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TEORI LANDAU BAGI SELAPUT NIPIS DAN  

SUPERKEKISI FEROELEKTRIK  

 

 
 
 

ABSTRAK 
 

 

 
Teori Landau Devonshire (LD) bagi peralihan fasa dalam feroelektrik (FE) telah 

digunakan di dalam pengajian kami berkenaan ciri-ciri selaput nipis dan dwilapis atau 

superkekisi.  Teori ini digunakan dalam pengajian selaput nipis FE tertib kedua yang 

telah diubahsuiakan oleh Tilley dan Zeks; di mana ungkapan perubahan dalam ruang 

2P∇  dan panjang tentuan-luar permukaan δ telah dimasukkan.  Nilai positif bagi δ 

bermakna pengkutuban menyusut pada permukaan dan nilai negatif δ bermakna 

pengkutuban meningkat di permukaan.  Kami telah perolehi ungkapan yang lebih 

mudah bagi profil pengkutuban berbanding dengan ungkapan yang telah diterbitkan 

terlebih dahulu dan keputusan kami telah memberikan penjelasan kepada dua 

percanggahan yang terdapat dalam literatur.  Pertama, perubahan fasa peringkat awal 

dalam selaput nipis FE tertib kedua yang telah diramalkan oleh satu kajian terlebih awal 

tidak didapati didalam perhitungan kami; dan kedua, penyataan hasil kajian Qu et al. 

bahawa terdapat peralihan fasa tertib pertama didalam selaput nipis FE yang berbahan 

tertib kedua ternyata tidak benar melalui pelbagai cara perhitungan kami.  Fungsi 

termodinamik dan persandaran suhu bagi ketebalan kritikal juga telah dihitungkan 

secara analitik.  Ungkapan LD bagi FE pukal tertib pertama dan tertib kedua juga 
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digunakan untuk memodelkan dwilapis FE bahan tertib pertama dan tertib kedua.  

Dianggapkan bahawa lapisan perantaraan menghasilkan gandingan antiferoelektrik di 

antara dua selaput bagi dwilapis ini.  FE ini diselidik dengan menganggap beberapa 

kemudahan; ia itu bahan untuk setiap lapisan dianggapkan sama jenis dan purata 

pengkutuban di dalam setiap lapisan dianggapkan seragam.  Lengkungan litup 

dielektrik histeresis (DHL) bagi kedua-dua model dwilapis disurihkan dengan 

menyelesaikan ungkapan tenaga bebas LD pada keadaan keseimbangan secara berangka.  

Bagi dwilapis-dwilapis tertib pertama dan tertib kedua yang mempunyai nisbah 

ketebalan tak serupa, corak DHL yang berbagai dapat diperolehi dengan mengubah 

nisbah ketebalan l, pemalar gandingan antara subkekisi j dan suhu t.  DHL yang 

mempunyai enam lengkung litup bagi dwilapis-dwilapis tertib pertama dapat 

direkabentukkan melalui pemilihan nilai-nilai kecil l dan j yang sesuai dalam julat suhu 

 yang melebihi suhu genting pukal .  Ungkapan tenaga bebas bagi 

antiferoelektrik (AFE) pukal tertib pertama dan tertib kedua adalah serupa dengan 

ungkapan model kami apabila ketebalan bagi setiap lapisan dalam dwilapis-dwilapis itu 

dianggapkan sama; maka keputusan kami dapat diaplikasikan untuk AFE pukal.  DHL 

empat lengkungan litup bagi AFE pukal tertib pertama boleh diperolehi dengan 

mangubahkan nilai j dalam julat suhu 

2tttSH << CBt

2tttSH <≤ .  Daripada keputusan-keputusan 

pengajian kami, ciri-ciri pengsuisan multi-keadaan dalam model dwilapis-dwilapis 

tertib pertama dan tertib kedua kami telah ditunjukkan.  Namun begitu, kami tidak 

menyangkal bahawa model yang kami cadangkan itu dapat digunakan untuk pembuatan 

peranti pengsuisan; tetapi keputusan-keputusan ini diharap dapat memotivasikan 

pengkajian yang lebih mendalam untuk menerokakan potensi ini. 
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ABSTRACT 
 

 

 
The Landau Devonshire (LD) theory of phase transitions in ferroelectrics (FE) is 

applied to studies of thin films, bilayers and superlattices.  The theory applied in the 

study of second order FE thin films is that of Tilley and Žekš; in which the spatial 

variation 2P∇  term and the surface extrapolation length δ are incorporated.  A positive 

value of δ means polarization is depleted at the surface and negative δ means 

polarization is enhanced.  We have obtained much simpler expressions for the 

polarization profiles compared with the previous work and our results also clarify two 

discrepancies in the literature.  First, the incipient phase transition in the second order 

FE thin film speculated by Tilley and Žekš is not found in our calculations; and 

secondly, the claim by Qu et al. that there is a first order phase transition in a FE thin 

film of second order material is refuted through various methods of calculation.  

Thermodynamic functions and the temperature dependence of the critical thickness of 

the film are also calculated analytically.  The LD bulk first-order and second-order 

expressions are used to model FE bilayers of first-order and second-order materials.  It 

is assumed that an intermediate layer produces antiferroelectric coupling between the 

component films of the bilayer.  Some simplifications are made: the materials in both 

layers are taken to be the same and the average polarization in each of the layers is 

assumed uniform.  Dielectric hysteresis loops (DHLs) of the bilayers are drawn by 

solving the equilibrium states of the LD free energy expressions numerically.  For 
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unequal thickness ratio in both the first-order and second-order bilayers, diverse 

patterns of DHLs can be obtained by varying the thickness ratio l, the interlayer 

coupling constant j and the temperature t.  Six-loop DHLs of the first order bilayer can 

be designed by proper choices of small values l and j within a certain temperature range 

 above the bulk critical temperature .  Free energy expressions of the 

first and second order bulk antiferroelectrics (AFE) are the same as our expressions 

when the thicknesses of the two layers in the bilayer are taken to be equal; so our 

results apply also to the bulk AFE.  We can obtain quadruple-loop DHLs of the first 

order bulk AFE by varying j within temperature range 

2tttSH << CBt

2tttSH <≤ .  From the results of 

our studies, multi-state switching capability is indicated in first order and second order 

bilayers with antiferroelectric coupling across the interface.  However, we do not 

presume that such switching devices can be made, but the results might motivate more 

in-depth studies to explore this potential. 
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Chapter 1 

 

AN OVERVIEW 

 

 

 

1.1 Introduction 

As a mean-field-type theory, Landau theory lacks microscopic perspectives, but it has 

been successful in describing the phenomenological behaviour of phase transitions in 

materials like superconductors and ferromagnets.  Devonshire, who capitalized on the 

analogous behaviour of ferroelectrics to ferromagnetic materials, developed the Landau 

theory to study ferroelectricity using a thermodynamic approach.  Ever since then, 

Landau Devonshire (LD) theory has been an important theoretical tool used in studying 

the phenomena of first and second order phase transitions in bulk ferroelectrics (FE), 

and this theory has also been extended to studies of thin films and multilayers. 

Since the 1990s, the technology of fabrication in material science has advanced 

rapidly, and this enhances the ability to produce better quality FE thin films and 

multilayers or superlattices.  In consequence, a wide range of applications of FE thin 

films and multilayers or superlattices has been found.  One of the most exciting 

applications of FE thin films is in fabricating non-volatile random access memory 

(NVRAM), where data stored will not be lost when electric field is suddenly cut off.  

However, there are many problems relating to various applications of FE thin films or 

superlattices still remaining unresolved; some of these problems pertain to 
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shortcomings in techniques of fabrication and others are related to insufficient 

understanding of the physics of FE thin film and multilayers. 

The physics of FE thin film surface and size effects and related properties, for 

instance, the depolarization effect on the surface in contact with another surface, 

domain formation, switching of dipole moments etc., has been the subject of active 

studies in ferroelectricity.  However, there is still a lot to be done especially on the 

properties of thin films and superlattices, both experimentally and theoretically.  

Among the theoretical approaches, LD theory has been popular; and this may be 

attributed to many creditable results being produced in the studies of properties of bulk 

FE and thin film FE.  Quite recently, the theory has also been extended into the studies 

of superlattices.  In this dissertation, we utilize the LD model to study the phase 

transition properties of second order FE thin films and the dielectric hysteresis loop 

(DHL) patterns of FE bilayers of first and second order materials.  An overview of the 

thesis is given in the following section. 

 

1.2 Overview of the Thesis 

To present a more complete picture, general reviews of the basic physics of 

ferroelectrics and of previous work which is related to our studies are given in chapter 2 

and chapter 3.  A literature review on the fabrication of FE thin films and superlattices 

and experimental results which relate to the properties of films and superlattices is 

given in chapter 3.  A discussion of previous work on the application of the LD model 

and the Ising Model in a Transverse Field (IMTF) in studies of FE thin films and 

superlattices is also included in chapter 3; this has been the source of our motivation.  

Chapter 4 gives a detailed discussion of the second order phase transition in FE thin 

films modelled by an extension of LD theory which includes the spatial variation and 
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surface effect; some calculations on the film profile, critical length and the 

thermodynamic parameters are included.  We devote chapter 5 to modelling a bilayer of 

second-order FE materials using the LD expression.  By varying the thickness ratio and 

the interlayer coupling, different patterns of DHLs are drawn.  The FE bilayer discussed 

in chapter 6 is modelled from the LD expression of the bulk first order phase transition 

with some simplifications assumed.  Unequal thickness ratio characterizes the most 

general first order FE bilayer; it forms the subject of discussion in chapter 6.  We obtain 

a great variety of patterns in the DHLs of the first order bilayer by varying the thickness 

ratio and the interlayer coupling.  The LD free energy describing a bilayer with equal 

thicknesses is the same as that of a two-sublattice bulk antiferroelectric (AFE), so our 

results for this special case apply to the AFE.  While the second-order AFE is discussed 

in textbooks, a full account of the first-order AFE is not available.  Chapter 7 is 

therefore devoted to the properties, including DHLs, of both second and first order 

AFEs.  Conclusions and possible extensions to the work are presented in chapter 8. 
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Chapter 2 

 

AN OVERVIEW ON BULK FERROELECTRICS 

 

 

 

2.1 Introduction 

The unusual dielectric properties of Rochelle salt (sodium potassium tartrate 

tetrahydrate, NaKC4H4O6. 4H2O) were reported by Pockels in 1894 (Kanzig, 1957).  

But, more intense study of Rochelle salt was aroused only after Valasek (1920, 1921) 

had reported that the dielectric properties of Rochelle salt are analogous to the magnetic 

properties of ferromagnetic materials.  Busch and Scherrer (1935) later discovered a 

new ferroelectric crystal in potassium dihydrogen phosphate, KH2PO4 (KDP).  Not long 

after that, Mueller (1940a, b, c, d) put forward a phenomenological theory that relates 

the anomalous dielectric, piezoelectric and elastic behaviours of Rochelle salt.  The 

pace of development in the study of ferroelectricity was quickened from the beginning 

of 1940's where barium titanate (BaTiO3) and several isomorphs of BaTiO3 were found 

to behave as ferroelectrics.  Microscopic theory of phase transitions for KDP and 

BaTiO3 was developed gradually by Slater (1941, 1950); and that further enhanced the 

enthusiasm among physicists in the study of ferroelectricity.  In 1949, Devonshire 

(1949) published a theory on the phase transition mechanism of BaTiO3.  His theory has 

deepened the understanding on the behaviour of BaTiO3 and has initiated the 

thermodynamic theory in ferroelectricity.  An important breakthrough in the study of 
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ferroelectricity came from Cochran (1959) and Anderson (1960) when they 

independently proposed the soft mode theory on the phase transitions of ferroelectrics. 

Zhong (1998a) briefly classifies the history of ferroelectric studies into four 

stages.  It began with the discovery of Rochelle salt and the KDP series between 1920 

and 1939.  From 1940 to 1958, the phenomenological theory of ferroelectricity was 

established and developed into maturity.  The development of the ferroelectric soft 

mode theory occupied the duration from 1959 to 1970.  From 1980 onwards until now, 

major studies are focused on various types of non-equilibrium ferroelectric systems.  

Mitsui and Nakamura (1990) reported that the number of ferroelectrics known to date 

has exceeded 200 (a ferroelectric compound or solid solution in mixtures or by 

substitution of its constituent ions is not considered as a new ferroelectric). 

The general properties of the bulk ferroelectric, including the basic concept of 

spontaneous polarization and the general definition of ferroelectricity are discussed in 

Section 2.2.  Then we present in Section 2.3 the types of ferroelectric materials and the 

basic concepts of ferroelectric phase transitions.  Microscopic and macroscopic theories 

of ferroelectric phase transitions including the soft mode theory and Landau Devonshire 

theory are briefly discussed in Section 2.4.  Finally, a brief outline on the applications of 

the ferroelectric materials is delivered in Section 2.5. 

 

2.2 Bulk Ferroelectric Properties 

Besides the classification of crystals into seven Bravais systems according to their 

geometry, crystals are also classified into 32 point groups according to their symmetry 

with respect to a point.  Among the 32 point groups, 11 of them possess a centre of 

symmetry, and the remaining 21 are non-centro-symmetric.  Piezoelectric crystals are 

those without a centre of symmetry.  These classes of crystals exhibit electric polarity 
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when they are subjected to stress and strain or to applied electric field.  Among the 21 

non-centro-symmetric point groups, 20 are piezoelectric crystal classes.  Polarization is 

a vector quantity, and the existence of spontaneous polarization in a crystal creates a 

unique direction or axis whereby the whole crystal is polarized.  This polarized axis is 

not equivalent to any of the symmetric axes of the crystal and it is called the unique 

polar axis.  It is discovered that only ten out of the 20 piezoelectric crystal classes have 

a unique polar axis and exhibit spontaneous polarization.  These 10 polar crystal classes 

are often called the ferroelectric crystals.  So it is obvious that all ferroelectric crystals 

are piezoelectrics, but the converse is not true. 

Ferroelectric phase transition is a structural phase transition.  As a result of 

transition from the high temperature phase, a spontaneous polarization appears and 

some symmetry elements of the high temperature phase are lost on cooling below the 

transition temperature T .  We can define the spontaneous polarization either as a 

quantity of surface density of a bound charge on the sample surface or the permanent 

dipole moment per unit volume in the crystal.  In another perspective, the spontaneous 

polarization is due to the relative displacement of atoms (ions) in a phase transition.  

We describe a ferroelectric crystal as a polar crystal, whose spontaneous polarization 

can be in two or more orientational states in the absence of an electric field.  The 

direction of the spontaneous polarization  can be switched to another state by an 

applied electric field greater than the coercive field  (shown in Fig 2.3). 

C

SP

SP

CE

Pyroelectric effect, i.e.  the dependence of  on temperature, exists in 

ferroelectric crystals, and the 10 ferroelectric crystal classes are also called the 

pyroelectric classes. Since the atomic arrangement in the crystal varies with temperature 

and the atomic displacement in the crystal is related to spontaneous polarization , 

SP

SP
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thus  is temperature dependent.  In the absence of an electric field,  varies non-

linearly with temperature T below the Curie temperature .  In typical ferroelectrics, 

the spontaneous polarization decreases as temperature increases and it disappears 

continuously or often discontinuously at .  The nature of this continuous or 

discontinuous jump in the spontaneous polarization at  depends on the order of the 

phase transition.  For the second-order phase transition the spontaneous polarization 

goes to zero continuously at .  While, there is an abrupt jump in spontaneous 

polarization to zero at T  for the first-order phase transition.  Fig. 2.1 shows typical 

cases of the variation of spontaneous polarization with temperature for the first and 

second-order phase transition at zero field.  At this juncture, we observe that T  

demarcates the whole temperature range into the paraelectric (nonpolar) phase above 

 and the ferroelectric (polar) phase below T . 

SP SP

CT

CT

CT

CT

C

C

CT C

Ps Ps 

Other than these phenomena, there is an anomalous behaviour in dielectric 

constant at T .  Along the direction of the spontaneous polarization in the ferroelectric 

phase, the temperature dependence of the dielectric constant in the low frequency phase 

is given by 

C

TC T 
(a) 

TC T 
(b) 

Fig. 2.1 The change of spontaneous polarization, Ps with temperature T for: (a) 
second-order and (b) first-order phase transition 
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0

)0()(
TT

CT rr −
+= εε  (2.1) (2.1) 

where where )(0r )(0rε is the dielectric constant at zero temperature C is the Curie constant and

0T  is the Curie-Weiss temperature.  )0(rε  is usually very much smaller than the second 

term in (2.1) and it is not temperature dependence, hence to a good approximation it can 

be neglected.  Equation (2.1) can then be written as 

0

)(
TT

CTr −
=ε  (2.2) 

We see a divergence in )(Trε  at , where 0T 0TTC =  for the second-order transitions and 

 for the first-order transitions.  Fig. 2.2 (a) and 2.2 (b) show the inverse 

dielectric constant for the second-order and first-order phase transitions respectively. 

0TTC >

 Below the Curie point, other than the non-linear change in spontaneous 

polarization with temperature, the other non-linear effect on the spontaneous 

polarization is due to the applied electric field on the crystal.  By plotting the change in 

polarization with the field, a hysteresis loop resembling the magnetic hysteresis loop is 

obtained.  When the applied field is weak, polarization increases linearly with the field  

1/ε 

T TC 

1/ε 

TC T 

(a) (b) 
Fig. 2.2 The inverse dielectric constant for: (a) the second-order phase transition; (b) 
the first-order phase transition. 
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Fig. 2.3 The dielectric hysteresis loop for a typical ferroelectric crystal. 

 

and it is because of the dominance of movable domain walls from the newly formed 

domain nuclei.  When the field is increased, the nuclei grow and ultimately the domain 

walls move irreversibly; polarization increases faster than linearly with the field.  This 

is what we see in curve AB of a typical dielectric hysteresis loop shown in Fig. 2.3.  

Ultimately, the polarization tends to saturate at B and the crystal is in a single domain.  

Further increase in applied field increases the total polarization due to the induced 

polarization by the field.  In the contrary, when the field is reduced along CBD, the 

macroscopic polarization decreases, and in zero field the remanent polarization  

remains.  But, the extrapolation of CB cuts the vertical axis at a value called the 

spontaneous polarization .  This is the equilibrium polarization in the ferroelectric 

phase. 

rP

SP
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 If the field is reversed, polarization continues to decrease, but its direction is not 

yet reversed.  When the reversed field exceeds a value  (coercive field) at F, the 

crystal polarization changes its direction.  At point F, the coercive field  is attained; 

total polarization in the crystal is made zero.  Further increase in the reversed field 

causes saturation of the reversed polarization shown at G.  The portion of the curve 

DFG shows the changes of polarization as the field is reversed.  When the applied field 

varies from the values along the curve CBDFGHC in a cycle, the hysteresis loop is 

traced.  The hysteresis loop illustrates that the free energy of the crystal is equivalent for 

the two possible directions of the vector , and the possibility of switching the 

spontaneous polarization by an external electric field is evident. 

CE

CE

SP

 

2.3 Ferroelectric Materials and Their Properties 

According to the phenomenological behaviour of the ferroelectric crystals, we can 

classify them into displacive type and order-disorder type.  This way of classifying 

ferroelectric materials is discussed in details by Lines and Glass (1977) and Zhong 

(1998a).  Kanzig (1957) discussed two other ways of classifying the ferroelectric 

materials.  He classified ferroelectric materials by the number of axes along which they 

can be polarized or by considering whether they are piezoelectric in the unpolarized 

phase.  There are a great number of ferroelectric compounds being discovered and 

studied over the years.  There are two texts, which accommodate a table compiled by 

Subbarao on ferroelectric and antiferroelectric materials discovered, in Lines and Glass 

(1977) as well as Blinc and Žekš (1974).  As a convenient reference on real values of 

critical temperature of ferroelectric or antiferroelectric materials, a list of selected 

ferroelectric and antiferroelectric materials with their corresponding critical 

temperatures is given in appendix A (Blinc and Žekš, 1974; Lines and Glass, 1977).  
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Burfoot and Taylor (1979) give some discussion on the preparation of ferroelectric 

materials and it is enlightening to the theorists who might not have a hands-on 

experience on the materials.  This section is allotted for some discussion on the 

characteristics of the displacive and order-disorder ferroelectrics; in particular 

properties of barium titanate (BaTiO3) and potassium dihydrogen phosphate (KDP) are 

highlighted as the respective examples. 

 

2.3.1 Displacive Ferroelectrics 

 

 
A 

O 

B 

Fig. 2.4 The cubic structure of a perovskite, ABO3. 

 

 

 

 

 

 

 

A displacive ferroelectric undergoes a phase transition whereby the atoms in the crystal 

begin to displace at the transition temperature, and this leads to a change in crystal 

symmetry.  The perovskite type (such as BaTiO3 or PbTiO3), lithium niobate type (such 

as LiNbO3 or BiFeO3) and tungsten bronze type (such as Ba2Sr5-xNb10O30 or PbTa2O6) 

belong to the displacive ferroelectrics.  The typical ferroelectric perovskite BaTiO3 

happens to be the first known ferroelectric perovskite.  It was first discovered by Wul 

and Goldman (Wul and Goldman, 1945a, 1945b 1946) independently.  The perovskite 

structure has a general formula ABO3, where A is a monovalent or bivalent metal (A+ 
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or A2+), B is a tetra- or pentavalent one (B4+ or B5+), and O the oxygen atom.  Besides 

BaTiO3, some other examples of ferroelectric perovskites are KNbO3, PbTiO3, KTaO3 

and PbZrxTi1-xO3 (PZT).  There are also trifluoride type perovskites ABF3 (example 

KMnF3) but they are not ferroelectrics and will not be discussed. 

O 

B 

4 

3 

2 

Fig. 2.5 The oxygen octahedron structure with the axes of rotation symmetry. ( 2, 3, 
4 means two-fold, three-fold and four-fold axis respectively). (Zhong, 1998) 

The crystal structure of the perovskites is cubic (in the paraelectric phase), with 

the A atoms at the corners of a cube, B atoms at the centre, and oxygen atoms at the 

face centres as shown in Fig.2.4.  We can see that the oxygen atoms occupy the six 

vertices of an octahedron with B at its centre.  The whole crystal can also be seen as the 

oxygen octahedral group BO6 being arranged in a simple cubic structure, with the A 

atoms occupy the spaces in between.  Owing to the octahedron structural of BO6, the 

perovskite type is sometimes known as the oxygen octahedral type.  The octahedron 

consists of three sets of axes of rotation symmetry, namely 3 four-fold axes, 4 three-fold 

axes and 6 two-fold axes (Lines and Glass, 1977; Zhong, 1998a) as shown in Fig. 2.5.  

The spontaneous polarization in the perovskite ferroelectrics and the other ferroelectrics 

that contain the oxygen octahedral group is due to the displacement of the B ions from 
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its central positions in the octahedron.  Normally, the displacement of the B ions is 

along the direction of one of these three axes, and so is the direction of the spontaneous 

polarization. 

 

 

 

 

 

 

 

As a typical example of displacive ferroelectric, BaTiO3 is cubic at temperature 

above and it is in paraelectric phase.  Fig. 2.6 shows the structural phase 

transitions of BaTiO3.  If we consider a unit cell of the BaTiO3, it contains one formula- 

unit of BaTiO3.  At , it undergoes a paraelectric-ferroelectric phase transition.  

Below the phase transition temperature ( ) the cubic lattice is distorted and 

the crystal structure is transformed to tetragonal.  The atoms shift along the fourfold 

axes as mentioned above. Hence, the oxygen octahedron is distorted and the unit cell is 

pulled in the direction of atomic displacement (Fig. 2.7).  This means that relative to the 

paraelectric phase, the Ti4+ ion shifts in the direction of z-axis, but the O2-I and O2-II 

ions move in the negative z-axis direction with Ba2+ ions assumed stationary.  

Ferroelectric-ferroelectric phase transition happens at  with the structural change 

from tetragonal to monoclinic.  Another low temperature ferroelectric-ferroelectric 

phase transition is at  and its crystal structure shifts from the monoclinic to 

rhombohedral structure.  Fig. 2.8 shows the phase transitions in BaTiO3 (Strukov and 

Levanyuk, 1998), and it is shown that at all the three transitional temperatures, there are 

C°120

C°120

C°− 70

CTC
°= 120

C°0

Rhombohedral Monoclinic Tetragonal Cubic 

-700 C 00 C 1200 C 

Fig. 2.6 Structural phase transitions in Barium Titanate, BaTiO3. 
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SP SP

SP

discontinuous jumps in , and these discontinuities in  indicate that the phase 

transitions are first-order.  The earlier phase transition figure for BaTiO3 by Merz 

(1949) printed in most of the ferroelectric texts show that  changes continuously at 

Ba2+ O2-I 

O2-II 
Ti 4+

z 

Fig. 2.7  Projection of the BaTiO structure in the (0,1,0) plane. Arrows indicate the 3 
directions of displacement of Ti4+ and O2- ions. Ba2+  ions are stationary.

C°120 .  In fact, it is the first-order close to second-order phase transition.  

Nevertheless, in his later measurement using a good crystal, Merz showed clearly that it 

is indeed discontinuous at the critical temperature of  (Merz, 1953).  In a first- C°120

 

 

Ps 
(μC.cm-2) 

T (°C) -120 80 0 
0 

4 

8 

-40 40 120 -80 
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16 

Fig. 2.8 Temperature dependence of spontaneous polarization in BaTiO3 (Strukov and 
Levanyuk, 1998) 
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order ferroelectric, a double hysteresis loop is expected between  and  (which 

is  in our notation).  Merz (1953), in his same paper showed the hysteresis loops of 

BaTiO3 for a series of temperatures (Fig. 2.9).  Some discussion on the 

phenomenological theory of the phase transitions of BaTiO3 by Devonshire is found in 

the text by Mitsui et al. (1976),. Lines and Glass (1977) give a very comprehensive 

review on the materials, which contain the oxygen octahedral group from the 

experimental and theoretical perspectives. 

CT CriticalT

SHT

 

Fig. 2.9 Hysteresis loops of BaTiO3 for a series of temperatures (Merz, 1953) 

2.3.2 Order-Disorder Ferroelectrics 

There is no sharp demarcation between the displacive and order-disorder phase 

transitions in term of structural phase transitions.  In the order-disorder phase 

transitions, there is a change in the crystal symmetry as a result of the redistribution of 

the particles or ions over equiprobable positions at the transition temperature.  In 

comparison with the displacive ones, the crystal structures of the order-disorder 

ferroelectrics are more complex.  The typical examples of crystalline order-disorder 
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ferroelectrics include sodium nitrite (NaNO2), potassium dihydrogen phosphate (KDP, 

KH2PO4) and triglicine sulphate (TGS, (CH2NH2COOH)3.H2SO4).  There are other  

 

4 

H
1 

 

KDP ferroelectric isomorphs like rubidium dihydrogen phosphate (RDP), RbH2PO4 and 

KD*P the deuterated form of KDP, where the hydrogen atoms in the KDP are replaced

by deuterium ( ).  Other KDP-type arsenates like KH2AsO4 (KDA), RbH2AsO4 

(RDA) and CsH2AsO4 (CDA) are found to possess ferroelectric transitions of first-order 

(Blinc, Burgar, and Levstik, 1973).  Ammonium dihydrogen phosphate (ADP) is a 

KDP-type antiferroelectric (Nagamiya, 1952).  Among all those crystals, the KDP and 

TGS are the most thoroughly studied.  In the order-disorder ferroelectrics, below the 

transition temperature, the ordering takes place in a sub-lattice and it displaces the 

atoms in other sub-lattices.  Thus, the spontaneous polarization is due to the 

displacement of ions that do not belong to the sub-lattice that is being ordered and it 

measures the amount of long range ordering of permanent dipoles.  There are many 

order-disorder ferroelectrics that contain hydrogen bonds, and the hydrogen atom is  

H2
1

O 

P 

2 

3 Ps 

Fig. 2.10 The system of hydrogen bonds in KH2PO4 (KDP) crystal: the PO4 
tetrahedron with hydrogen bonds to the nearest neighbours 
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Fig. 2.11 The structure of the KH2PO4 (KDP) crystal. 

 

next to the strongly electronegative atoms oxygen, nitrogen, fluorine, and chlorine; 

typical examples are KDP and TGS. 

The transition temperature of KDP is at 123 K, and its crystal symmetry changes 

from the tetragonal (above ) to orthorhombic structure (below ).  Above , the 

crystal structure consists of K+ ions and almost regular tetrahedral  groups.  The 

P5+ ions are located at the centres of the tetrahedral  groups.  The P5+ ions lie 

above the K+ ions on the fourfold axes separated by half the unit cell parameter in the 

direction of z-axis.  Each tetrahedral  group links to four other tetrahedral  

groups via the O-H…O bonds (Fig. 2.10).  The two upper oxygen atoms of the  

group are attached to the two other tetrahedra on the same level, and the lower two 

oxygen atoms of the same  group are attached to another two tetrahedra on the 

same level.  This gives rise to a net of  groups linked with the symmetrical 
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hydrogen bonds, O-H…O.  The whole net of hydrogen bonds is almost parallel to the 

(001) plane.  The structure of the KDP crystal above  is depicted in Fig. 2.11.  

(Zhong, 1998a; Strukov and Levanyuk, 1998; Lines and Glass, 1977). 

CT

 The ordering of the protons on the hydrogen bonds in the KDP does not directly 

contribute to the spontaneous polarization of the crystal, but the interaction of protons 

with K+ and P5+ ions causes the displacement of the K+ and P5+ ions that induces the 

spontaneous polarization.  Above , the proton is situated randomly at the two 

equilibrium positions along the hydrogen bond length, as the two equilibrium positions 

have the energy level represented by a symmetrical double-well potential.  However, 

below , the protons are more ordered.  They are mainly found in one of the two 

positions along the hydrogen bond, which means that they can be located nearer to the 

upper (or lower) oxygen atoms of the  groups.  Since the orientation of the dipoles 

in the hydrogen bonds attached to the tetrahedra is perpendicular to the z-axis, there is 

no contribution to the spontaneous polarization.  Nevertheless, the ordering of protons 

in the hydrogen bonds induces the displacement of K+ and P5+ ions along the z-axis in 

the opposite direction and this induces the spontaneous polarization in the crystal 

(Bacon and Pease, 1953). 

CT
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2.4 Theory of Ferroelectric Phase Transitions 

The development of the phenomenological theory of ferroelectricity began well in 

1940; Mueller (1940a, b, c, d) proposed a phenomenological theory pertaining to the 

understanding of the anomalous behaviours of Rochelle salt.  After the discovery of 

BaTiO3, Ginzburg (1945, 1949) and Devonshire (1949, 1951, 1954), accomplished the 

development of thermodynamic theory of ferroelectric phase transitions.  Kittel (1951) 

then further extended the theory into the phase transitions of antiferroelectrics.  The 
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thermodynamic theory of ferroelectric phase transitions was fundamentally matured in 

the 1950's (Zhong, 1998a).  However, the development of microscopic theory was still a 

struggle.  Slater proposed the first molecular theory on the ferroelectric transition of 

KH2PO4 (KDP) (1941) and BaTiO3 (1949) based on the actual crystal structure.  He 

proposed that the phase transitions in BaTiO3 and KDP were due to the displacement of 

Ti atom at the centre of the oxygen octahedron and the ordering of proton on the 

hydrogen bond respectively.  The major breakthrough came from Cochran and 

Anderson.  They proposed that the ferroelectric phase transitions should be studied 

within the framework of crystal dynamics, and to focus on the lowering of frequency in 

the TO (transverse optical) mode (soft mode) during phase transition.  The 'freezing-in' 

of the soft optical phonon causes the static atomic displacement and thus, induces the 

spontaneous polarization (Cochran, 1959; Anderson, 1960).  In his later publications 

(Cochran, 1960, 1961, and 1963), Cochran systematically illustrated the above idea.  

Soft mode theory reveals the characteristic of ferroelectric phase transitions.  The 

theory indicates that the ferroelectric (and antiferroelectric) phase transition is a special 

case of a structural phase transition.  This theory was quickly confirmed by experiments 

and has enhanced the development of the physics of ferroelectricity. 

 

2.4.1 Soft Mode and Microscopic Theory 

The soft mode theory was initially applied in the displacive structures like BaTiO3.  

Later, it was found that the same ideas can also be used in the order-disorder systems 

like KH2PO4 (De Gennes, 1963; Brout et al., 1966).  The fundamental concept of the 

soft mode theory in a displacive ferroelectric is that, on approaching the critical 

temperature , the frequency of the soft phonon decreases and the restoring force for 

the mode displacement tends to zero (the short range force balances the long range 

CT
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Coulomb force) as the soft phonon is 'frozen' at .  The static atomic displacements 

(from the high temperature phase to the low temperature phase) represent the 'frozen-in' 

mode displacements of the unstable phonon.  The static component of the unstable 

phonon is the spontaneous polarization.  The soft phonon, in this case, must be polar 

and of long wavelength (q , where q is the wave vector).  In order words, the 

ferroelectric phase transition involves the 'freezing-in' of a soft phonon at the Brillouin 

zone centre (q = 0).  On the other hand, the antiferroelectric soft phonon has a finite 

wavelength due to the presence of two opposite sub-lattice polarizations.  Thus, the 

antiferroelectric phase transition involves the 'freezing-in' of soft phonon at the 

Brillouin zone boundary (q = K/2, where K is a reciprocal lattice vector).  The 

mechanism of the soft mode discussed above is applied to the displacive system.  It is 

different in the order-disorder system because the soft mode is no longer the instability 

of soft phonon but it is the unstable pseudo-spin wave which describes the displacement 

of the protons within the double-potential-well-like hydrogen bonds. 

CT

0→

 Irrespective of the difference in the mechanism of the phase transitions in the 

displacive ferroelectrics and hydrogen bonded ferroelectrics in general, the phase 

transitions in ferroelectrics (or antiferroelectrics) are usually related to the 

rearrangement of a few atoms in the unit cell and the positions of the other atoms 

remain unchanged.  We can see this from the examples in BaTiO3 where Ti ion is 

displaced with respect to the oxygen octahedron in the unit cell, and in KDP where the 

proton is rearranged in the double well potential of the O-H--O hydrogen bond.  Thus, 

in the study of soft mode dynamics of the ferroelectrics, it is only necessary to take into 

account of the motion of these particular coordinates and treat the other coordinates in 

the crystal lattice as a heat bath (Lines, 1969; Thomas, 1971). 
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With this in mind, there is a great simplification in the construction of the theory 

based on the local-mode.  The basic Hamiltonian (Lines and Glass, 1977) for a solid 

can be written as follow: 

ion)-(electron(electron)ion) HHHH ++= (  (2.3) 

where describes interactions of the ion centres, describes the 

valence electron motion, and describes the interactions between 

valence electrons and ion cores.  The states of electrons are assumed to be just a 

function of the ionic coordinates, further approximation is made by making assumption 

that the potential energy of interacting valence electrons and the ion cores is 

independent of the electron configuration or of temperature.  The resulting Hamiltonian 

includes the relative motion of the rigid ion cores and the valence electrons for each ion 

(Cochran, 1960, 1961).  Finally, the dynamic of the ionic system describes in the local-

mode approximation in the simple model Hamiltonian (Lines and Glass, 1977) can be 

shown in general as: 

ion)(H electron)(H

ion)-electron(H

( ) ∑∑∑ −
⎭
⎬
⎫

⎩
⎨
⎧ +=

l m
mllm

l
ll vVH ξξξπ

2
1

2
1 2  (2.4) 

where lπ  is the generalized momentum for cell l with displacement variable lξ  and 

( )lV ξ  is the local potential function that can be in any form from quasi-harmonic to 

deep double-well form; while mllmv ξξ  is the bilinear two body interaction potential 

which may be either short range or long range or both.  An electric field of static or 

time-dependent form can also be added to the Hamiltonian (2.4).  The above equation in 

general facilitates the statistical problem of obtaining the solutions of the phase 

transitions of the ferroelectrics or antiferroelectrics.  Nevertheless, even for the most 

simplified form of the Hamiltonian, there is no exact solution; and the simplest 

approach to this statistical problem is by taking the mean-field approximation (MFA).  
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In the MFA the interaction of the particles is described as an average field acting on 

each particle and the field is assumed to be independent of position in the lattice. 

We have presented a brief qualitative discussion on the simple model 

Hamiltonian on the theory of ferroelectric phase transition.  The detailed quantitative 

discussion of the simple Hamiltonian and the mean-field solutions can be found in some 

standard ferroelectric texts (Zhong, 1998a; Lines and Glass, 1977; Blinc and Zĕks, 

1974). 

The theory behind the occurrence of spontaneous polarization in the order-

disorder ferroelectrics can be illustrated by the ordering of proton on the double-well-

potential hydrogen bond in the hydrogen-bonded ferroelectrics like KDP.  The 

displacement of the proton between these two wells and its possibility of tunneling 

through can be described by the pseudo-spin wave theory, which is a matured theory in 

the study of ferromagnetism.  The two possible states of a proton in the double-well 

potential are analogous to the spin up and spin down states of spin 2
1  particle.  The 

interactions between neighbouring double-wells are treated as the exchange coupling 

between these pseudo-spins.  The model Hamiltonian based on this pseudo spin is the 

Ising model.  The tunneling probability through the well can be incorporated into the 

Hamiltonian by representing it with a transverse field.  The final model Hamiltonian is 

known as Ising Model in a Transverse Field (IMTF).  The mean-field solutions of this 

model have successfully explained the empirical phenomena among which it has 

predicted the isotopic effect between KDP and KD*P (deuterated form of KDP) 

excellently.  It is not our purpose to discuss the qualitative aspects of the theory but just 

to give an overview about the subject.  For the details, one can refer to the standard 

texts of Zhong (1998), Lines and Glass (1977) or Blinc and Zĕks (1974). 
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2.4.2 Landau Devonshire Theory 

As we have mentioned in the earlier section, ferroelectric phase transition is a type of 

structural phase transition.  The concept of structural phase transition, which relates to 

the breaking of symmetry accompanied by a change in the order parameter, was 

proposed by Landau.  The breaking of symmetry means that one or more symmetry 

elements of the crystal suddenly appear or disappear across the transition temperature.  

Before we go into the thermodynamic theory of ferroelectricity by Devonshire (which is 

more generally known as Landau Devonshire theory), it is more complete to give a 

brief discussion on the Landau theory. 

According to Landau theory (Landau and Lifshitz, 1980; Izumov and 

Syromyatnikov, 1990), the change in the symmetry elements of a system undergoing a 

structural phase transition can be studied via the change in the 'density function' 

),,(0 zyxρ of the system, where ),,(0 zyxρ determines the probabilities of the different 

positions of the crystal above the Curie point.  The symmetry of the crystal lattice is 

determined by the space group , in which all the coordinate transformations leave 0G

),,(0 zyxρ invariant.  By cooling the crystal slightly below , some of the symmetry 

elements of  disappear, and the density function of the crystal will be written as: 

CT

0G

),,(),,(),,( 0 zyxzyxzyx δρρρ +=  (2.5) 

where ),,( zyxδρ

),,( zyx

 is the small change in the density function.  The resulting density 

function ρ  and the small change ),,( zyxδρ

0G

 should be invariant under a group 

 and logically  must be a subgroup of .  It is known from the group theory 

that the density function 

1G 1G

),,( zyxρ  can be represented as a linear combination of some 

other functions, which are invariant under the symmetry group .  These functions 

can be chosen in the form of sets of as few functions as possible.  Each set of functions 

1G
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is invariant under the transformations of the group.  The matrices that transform the 

functions in each set form the irreducible representations of . 1G

Usually two different phase transitions (at different temperatures) are 

represented by changes in symmetry corresponding to two different independent 

irreducible representations.  Thus, it can be assumed that in the second-order phase 

transition, ),,( zyxδρ  corresponds to a single irreducible representation in  as: 0G

∑=
i

ii zyxCzyx ),,(),,( ϕδρ  (2.6) 

where ),,( zyxiϕ  is a basis function of the irreducible representation and  are the 

coefficients of the basis functions.  The actual values of  are determined 

thermodynamically; for instance, at  the symmetry of the crystal is 

iC

,, yx

iC

CT )(0 zρ  and 

all  must be zero.  So,  iC

0),,( =zyxδρ , ),,(),,( 0 zyxzyx ρρ = , CTT =   (2.7) 

)zIn continuous, i.e. second-order, phase transitions ,,( yxδρ  must vanish continuously 

and so  must take small values since they vanish when T  is approached.  Hence the 

free energy density can be expanded in Taylor's series in powers of  near .  With 

the substitution of  by 

iC C

iC CT

iC iηγ  and having 

∑ =
i

i 1γ  (2.7) 

the free energy density can now be in terms of η , the order parameter; where iγ  are the 

symmetry parameters.  More explicitly, we can say that through Landau Theory, the 

structural phase transition of a ferroelectric is described in terms of even powers of an 

order parameter η  which appears at  when the symmetry of the paraelectric phase is 

broken.  In ferroelectrics, 

CT

η  is the spontaneous polarization which vanishes above  CT

 



 

 

25

and is non-zero below .  Further details in obtaining the phenomenological equation 

describing the ferroelectric phase transitions can be found in the texts by Tolédano and 

Tolédano (1987) and Blinc and Zĕks (1974). 

CT
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