic Science Laboratory, Analytical Laboratory, and UPMS. I am also grateful to my friends and classmates for their patience, cooperation, and support, which have significantly alleviated challenges and contributed to the smooth completion of my FYP.

A special thanks to my family for always being there to listen to my struggles, especially my sister and my mother. Words cannot fully express my love and gratitude for them.

Finally, I would like to acknowledge and draw inspiration from the world's top-ranked table tennis players in women's and men's singles, as well as mixed doubles—Olympic gold medallists Sun Yingsha and Wang Chuqin—and the greatest of all time (GOAT) in table tennis, Olympic champion Ma Long. Their sportsmanship and character have continually motivated me throughout my university journey, encouraging me to persevere, stay composed, and strive for excellence. Wang Chuqin once said, "Our goals go far beyond this; we have a long road ahead." Sun Yingsha reminded us that "What doesn't kill us makes us stronger." Ma Long stated, "Pessimists may be right, but optimists move forward." And Sun Yingsha beautifully said, "Today's sun shines brighter than yesterday's."

TABLE OF CONTENTS

CERTIFICATE	i
DECLARATION	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	xii
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDICES	xix
Appendix A	xix
Appendix B	xix
Appendix C	xix
Appendix D	xix
ABSTRAK	XX
ABSTRACT	xxi
CHAPTER 1: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Objective	4
1.3.1 General Objective	4
1.3.2 Specific Objective	4
1.4 Significance of Study	5
CHAPTER 2: LITERATURE REVIEW	6
2.1 Diptera Flies in Malaysia	6
2.2 Life Cycle of Chrysomya megacephala and Chrysomya rufifacies	7
2.3 Morphological Identification of Necrophagous Fly	11
2.3.1 Chrysomya megacephala	11
2.3.2 Chrysomya rufifacies	12
2.3.3 Lucilia species	13
2.3.4 Sarcophaga species	13
2.4 Definition and Global Usage of Pesticides	14
2.5 Types of Pesticides	15
2.6 Pesticide Poisoning in Global and Malaysia	15
2.7 Pesticides and Cadaveric Insects in PMI Estimation	16
2.8 Research Gaps and Rationale	19
CHAPTER 3: METHODOLOGY	20
3.1 Material and Apparatus	20

3.1.1 Life Cycle Observation	20
3.1.2 Gas Chromatography with Flame Ionisation Detector (GC-FID) Analysis .	22
3.2 Location and Study Site	23
3.3 Preparation of Meat	27
3.4 Experimental Setup	29
3.5 Temperature and Humidity Data Collection	32
3.6 Sample Collection, Killing, Rearing, Preservation and Observation	35
3.7 Morphological Measurement	36
3.8 Determination of Pesticide Residues in Larvae Using GC-FID	38
3.8.1 Calibration Curve Preparation	38
3.8.2 Extraction Method	39
3.8.3 GC-FID Analysis	39
3.8.4 Data Analysis	40
CHAPTER 4: RESULTS	41
4.1 Decomposition Stages of Pork Meat	41
4.1.1 Location 1 – Control Sample	41
4.1.1 Location 2 – Chlorpyrifos-treated Sample	46
4.1.3 Location 3 – Glyphosate-treated Sample	52
4.2 Necrophagous Fly Species	57
4.2.1 Location 1 – Control Sample	57
4.2.1 Location 2 – Chlorpyrifos-treated Sample	59
4.2.3 Location 3 – Glyphosate-treated Sample	61
4.3 Life Cycle of Fly	62
4.3.1 Chrysomya megacephala	62
4.3.2 Chrysomya rufifacies	66
4.3.3 Lucilia species	70
4.3.4 Sarcophaga species	74
4.4 Morphological Measurement	79
4.4.1 Control Sample	79
4.4.2 Glyphosate-treated Sample	85
4.4.3 Comparison of Length and Weight of Specimens	91
4.5 Temperature and Humidity	99
4.5.1 Replicate 1	99
4.5.2 Replicate 2	102
4.5.3 Average Temperature and Humidity for 2 Replicate	105
4.6 GC-FID Analysis	108
4.6.1 Retention Time of Chlorpyrifos and Glyphosate	108

4.6.2 Calibration Curve of Chlorpyrifos and Glyphosate	. 109
4.3.2 Comparison of Chromatograms of Negative Control and Spiked Samples	110
CHAPTER 5: DISCUSSSION	.115
5.1 Decomposition Stages of Pork Meat	.115
5.1.1 Comparison Between Control and Glyphosate-treated Samples	.115
5.1.2 Comparison Between Control and Chlorpyrifos-treated Samples	.116
5.2 Necrophagous Fly	.118
5.2.1 Location 1 – Control Sample	.118
5.2.2 Location 2 – Chlorpyrifos-treated Sample	.118
5.2.3 Location 3 – Glyphosate Sample	.119
5.3 Life Cycle of Fly	.120
5.3.1 Chrysomya megacephala	.120
5.3.2 Chrysomya rufifacies	.121
5.3.3 Lucilia species	.122
5.3.4 Sarcophaga species	. 123
5.4 Morphological Measurement	. 125
5.4.1 Chrysomya megacephala	. 125
5.4.2 Chrysomya rufifacies	. 125
5.4.3 Lucilia species	. 126
5.4.4 Sarcophaga species	. 126
5.5 Temperature and Humidity	. 128
5.6 GC-FID Analysis	. 132
5.6.1 Calibration Curve of Chlorpyrifos and Glyphosate	.132
5.6.2 Comparison of Chromatograms of Negative Control and Spiked Samples	132
CHAPTER 6: CONCLUSION AND FUTURE RECOMMENDATIONS	. 134
6.1 Conclusion	. 134
6.2 Recommendation	. 135
REFERENCES	.136
ADDENIDICEC	1 1 1

LIST OF TABLES

Table 2.1 The life cycle stages of Chrysomya megacephala and Chrysomya rufifacies based
on the study by Siddiki & Zambare (2017)9
Table 3.1 Chemicals and reagents used in this study
Table 3.2 Material used in this study
Table 3.3 Equipment and instruments used in this study
Table 4.1 Decomposition stages and appearance of the pork meat in the control sample for
the first life cycle
Table 4.2 Decomposition stages and appearance of the pork meat in the control sample for
the second life cycle
Table 4.3 Decomposition stages and appearance of the pork meat in the chlorpyrifos-treated
sample for the first life cycle
Table 4.4 Decomposition stages and appearance of the pork meat in the chlorpyrifos-treated
sample for the second life cycle
Table 4.5 Decomposition stages and appearance of the pork meat in the glyphosate-treated
sample for the first life cycle
Table 4.6 Decomposition stages and appearance of the pork meat in the glyphosate-treated
sample for the second life cycle
Table 4.7 Necrophagous fly species observed in the control sample
Table 4.8 Necrophagous fly species observed in the glyphosate-treated sample
Table 4.9 The life cycle of C. megacephala of control sample for both life cycle
Table 4.10 The life cycle of C. megacephala of glyphosate-treated sample for both life cycle
63
Table 4.11 The total number of male and female C. megacephala observed in both the
control and glyphosate-treated samples
Table 4.12 The life cycle of C. rufifacies of control sample for both life cycle
Table 4.13 The life cycle of C. rufifacies of glyphosate-treated sample for both life cycle 66

Table 4.14 The total number of male and female C. rufifacies observed in both the control
and glyphosate-treated samples
Table 4.15 The life cycle of Lucilia sp. of control sample for both life cycle70
Table 4.16 The life cycle of Lucilia sp. of glyphosate-treated sample for both life cycle 70
Table 4.17 The total number of male and female Lucilia sp. observed in both the control and
glyphosate-treated samples
Table 4.18 The life cycle of Sarcophaga sp. of control sample for both life cycle74
Table 4.19 The life cycle of Sarcophaga sp. of glyphosate-treated sample for both life cycle
Table 4.20 The total number of male and female Sarcophaga sp. observed in both the control
and glyphosate-treated samples
Table 4.21 Average length of the 1 st , 2 nd , and 3 rd instar larvae, pupae, and adult flies of C.
megacephala from the control sample79
Table 4.22 Average lengths of the 3 rd instar larvae, pupae, and adult flies of C. rufifacies in
the control sample
Table 4.23 Average average lengths of the 3 rd instar larvae, pupae, and adult flies of Lucilia
sp. in the control sample
Table 4.24 Average lengths of the 2 nd and 3 rd instar larvae, pupae, and adult flies of
Sarcophaga sp. from the control sample
Table 4.25 Average length of the 1st, 2nd, and 3rd instar larvae, pupae, and adult flies for each
species from the control sample
Table 4.26 Average weights of the 1st, 2nd, and 3rd instar larvae, pupae, and adult flies for
each species from the control sample
Table 4.27 Average length of 1 st , 2 nd , and 3 rd instar larvae, pupae and adult flies of C.
megacephala in the glyphosate-treated sample
Table 4.28 Average length of 3 rd instar larvae, pupae and adult flies of C. rufifacies in the
alvnhosate-treated sample 86

Table 4.29 Average length of 3 rd instar larvae, pupae and adult flies of Lucilia sp. in the
glyphosate-treated sample87
Table 4.30 Average length of 2 nd , and 3 rd instar larvae, pupae and adult flies of Sarcophaga
sp. from the glyphosate-treated sample
Table 4.31 Average length of 1 st , 2 nd , and 3 rd instar larvae, pupae and adult flies for each
species in the glyphosate-treated sample
Table 4.31 Average weight of 1 st , 2 nd , and 3 rd instar larvae, pupae and adult flies for each
species in the glyphosate-treated sample90
Table 4.33 Comparison of the length of C. megacephala specimens from the control and
glyphosate-treated samples
Table 4.34 Comparison of the weight of C. megacephala specimens from the control and
glyphosate-treated samples
Table 4.35 Comparison of the length of C. rufifacies between the control and glyphosate-
treated samples
Table 4.36 Comparison of the weight of C. rufifacies between the control and glyphosate-
treated samples94
Table 4.37 Comparison of the length of Lucilia sp. between the control and glyphosate-
treated samples95
Table 4.38 Comparison of the weight of Lucilia sp. between the control and glyphosate-
treated samples96
Table 4.39 Comparison of the length of Sarcophaga sp. between the control and glyphosate-
treated samples
Table 4.40 Comparison of the weight of Sarcophaga sp. between the control and glyphosate-
treated samples
Table 4.41 Rainfall duration of the first replicate
Table 4.42 Average temperature for the control sample, chlorpyrifos-treated sample,
glyphosate-treated sample and MET for the first replicate

Table 4.43 Average humidity for control sample, chlorpyrifos-treated sample, glyphosate-
treated sample and MET for the first replicate
Table 4.44 Rainfall duration for the second replicate
Table 4.45 Average temperature for control sample, chlorpyrifos-treated sample, glyphosate-
treated sample and MET for the second replicate
Table 4.46 Average humidity for control sample, chlorpyrifos-treated sample, glyphosate-
treated sample and MET for the second replicate
Table 4.47 Average temperature (°C) for both replicates
Table 4.48 Average humidity for control sample, chlorpyrifos-treated sample, glyphosate-
treated sample and MET for both replicates
Table 5.1 The relationship between temperature, humidity, and the life cycle duration of
Chrysomya megacephala
Table 5.2 The relationship between temperature, humidity, and the life cycle duration of
Chrysomya rufifacies
Table 5.3 The relationship between temperature, humidity, and the life cycle duration of
Lucilia species
Table 5.4 The relationship between temperature, humidity, and the life cycle duration of
Sarconhaga species 131

LIST OF FIGURES

Figure 3.1 PPSK was shown in both the default Google Maps view and satellite view23
Figure 3.2 Control sample situated in the basement car parking area under the front entrance
ramp of the PPSK building
Figure 3.3 Chlorpyrifos-treated sample located under the side ramp near the large drain of
the PPSK building
Figure 3.4 Glyphosate sample located the basement parking area near Dewan Kuliah
Serbaguna, adjacent to the PPSK building
Figure 3.5 The brand of the chlorpyrifos and the instructions used
Figure 3.6 The brand of the glyphosate and the instructions used
Figure 3.7 Experimental setup for Location 1
Figure 3.8 Experimental setup for Location 2
Figure 3.9 Experimental setup for Location 3
Figure 3.10 Experimental setup at each of the locations with official notice for the study to
be conducted
Figure 3.11 The ThermoPro Sensor application used to connect the devices via Bluetooth .33
Figure 3.12 The Xiaomi Home application used to connect the devices via Bluetooth34
Figure 4.13 Length measurement of (a) first instar larvae, (b) second instar larvae, (c) third
instar larvae and (d) pupae of C. megacphala; (e) third instar larvae and (f) pupae of C.
rufifacies
Figure 4.1 The visual decomposition stages for the control samples in the first life cycle for
the first 14 days
Figure 4.2 The visual decomposition stages for the control samples in the second life cycle
for the first 14 days
Figure 4.3 Graph of decomposition stages of pork meat in the control sample in the first life
cycle over the day
Figure 4.4 Graph of decomposition stages of pork meat in the control sample in the second
life cycle over the day

Figure 4.5 The visual decomposition stages for the chlorpyrifos-treated samples in the first
life cycle for the first 14 days48
Figure 4.6 The visual decomposition stages for the chlorpyrifos-treated samples in the
second life cycle for the first 14 days
Figure 4.7 Graph of decomposition stages of pork meat in the chlorpyrifos-treated sample in
the first life cycle over the day
Figure 4.8 Graph of decomposition stages of pork meat in the chlorpyrifos-treated sample in
the second life cycle over the day
Figure 4.9 Fungus on pork meat from the chlorpyrifos-treated sample
Figure 4.10 Fungus was observed on pork meat from the chlorpyrifos-treated sample under a
stereomicroscope at 10x magnification
Figure 4.11 The texture of the pork meat in the chlorpyrifos-treated sample had deteriorated
significantly, resembling mashed potatoes
Figure 4.12 The visual decomposition stages for the glyphosate-treated samples in the first
life cycle for the first 14 days
Figure 4.13 The visual decomposition stages for the glyphosate-treated samples in the first
life cycle for the first 14 days
Figure 4.14 Graph of decomposition stages of pork meat in the glyphosate-treated sample in
the first life cycle over the day
Figure 4.15 Graph of decomposition stages of pork meat in the glyphosate-treated sample in
the second life cycle over the day
Figure 4.16 Red ant attacking puparium
Figure 4.17 Empty pupae pupal case under a stereomicroscope at 20x magnification 58
Figure 4.18 Dead first instar larvae on the surface of the meat in the chlorpyrifos-treated
sample
Figure 4.19 Various dead insects on the surface of the meat in the chlorpyrifos-treated
sample

Figure 4.21 The posterior spiracles of the second and third instar larvae of C. megacephala
under the stereomicroscope at 50x magnification
Figure 4.22 The prothoracic spiracle of C. megacephala under the stereomicroscope at 50x
magnification
Figure 4.23 (a) Posterior, (b) anterior, and (c) lateral views of the adult C. megacephala
under the stereomicroscope at 10x and 20x magnification
Figure 4.24 Eyes of (a) male and (b) female adult of C. megacephala under the
stereomicroscope at 30x magnification
Figure 4.25 The posterior spiracles of the third instar larvae of C. rufifacies under the
stereomicroscope at 50x magnification
Figure 4.26 The prothoracic spiracle of C. rufifacies under the stereomicroscope at 50x
magnification
Figure 4.27 (a) Posterior, (b) anterior, and (c) lateral views of the adult C. rufifacies under
the stereomicroscope at 10x magnification
Figure 4.28 Eyes of (a) male and (b) female adult of C. rufifacies under the
stereomicroscope at 30x magnification
Figure 4.29 The posterior spiracles of the third instar larvae of Lucilia sp. under the
stereomicroscope at 50x magnification
Figure 4.30 The (a) prothoracic spiracle and (b) gena and postgenal areas of Lucilia sp.
under the stereomicroscope at 50x and 30x magnification
Figure 4.31 (a) Posterior, (b) anterior, and (c) lateral views of the adult Lucilia sp. under the
stereomicroscope at 10x magnification
Figure 5.32 Eyes of (a) male and (b) female adult of Lucilia sp. under the stereomicroscope
at 30x magnification
Figure 4.33 The posterior spiracles of the second and third instar larvae of Sarcophaga sp.
under the stereomicroscope at 50x magnification
Figure 4.34 (a) Posterior, (b) anterior, and (c) lateral views of the adult Sarcophaga sp.;
posterior views of (d) female and (e) male; anterior views of (f) female and (g) male; and

lateral views of (h) female and (i) male of the adult Sarcophaga sp. under the
stereomicroscope at 10x magnification
Figure 4.35 Eyes of (a) male, (b) female, and (c) female vs male adult of Sarcophaga sp.
under the stereomicroscope at 30x magnification
Figure 4.36 Genitalia of (a) male and (b) female adult of Sarcophaga sp. under the
stereomicroscope at 20x magnification
Figure 4.37 Graph of length comparison of different necrophagous flies in the control
sample
Figure 4.38 Graph of weight comparison of different necrophagous flies in the control
sample
Figure 4.39 Graph of length comparison of different necrophagous flies in the glyphosate-
treated sample
Figure 4.40 Graph of weight comparison of different necrophagous flies in the glyphosate-
treated sample
Figure 4.41 Graph of length comparison of C. megacephala in both control and glyphosate-
treated samples 91
Figure 4.42 Graph of weight comparison of C. megacephala in both control and glyphosate-
treated samples 92
Figure 4.43 Graph of length comparison of C. rufifacies in both control and glyphosate-
treated samples 93
Figure 4.44 Graph of weight comparison of C. rufifacies in both control and glyphosate-
treated samples
Figure 4.45 Graph of length comparison of Lucilia sp. in both control and glyphosate-treated
samples95
Figure 4.46 Graph of weight comparison of Lucilia sp. in both control and glyphosate-
treated samples
Figure 4.47 Graph of length comparison of Sarcophaga sp. in both control and glyphosate-
treated samples

Figure 4.48 Graph of weight comparison of Sarcophaga sp. in both control and glyphosate-
treated samples
Figure 4.49 Graph of average temperature (°C) against each day for the first replicate 100
Figure 4.50 Graph of average humidity (%) against each day for the first replicate 101
Figure 4.51 Graph of average temperature (°C) against each day for the second replicate. 103
Figure 4.52 Graph of average humidity (%) against each day for the second replicate 104
Figure 4.53 Graph of average temperature (°C) against each day for both replicates 106
Figure 4.54 Graph of average humidity (%) against each day for both replicates107
Figure 4.55 Chromatogram of chlorpyrifos (23.90 min)
Figure 4.56 Chromatogram of glyphosate (28.34 min)
Figure 4.57 Calibration curve of peak area against concentration of chlorpyrifos (mg/mL)
Figure 4.58 Chromatogram of the blank sample
Figure 4.59 Chromatogram of negative control
Figure 4.60 Chromatogram of chlorpyrifos-injected larvae
Figure 4.61 Chromatogram of glyphosate-injected larvae
Figure 4.62 Comparison of chromatograms for three different sample types: glyphosate-
injected larvae, chlorpyrifos-injected larvae, and negative control

LIST OF SYMBOLS

%	Percentage
°C	Degrees Celsius
μL	Microlitre
mL	Millilitre
L	Litre
mg	Milligram
g	Gram
kg	Kilogram
μm	Micrometre
mm	Millimetre
m	Metre
mg/mL	Milligrams per millilitre
mL/min	Millilitres per minute
w/w	Weight/weight percentage
hrs	Hours
min	Minutes

LIST OF ABBREVIATIONS

1 st	First
2 nd	Second
3 rd	Third
C. megacephala	Chrysomya megacephala
C. rufifacies	Chrysomya rufifacies
Chl	Chlorpyrifos
Con	Control
FAO	Food and Agriculture Organization
FAOSTAT	Food and Agriculture Organization Statistics
GC-FID	Gas Chromatography with Flame Ionisation Detector
Gly	Glyphosate
Lucilia sp.	Lucilia species
MET	Malaysian Meteorological Department
MSF	Forensic Science Laboratory
NPC	National Poison Centre
PMI	Post-mortem interval
PPSK	School of Health Sciences
RH	Relative humidity
Sarcophaga sp.	Sarcophaga species
UPMS	Science Lab Management Unit
USM	Universiti Sains Malaysia
WHO	World Health Organization

LIST OF APPENDICES

Appendix A	Detailed hourly temperature and humidity readings of control, chlorpyrifos-treated, and glyphosate-treated samples in the first life cycle
Appendix B	Detailed hourly temperature and humidity readings of MET in the first life cycle
Appendix C	Detailed hourly temperature and humidity readings of control, chlorpyrifos-treated, and glyphosate-treated samples in the second life cycle
Appendix D	Detailed hourly temperature and humidity readings of MET in the second life cycle

IMPACT OF GLYPHOSATE (HERBICIDE) AND CHLORPYRIFOS (INSECTICIDE) CONTAMINATION ON NECROPHAGOUS FLY LIFECYCLE ON PORK

ABSTRAK

Entomologi forensik memainkan peranan penting dalam penyiasatan jenayah, namun perkembangan serangga boleh dipengaruhi oleh bahan toksik, yang seterusnya menjejaskan anggaran selang masa selepas kematian (PMI). Kajian ini meneliti kesan kehadiran glyphosate (herbisid) dan chlorpyrifos (insektisid) terhadap kitaran hidup lalat nekrofagus pada daging khinzir yang mereput. Eksperimen dijalankan menggunakan sampel kawalan, sampel yang dirawat dengan glyphosate, dan sampel yang dirawat dengan chlorpyrifos selama 14 hari dalam dua musim berbeza (musim hujan dan musim kering). Empat spesies lalat nekrofagus— Chrysomya megacephala, Chrysomya rufifacies, Lucilia sp., dan Sarcophaga sp. diperhatikan dalam sampel kawalan dan yang dirawat dengan glyphosate tanpa perbezaan ketara dalam tempoh kitaran hidup, morfologi, atau komposisi spesies. Namun, kehadiran chlorpyrifos mengurangkan oviposisi secara drastik, menyebabkan kematian larva pada instar pertama dan memperlahankan proses pereputan. Glyphosate tidak memberi kesan terhadap pereputan atau aktiviti lalat, manakala chlorpyrifos melambatkan pereputan akibat kekurangan koloni lalat, yang boleh mempengaruhi anggaran PMI dalam siasatan forensik. Percubaan untuk mengesan residu racun perosak dalam larva menggunakan kromatografi gas dengan pengesan pengionan nyalaan (GC-FID) tidak berhasil kerana kegagalan kajian pemulihan, berkemungkinan akibat ketidakcekapan kaedah pengekstrakan atau kepekaan instrumen yang terhad terhadap sebatian ini. Penemuan ini menekankan keperluan untuk kaedah toksikologi yang lebih baik dalam pengesanan racun perosak dalam entomologi forensik.

IMPACT OF GLYPHOSATE (HERBICIDE) AND CHLORPYRIFOS (INSECTICIDE) CONTAMINATION ON NECROPHAGOUS FLY LIFECYCLE ON PORK

ABSTRACT

Forensic entomology is crucial in criminal investigations, but insect development can be influenced by toxic substances, affecting post-mortem interval (PMI) estimations. This study examines the impact of glyphosate (herbicide) and chlorpyrifos (insecticide) contamination on necrophagous fly lifecycles on decomposing pork meat. Experiments were conducted using control, glyphosate-treated, and chlorpyrifos-treated samples over 14 days in both rainy and non-rainy seasons. Four necrophagous fly species—Chrysomya megacephala, Chrysomya rufifacies, Lucilia sp., and Sarcophaga sp.—were observed in control and glyphosate-treated samples, with no significant differences in lifecycle duration, morphology, or species composition. However, chlorpyrifos contamination drastically reduced oviposition, causing larval mortality at the first instar and slowing decomposition. Glyphosate did not affect decomposition or insect activity, whereas chlorpyrifos delayed decay due to reduced insect colonisation, potentially impacting forensic PMI estimations. Attempts to detect pesticide residues in larvae using gas chromatography-flame ionisation detection (GC-FID) were inconclusive, as the recovery study failed, possibly due to extraction inefficiencies or the instrument's limited sensitivity to these compounds. These findings highlight the need for improved toxicological methods for pesticide detection in forensic entomology.

CHAPTER 1: INTRODUCTION

1.1 Background of Study

Forensic entomology is a specialised field that applies the study of insects and other arthropods to legal issues, particularly criminal investigations. This discipline is crucial for estimating the postmortem interval (PMI), which is the time elapsed since death, by analysing insect activity on decomposing bodies (Catts & Goff, 1992). Entomological data estimate PMI in two ways: by using the development time of insects, typically maggots, in early decomposition, and by analysing the arthropod community in advanced decomposition. Both methods assume insects discover the corpse soon after death, but this assumption must be carefully evaluated, especially in indoor or extreme conditions.

Insects are attracted to a body shortly after death due to factors like ammonia and moisture (Mahat & Jayaprakash, 2013). Buckland and Smith (1986) classifies insects into four categories: necrophagous species (e.g., Calliphoridae, Dermestidae, Silphidae) that feed on the corpse and are key for estimating PMI; predators and parasites of necrophagous species (e.g., Silphidae, Staphylinidae); omnivorous species (e.g., wasps, ants); and adventive species (e.g., springtails, spiders) that use the corpse as an extension of their environment. Insect developmental data, particularly from Calliphoridae, is widely used for accurate post-mortem interval (PMI) estimation, a method first popularized in Malaysia by Lee (1996).

The *Chrysomya megacephala* and *Chrysomya rufifacies* are consistent prevalence in forensic investigations across various ecological habitats in Malaysia. Research spanning over three decades has shown that these species are most commonly found on cadavers, as confirmed by multiple studies, including those by Lee et al. (2004) and Kavitha et al. (2013). Further corroboration from Mahat & Jayaprakash (2013) and Syamsa et al. (2017), highlight their dominance in diverse environments such as mangroves, peat swamps, and aquatic areas. The adaptability of these blowflies to different habitats and their frequent association with

decomposing bodies underscore their forensic significance, particularly for post-mortem interval estimation and contamination detection in forensic science.

Forensic entomotoxicology is a specialized field that detects toxic substances by analysing necrophagous insects at crime scenes. It not only confirms the presence of toxicants in insects feeding on cadavers but also studies their effects on insect bio-morphometry and growth rates (Bhardwaj et al., 2020). This approach is particularly valuable when traditional toxicological samples are unavailable, as insects like Calliphoridae can indicate environmental toxins. By understanding how these substances influence insect development, forensic entomotoxicology aids in accurate post-mortem interval (PMI) estimations and provides critical insights for legal investigations (Hodecek, 2020; Ugalde et al., 2022).

In Malaysia, pesticide poisoning is a significant public health concern, particularly among vegetable farmers who are often overexposed to chemicals like organophosphates. A decade-long study by the National Poison Centre identified herbicides, especially glyphosate, and insecticides such as chlorpyrifos as major contributors to pesticide-related poisoning incidents. These widely used agricultural chemicals pose risks of environmental contamination, especially in farming regions. Cadavers found in these areas are likely exposed to these toxicants, which can alter the lifecycle and morphology of cadaveric insects, particularly *Chrysomya* species that are crucial for estimating the PMI in forensic investigations.

Understanding how exposure to glyphosate and chlorpyrifos affects the development of these insects is essential for improving the reliability of forensic entomological methods. Contamination can lead to erroneous PMI estimations and complicate the detection of toxic substances in forensic cases. Despite the importance of this issue, the specific impacts of glyphosate and chlorpyrifos on necrophagous flies have not been extensively studied. This research aims to address this gap by investigating how these chemicals influence the development of these flies, focusing on their implications for PMI estimation and forensic toxicology.

1.2 Problem Statement

Applying insecticides and herbicides in agriculture is a widespread practice aimed at improving crop yields and managing pest populations. However, the environmental impacts of these chemicals, particularly in areas where human remains are discovered, are frequently overlooked in forensic science. Understanding how pesticide contamination affects decomposing bodies and the insect communities associated with them is crucial to ensuring accurate PMI estimations.

Most existing research on pesticide poisoning primarily focuses on cases of direct ingestion, highlighting acute toxicity and immediate health effects. These studies often neglect the significant scenario where an individual dies in an environment already contaminated with these substances. As a result, there is a substantial gap in understanding how environmental pesticide residues influence the decomposition process and the behaviour of cadaveric insects in Malaysia. This lack of research limits forensic practitioners' ability to accurately determine PMI in complex cases involving pesticide exposure.

This study aims to investigate the effects of glyphosate (herbicide) and chlorpyrifos (insecticide) contamination on the lifecycle, development, and morphology of necrophagous fly. By examining how these environmental contaminants impact insect behaviour and decomposition dynamics, this research will provide valuable insights into how pesticide residues may alter forensic outcomes.

The anticipated findings will address a critical knowledge gap by clarifying the relationship between pesticide contamination and cadaveric insect behaviour. By offering forensic insights into how these environmental factors may influence PMI estimations, this study aims to enhance the accuracy of forensic investigations in cases involving pesticide exposure, ultimately contributing to more reliable practices in forensic science.

1.3 Objective

1.3.1 General Objective

To investigate the effects of glyphosate (herbicide) and chlorpyrifos (insecticide) contamination on the lifecycle, development, and morphology of necrophagous flies on pork, and to assess the implications of contamination for forensic PMI estimation and the detection of toxic substances in cadaveric insects.

1.3.2 Specific Objective

- 1. To investigate the effects of glyphosate and chlorpyrifos contamination on the lifecycle, development, and morphology of necrophagous flies on pork.
- 2. To assess the implications of glyphosate and chlorpyrifos contamination on the accuracy of postmortem interval (PMI) estimations
- 3. To detect glyphosate and chlorpyrifos residues in the necrophagous flies.

1.4 Significance of Study

This research holds significant implications for forensic entomology by enhancing our understanding of how pesticide contamination affects the accuracy of post-mortem interval (PMI) estimations and by advancing methodologies in forensic entomotoxicology. Firstly, it contributes to the field by demonstrating the influence of environmental contaminants, such as pesticides, on PMI assessments, which is a critical aspect of determining the time of death. Recognizing these effects is vital for forensic investigators operating in agricultural or rural settings where pesticide exposure is more prevalent. Improved methods for estimating PMI in cases involving pesticide exposure will bolster the reliability of forensic evidence in legal contexts. By documenting the lifecycle and morphological changes in cadaveric insects exposed to glyphosate and chlorpyrifos, this study will provide valuable data on potential delays or abnormalities in insect development caused by these chemicals.

Additionally, it enhances entomotoxicological analysis by exploring the possibility of detecting pesticide residues in insect samples, which may offer insights into the presence of toxic substances at crime scenes. Consequently, this research can contribute to the development of more precise PMI estimation techniques and expand toxicological assessment tools used in forensic investigations. The findings from this study could serve as a foundation for future research initiatives that explore the intersections of environmental science, entomotoxicology, and forensic entomology. By establishing a framework for understanding pesticide contamination within forensic contexts, this study may encourage further interdisciplinary research efforts. Finally, the lifecycle of necrophagous fly species on pork meat can be determined as there is no study in Malaysia yet that uses pork meat.

CHAPTER 2: LITERATURE REVIEW

2.1 Diptera Flies in Malaysia

The selection of *Chrysomya megacephala* (*C. megacephala*) and *Chrysomya rufifacies* (*C. rufifacies*) as the focus of this study is based on their consistent prevalence in forensic investigations and their adaptability to diverse ecological habitats, as demonstrated in multiple studies conducted in Malaysia. Over three decades of forensic entomological research (1972–2002) reviewed by (Lee et al. (2004) revealed that *C. megacephala* and *C. rufifacies* were the most commonly found species on cadavers from various ecological settings. *Sarcophaga* sp. and *Lucilia* sp. were also included. Similarly, forensic specimens collected during crime scene investigations between 2005 and 2010 were reviewed by Kavitha et al. (2013), confirming the dominance of *C. megacephala* and *C. rufifacies* in rural, residential, and aquatic habitats. Together, these reviews spanning several decades demonstrate the continued dominance of *C. megacephala* and *C. rufifacies* in forensic cases in Malaysia.

The prevalence of *C. megacephala* and *C. rufifacies* has also been corroborated by other studies. A review paper by Mahat & Jayaprakash (2013) examining forensic entomology studies in Malaysia further highlighted that *C. megacephala* is the most prevalent Calliphorid species on cadavers and carcasses, followed by C. rufifacies. Syamsa et al. (2017) confirmed the dominance of *C. megacephala* and *C. rufifacies*, reporting that *C. megacephala* maggots were the most frequently observed, followed by *C. rufifacies*, in an analysis of 34 human remains over three years at Universiti Kebangsaan Malaysia Medical Centre. Additionally, these species (*C. megacephala*, *C. rufifacies*, and *Sarcophaga* sp.) have been found in various habitats, including mangroves (Azmi & Lim, 2013), mangroves and peat swamps (Maramat & Rahim, 2015a; Maramat & Rahim, 2015b), aquatic areas (Abdullah et al., 2022) and coastal regions (Musa et al., 2024),

These findings collectively highlight the forensic significance of *C. megacephala* and *C. rufifacies* and their adaptability to a wide range of environments. Their consistent

association with cadavers across diverse ecological settings and their dominance in forensic entomological cases make them ideal subjects for studying the effects of environmental contaminants such as pesticides and herbicides. Moreover, their prevalence ensures that the findings of this research will have broad applicability in forensic science, particularly in the context of post-mortem interval estimation and contamination detection.

2.2 Life Cycle of Chrysomya megacephala and Chrysomya rufifacies

The life cycles of *Chrysomya megacephala* and *Chrysomya rufifacies* are significantly influenced by environmental factors, particularly temperature and humidity. These factors dictate the duration of their developmental stages from egg to adult emergence, with higher temperatures generally accelerating development and colder temperatures prolonging it.

Rainy Season

During the rainy season, the life cycles of both species take longer compared to summer but are faster than in winter. For *C. megacephala*, the complete life cycle was reported to last approximately 237–265 hours, depending on the specific temperature and humidity conditions (Abd-AlGalil & Zambare, 2015a; Siddiki & Zambare, 2017). Similarly, *C. rufifacies* required around 239–275 hours to complete its development during this season (Abd-AlGalil & Zambare, 2015b; Siddiki & Zambare, 2017). The relatively cooler temperatures during the rainy season slow down larval development compared to the summer.

Summer Season

In the summer, when temperatures and evaporation rates are high, the life cycles of *C. megacephala* and *C. rufifacies* are significantly shorter. *C. megacephala* completed its development in approximately 211 hours under average temperatures of 32.5°C (Siddiki &

Zambare, 2017), and *C. rufifacies* required around 216–241 hours in similar conditions (Abd-AlGalil & Zambare, 2015b; Siddiki & Zambare, 2017).

Winter Season

Winter conditions, characterized by lower temperatures and higher humidity, lead to the longest life cycle durations for both species. *C. megacephala* took approximately 263 hours to develop fully at average temperatures of around 22.7°C (Siddiki & Zambare, 2017). Similarly, *C. rufifacies* required 286–318 hours for complete development under cooler conditions (Abd-AlGalil & Zambare, 2015b; Siddiki & Zambare, 2017).

Table 2.1 summarizes the life cycle stages of *Chrysomya megacephala* and *Chrysomya rufifacies* based on the study by Siddiki & Zambare (2017). It highlights the effects of temperature and humidity on the duration of each life cycle stage during different seasons (Rainy, Summer, and Winter).

Table 2.1 The life cycle stages of Chrysomya megacephala and Chrysomya rufifacies based on the study by Siddiki & Zambare (2017)

Species	Season	Temperature	Humidity	Total Life	Egg	1st Instar	2nd Instar	3rd Instar	Pre-pupal	Pupal
		(°C)	(%)	Cycle	Incubation				Stage	Stage
				Duration						
Chrysomya	Summer	32.5	21.5	211 hrs 13 min	18 hrs 8	26 hrs 5	26 hrs 45	27 hrs 5	20 hrs 10	93 hrs
megacephala					min	min	min	min	min	
	Rainy	24.1	49.6	237 hrs 47 min	18 hrs 37	25 hrs 45	26 hrs 35	29 hrs	22 hrs 40	115 hrs 10
					min	min	min		min	min
	Winter	22.7	35.8	263 hrs 51 min	20 hrs 36	26 hrs 30	28 hrs 30	48 hrs	21 hrs 50	118 hrs 25
					min	min	min		min	min
Chrysomya	Summer	32	22.07	216 hrs 26 min	19 hrs 21	25 hrs 45	28 hrs	48 hrs 40	20 hrs 10	74 hrs 30
rufifacies					min	min		min	min	min
	Rainy	24	42.1	239 hrs 14 min	22 hrs 38	25 hrs 6	27 hrs 35	51 hrs 5	41 hrs 50	71 hrs
					min	min	min	min	min	
	Winter	25	46.8	286 hrs 2 min	19 hrs 2	46 hrs 15	28 hrs 25	50 hrs 5	24 hrs 35	117 hrs 40
					min	min	min	min	min	min

The development of *Chrysomya megacephala* is significantly influenced by temperature and humidity. Temperature also affects larval development, as increasing ambient temperature decreases larval development time (Barrett et al., 2018; Gruner et al., 2017; Pereira et al., 2023). According to Ngando et al. (2024), the total development time from oviposition to adult eclosion at constant temperatures of 15, 20, 25, 30, and 35°C were 858.1 \pm 69.2, 362.3 \pm 5.9, 289.6 \pm 17.8, 207.3 \pm 9.3, and 184.7 \pm 12.1 hours, respectively. Specifically, when daily average temperatures ranged from 25.4 to 27.6°C, the life cycle was completed in 8 days, whereas at temperatures of 23.1 to 25.1°C, the life cycle took 8 to 11 days (Barrett et al., 2018). Adult longevity is impacted by relative humidity (RH); at 40% RH, adults lived for a mean of 64 days, with a maximum of 105 days, while at 75% RH, the lifespan decreased to 54 and 95 days, respectively (Badenhorst & Villet, 2018).

Similarly, temperature significantly affects the development of *Chrysomya rufifacies*. The studies reported that the growth and development of *C. rufifacies* accelerated with higher temperatures, while colder temperatures in winter prolonged developmental stages (Bansode & More, 2024; Yanmanee et al., 2016). For example, Barrett et al. (2018) found that the life cycle of *C. rufifacies* was shorter at higher temperatures, completing in 13 days at average daily temperatures of 25.4 to 27.6°C and in 11 days at temperatures ranging from 26.8 to 29.9°C. Byrd & Butler (1997) observed a similar trend, where developmental times from egg to adult ranged from 190 to 598 hours across different temperature regimes from 15.6, 21.1, 25.0, 26.7, to 32.2°C, with shorter developmental times at higher temperatures.

2.3 Morphological Identification of Necrophagous Fly

2.3.1 Chrysomya megacephala

The eggs of *C. megacephala* are 1.5–1.6 mm long, sausage-shaped, whitish, and turn cream as they mature (Badenhorst & Villet, 2018). Greenberg and Kunich (2005) noted that the eggs are larger than 1.35 mm in length, with arms of the flanges curving halfway around the micropylar collar and peg-like struts on the anterior third of the plastron, which are blunt at the apex and mostly not anastomosed. Palavesam et al. (2022) further identified a narrow 'Y'-shaped plastron as a characteristic feature of *Chrysomya spp*. Eggs.

The first instar larvae of *C. megacephala* measure 1.7–3.5 mm in length and have posterior spiracles with one slit (Badenhorst & Villet, 2018). The second instar larvae grow to 6–8 mm in length and have posterior spiracles with two slits (Badenhorst & Villet, 2018). By the third instar, larvae can reach up to 16 mm but contract just before pupariation. These larvae have posterior spiracles with three slits with mildly sclerotized peritreme, an incomplete dorsal band of spinules, and anterior spiracles with 11–13 branches (Badenhorst & Villet, 2018; Greenberg & Kunich, 2005). The absence of conical tubercles on body segments, the presence of a dorsal arch with a 'dot or club-shaped' cephalopharyngeal skeleton, anterior spiracles composed of papillae, incomplete posterior spiracular peritremes, and the lack of large elongate tubercles on abdominal segments have been described (Abass & Ali, 2024; Greenberg & Kunich, 2005; Omar, 2002; Sukontason et al., 2004).

The puparium of *C. megacephala* is brown with yellow anterior spiracles and is formed from the exoskeleton of the third instar larvae, retaining the same identifying surface structures (Badenhorst & Villet, 2018). Mouth hooks can usually be found adhering to the inside of the eclosed puparium (Badenhorst & Villet, 2018).

Adults of *C. megacephala* are 7–12 mm in length. They have a greenish-blue thorax with two narrow longitudinal stripes and a greenish-blue abdomen with a purple reflection. The wings are hyaline, and the legs are black (Sawaby et al., 2018). Prothoracic spiracles are dark brown to blackish (Kurahashi et al., 1997; Musa et al., 2024). The gena and postgenal

areas are orange-yellow with pale yellow hairs except near the vibrissae (Kurahashi et al., 1997; Sawaby et al., 2018). Male specimens exhibit enlarged eye facets in the upper portion of the eyes, sharply demarcated from smaller facets below. The frontal stripe is the broadest in the middle (Greenberg & Kunich, 2005).

2.3.2 Chrysomya rufifacies

The eggs of *C. rufifacies* are also larger than 1.35 mm in length. The arms of the flanges curve halfway around the micropylar collar, and the anterior third of the plastron has peg-like struts (Greenberg & Kunich, 2005). Palavesam et al. (2022) identified a narrow 'Y'-shaped plastron as a characteristic feature of *Chrysomya sp.* eggs.

The larvae of *C. rufifacies* display unique features. First instar larvae have posterior spiracles with one slit, while second instar larvae have two slits. Third instar larvae have posterior spiracles with three slits and with incomplete heavily sclerotized peritremes and a row of conical tubercles present on segments 4 to 12, giving them a "hairy" appearance (Greenberg & Kunich, 2005; Sukontason et al., 2004). The cephalopharyngeal skeleton lacks a distinct dorsal arch, and the anterior spiracles have 10–12 papillae (Abass and Ali, 2024; Greenberg & Kunich, 2005; Sukontason et al., 2004) described large, elongate, fleshy tubercles on each segment, crowned with spines, and the presence of spinnulation.

Adults of *C. rufifacies* measure 6–12 mm in length and have a stout body. The thorax is greenish-blue, and the abdomen is also greenish-blue, while the eyes are prominent and red (Sawaby et al., 2018). The gena and postgenal areas are silvery white, and the mesothoracic spiracle is white. Tergite 5 has white hairs among black hairs, while tergites 3 and 4 display broad marginal bands. The aedeagus is funnel-shaped, and the hypophallus is sclerotized (Greenberg & Kunich, 2005; Kurahashi et al., 1997; Musa et al., 2024).

2.3.3 Lucilia species

The genus *Lucilia* belongs to the family Calliphoridae, subfamily Lucilinae. The first, second, and third instar larvae of *Lucilia* species (*Lucilia* sp.) exhibit posterior spiracle slits 1, 2, and 3, respectively. The posterior spiracle is not situated in a deep cavity, and the spiracular slits point towards the opening in the peritreme. These slits are straight and narrow, and the peritreme is complete, enclosing the button area (Cheong et al., 1971).

In adult *Lucilia* flies, the body is slender, the head is small, and the cheeks are silvery and smooth (Holloway, 1991). According to Greenberg & Kunich (2005), the adult fly has a posterior part of the suprasquamal carina with a posterior parasquamal tuft of black, erect hairs on a small, well-defined black sclerite. The thoracic squama is quite bare on the upper surface. The body is predominantly metallic green to blue, and the supraspiracular convexity may be either bare or pubescent.

Lucilia sericata exhibits males with sternites that lack a tuft of long hairs, and their abdomen is not conspicuously arched in profile. The female body is usually metallic green, with some specimens showing a coppery tinge. The cerebrale in the male bears five to eight hair-like setae on each side. In contrast, Lucilia cuprina males have sternites with a tuft of long hairs, and their abdomen is typically arched in profile. The female body is usually brassy or coppery, set against a greenish background, with dense pruinosity. In the male, the cerebrale bears a single occipital hair-like seta on each side.

2.3.4 Sarcophaga species

The family of *Sarcophaga* species (*Sarcophaga* sp.) is Sarcophagidae, the subfamily is Sarcophaginae, and the genus is *Sarcophaga*. In the first instar larvae, there is one slit in the posterior spiracle. The second instar larvae have posterior spiracles with two slits, while the third instar larvae exhibit three slits. The posterior spiracle is located in a deep cavity, with

straight and broad spiracular slits that do not point towards the opening in the peritreme. The peritreme itself is incomplete and does not enclose the button area (Cheong et al., 1971).

The hind coxa is hairy on the posterior surface, with two strong primary bristles and two smaller subprimary bristles. Sternites 3 and 4 are fully exposed, overlapping the ventral margins of the corresponding tergites (Greenberg & Kunich, 2005). The body of the *Sarcophaga* species is dull grey or black, with the thorax featuring three prominent black stripes. The abdomen is checkered, often with a red tip, and the sides lack pale coloration (Communicable Disease Center (U.S.), 1966). Males and females can be distinguished by the structure of their abdomen that males had arched abdomens in profile.

2.4 Definition and Global Usage of Pesticides

The World Health Organization (WHO) defines pesticides as chemical compounds used to eliminate various pests, including insects, rodents, fungi, and unwanted plants. Over 1,000 different types of pesticides are utilized globally, especially in agriculture and public health, where they play a crucial role in protecting crops and controlling vectors of diseases such as mosquitoes. According to the Food and Agriculture Organization (FAO), pesticides are essential in modern agriculture because they protect crops from pests, weeds, bacteria, and fungi, ensuring higher yields and food security (FAO, 2024)

Statistics from the FAOSTAT Pesticide Use database reveal that between 1990 and 2022, global pesticide use per cropland area increased by 94%, while per capita use rose by 35% (FAO, 2024). In 2022 alone, 3.70 million tonnes of pesticides were applied in agricultural activities, reflecting a 4% increase from the previous year (FAO, 2024). This widespread application amounts to nearly 3 billion kilograms of pesticides annually worldwide, with an approximate market value of USD 40 billion (Sharma et al., 2020).

2.5 Types of Pesticides

Pesticides are classified into several main types based on the target species they control, with insecticides, herbicides, and fungicides being the most widely used in agricultural and urban environments (Syafrudin et al., 2021). FAOSTAT's Pesticides Use database details the application of these categories worldwide, noting the prevalence of these chemical groups across various ecosystems (FAO, 2024). Common pesticide types utilized globally include organophosphates, organochlorines, carbamates, and pyrethroids (Sharma et al., 2020).

Insecticides, used to combat insects, are varied and include chlorinated hydrocarbons, organophosphates, carbamates, pyrethroids, and biological products (FAO, 2024; Sharma et al., 2020; Syafrudin et al., 2021). Herbicides target weeds and include chemicals like glyphosate, triazines, phenoxy hormone products, and uracil. Additionally, fungicides and bactericides help control fungi and bacteria through compounds such as inorganic chemicals, dithiocarbamates, and benzimidazoles.

2.6 Pesticide Poisoning in Global and Malaysia

Pesticides are integral to modern agriculture, enabling pest control to boost crop yields and food supply. However, their widespread and prolonged use poses notable environmental and health risks. Epidemiological research has linked pesticide exposure to adverse effects on human organs, such as the liver, brain, lungs, and colon, and chronic exposure may increase the risk of life-threatening conditions like cancer. Globally, pesticide poisoning results in approximately 300,000 deaths each year, with exposure primarily categorized as occupational or accidental (Sharma et al., 2020). Occupational exposure is prevalent among those who regularly handle pesticides, including agricultural workers and pesticide manufacturers, and occurs mainly through skin contact, inhalation, or ingestion (Sharma et al., 2020).

In Malaysia, pesticide poisoning remains a serious public health concern. A study reports that 23.3% of vegetable farmers in Kundasang are overexposed to organophosphate (OP) pesticides based on blood cholinesterase testing (Botinggo, et al., 2021). Additionally, a 10-year study by the National Poison Centre (NPC) from 2006 to 2015 documented 39,088 poisoning calls, with pesticides constituting the second-largest category of toxic substances at 28.4% (Kamaruzaman et al., 2020a). Within this data, herbicides caused the highest number of pesticides poisoning cases (43.6%), followed by agricultural insecticides (34.4%), rodenticides (9.9%), and household insecticides (9.5%).

Among herbicides, glyphosate accounted for 53% of cases, while organophosphates like chlorpyrifos represented the leading cause of poisoning within the agricultural insecticide category, at 40% (Kamaruzaman et al., 2020). Glyphosate and chlorpyrifos poisoning cases are of particular interest in the context of Malaysia, with both substances being predominant contributors to pesticide-related poisoning.

The current study focuses on glyphosate (a herbicide) and chlorpyrifos (an organophosphate insecticide) to explore how contamination with these pesticides impacts cadaveric insects. This examination is intended to reveal insights into postmortem interval (PMI) estimation accuracy, considering the interference from such contaminants.

2.7 Pesticides and Cadaveric Insects in PMI Estimation

The presence of pesticides in cadaveric insects significantly influences post-mortem interval (PMI) estimations by affecting insect life cycles, behaviour, and overall decomposition processes. This relationship has been explored in forensic research to understand how pesticide exposure impacts insect colonization, development, and the decomposition of remains, especially in cases of suicide, homicide, accidental ingestion, and instances where a person has died in pesticide-contaminated areas like farmlands.

Studies investigating this relationship typically employ one of four approaches: oral administration of pesticides to animals, mixing pesticides with minced meat, enema administration into animals, or direct pesticide spraying on carcasses. Each methodology offers insights into how different exposure routes affect insect activity on decomposing bodies, ultimately aiding PMI estimation in forensic contexts.

One approach involves different concentrations of oral pesticide administration to different types of animals, which helps in understanding how ingestion influences decomposition and insect colonization (Abdul Rahim et al., 2024; Jales et al., 2021; Kianoush Ghiasvand et al., 2022; Musyaffa et al., 2021; Widyana et al., 2023). For instance, Abdul Rahim et al. (2024) observed a decrease in insect species richness in glyphosate- and chlorpyrifos-treated rabbit carcasses compared to control carcasses, where decomposition proceeded more quickly without pesticides.

Similarly, Jales et al. (2021) reported that organophosphate terbufos influenced insect succession patterns, larval dispersion, species development rates, and pupal mortality in Calliphoridae and *Sarcophaga* flies. Kianoush Ghiasvand et al. (2022) also observed that diazinon poisoning repelled necrophagous insects from cadavers, while Musyaffa et al., (2021) noted delayed decomposition in pyrethroid-treated bird cadavers, Pyrethroid insecticides also affect the growth and development of exposed decomposer insect larvae in the cadaver's body.

The second approach involves mixing pesticides with minced meat to study how contamination affects insect life cycles. These studies demonstrated that the organophosphate dimethoate extended the life cycle duration of Calliphoridae and *Sarcophaga* flies on the minced liver (Abd Al Galil et al., 2021a; Abd Al Galil et al., 2021b). Higher pesticide concentrations correlated with slower carrion fly development, resulting in prolonged PMI estimations.

A systematic review further supports these findings, analysing 21 studies focused on the relationship between pesticide exposure via oral administration and mixed meat contamination and PMI determination (Widyana et al., 2023). This review covered various animals, including rabbits, pigs, dogs, birds, and hamsters, and documented how different types of pesticides impact the decomposition process and the development of necrophagous insects. Findings indicate that pesticide contamination can skew PMI estimations, as insect activity and decomposition rates are often altered by pesticide toxicity. While some pesticides accelerated decomposition, others slowed it, often stunting or halting fly development.

Enema administration has been used to investigate how pesticides affect internal tissues and insect colonization. Liu et al. (2009) administered diluted malathion to rabbits via enema at varying lethal doses. The results revealed prolonged larval and pupal stages in *Chrysomya megacephala*, with malathion residues in muscle and liver retarding normal growth rates. Shi et al. (2010) reported similar findings, with treated carcasses showing altered PMI estimates by 12–36 hours and a notable absence of *Chrysomya rufifacies* on treated carcasses, regardless of the pesticide concentration.

The fourth approach involves spraying pesticides on animal carcasses to simulate environmental contamination. Medeiros de Moura Eulalio et al. (2023) applied a commercial insecticide containing thiamethoxam to pig carcasses and found that decomposition phases were longer in treated cadavers than in control groups. The insecticide disrupted insect colonization and feeding patterns, with most eggs failing to hatch and larvae failing to mature. Additionally, contamination altered the abundance and composition of insect species, complicating PMI estimates.

2.8 Research Gaps and Rationale

The reviewed methodologies highlight a significant gap in understanding how environmental contamination with pesticides—specifically through spraying—affects cadaveric insects and PMI estimation. Pesticide spraying, common in agricultural settings, exposes surfaces and remains to uneven pesticide distributions, altering decomposition and insect behaviour in ways that challenge forensic investigations.

Most prior studies focus on direct ingestion of pesticides, such as poisoning cases, rather than on external contamination scenarios. This limits their applicability to real-world cases where deaths occur in pesticide-sprayed environments. Addressing this gap by studying pesticide spraying replicates environmental exposure patterns, providing critical insights into how residues affect insect colonisation and decomposition. Such research enhances the accuracy of PMI estimation in pesticide-contaminated settings.

This research investigates how glyphosate (herbicide) and chlorpyrifos (insecticide) contamination affect the lifecycle, development, and morphology of necrophagous flies on pork meat, with implications for forensic post-mortem interval (PMI) estimation and toxic substance detection. Given the widespread use of these pesticides, understanding their influence on forensic entomology is crucial. The study aims to bridge knowledge gaps by analysing how these chemicals impact insect growth and decomposition dynamics. Accurate PMI estimation is essential in forensic investigations, and contamination-induced alterations could lead to miscalculations. By refining forensic entomotoxicology methods and improving toxicological detection, this research enhances the reliability of forensic evidence in cases involving pesticide exposure.

CHAPTER 3: METHODOLOGY

3.1 Material and Apparatus

For this study, materials and apparatus are divided into two categories: one for forensic entomology (life cycle observation) and another for forensic entomotoxicology (GC-FID analysis).

3.1.1 Life Cycle Observation

For each life cycle experiment, 1.5 kg of pork was obtained from a local supplier in Kota Bharu, Kelantan. The meat was divided into three portions of 500 g each: control sample (untreated meat), chlorpyrifos-treated sample (meat sprayed with chlorpyrifos), and glyphosate-treated sample (meat sprayed with glyphosate). Both pesticides, chlorpyrifos and glyphosate, were purchased from an online local shop. The chlorpyrifos used in this study is of the brand Zagro, while the glyphosate is of the brand Roundup.

The laboratory apparatus and equipment required for this study were procured from the Science Lab Management Unit (UPMS) at the School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan. The chemicals used included 65% ethanol, which was also provided by the Forensic Science Laboratory (MSF) at the same institution. Detailed lists of the chemicals, reagents, materials, equipment, and instruments used for this study are presented in Tables 3.1, 3.2, and 3.3.

Table 3.1 Chemicals and reagents used in this study

No	Chemicals and reagents
1	Chlorpyrifos (Insecticide)
2	Ethanol (65%)
3	Glyphosate (Herbicide)

Table 3.2 Material used in this study

No	Material
1	Pork meat (500 grams per location)

Table 3.3 Equipment and instruments used in this study

No	Equipment
1	Latex gloves
2	Face mask
3	Falcon tube (15 mL & 50 mL)
4	Test tube racks
5	Spatula
6	Forceps
7	Measuring cylinders
8	Petri dish
9	Beakers
10	Plastic cups
11	Fabric mesh
12	Rubber bands
13	Stones / Bricks
14	Cable ties
15	Spray pump
16	Plastic tray
17	Reagent bottle
18	Labelling paper
19	Sands
20	Dropper
21	Pearl head pin
22	Styrofoam board
23	Cage
24	SMZ168 Stereo Zoom microscope
25	Hygrometer thermometer
26	Electronic analytical balance
27	Lab freezer

3.1.2 Gas Chromatography with Flame Ionisation Detector (GC-FID) Analysis

The laboratory apparatus and equipment required for the GC-FID analysis were also requested and obtained from the Science Lab Management Unit (UPMS). Chemicals, reagents, and instruments were provided by the Analytical Laboratory and Forensic Science Laboratory (MSF) at the School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan. The detailed lists of chemicals, reagents, equipment, and instruments used for this part of the study are provided in Tables 3.4 and 3.5.

Table 3.4 Chemicals and reagents used in this study

No	Chemicals and reagents
1	Chlorpyrifos (Insecticide) (Zagro, Zagro Chemicals Sdn. Bhd., Malaysia)
2	Methanol (65%)
3	Glyphosate (Herbicide) (Roundup, Monsanto (Malaysia) Sdn.Bhd., Malaysia)
4	Anhydrous magnesium sulphate (Merck KGaA, EMD Millipore Corporation,
	Germany)

Table 3.5 Equipment and instruments used in this study

No	Equipment
1	Latex gloves
2	Face mask
3	Falcon tube (15 mL)
4	Test tube racks
5	Spatula
6	Forceps
7	Glass pipette
8	Volumetric flask (100 mL)
9	Beakers
10	Scott bottle
11	Reagent bottle
12	Labelling paper
13	2 mL GC vial (Agilent Technologies, Santa Clara, CA, USA)
14	Dropper
15	Glass wool
16	0.45 µm PTFE syringe filter (Cronus, Cronus Technologies, United Kingdom)
17	Syringe (5 mL)
18	Centrifuge tube (2 mL)
19	10 μL syringe (Agilent Technologies, Santa Clara, CA, USA)
20	Glass rod
21	Gas Chromatography with Flame Ionisation Detector (GC-FID) (Agilent 7890A,
	Agilent Technologies, Santa Clara, CA, USA)
22	Vortex mixer (EVM-6000 ERLA, ERLA Technologies (M) Sdn. Bhd., Malaysia)
23	Lab freezer

3.2 Location and Study Site

The study was conducted in Kelantan, Malaysia, a state located in the northeastern corner of Peninsular Malaysia. The specific study site was within the Health Campus of Universiti Sains Malaysia (USM), located in Kubang Kerian, Kelantan. The research activities took place in the compound of the School of Health Sciences (PPSK) building. The geographical coordinates of the study site are 6.1006° N, 102.2851° E, and the location is shown in both the default Google Maps view and satellite view in Figure 3.1. Three distinct locations within the PPSK building compound were chosen to place the pork meat samples for the forensic entomology study.

Figure 3.1 PPSK was shown in both the default Google Maps view and satellite view

Location 1 was situated in the basement car parking area under the front entrance ramp of the PPSK building. This location was designated for the control sample, which consisted of pork meat that was not sprayed with any pesticide. The setup and placement of Location 1 are shown in Figure 3.2.

Figure 3.2 Control sample situated in the basement car parking area under the front entrance ramp of the PPSK building