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RANGKA PENGURUSAN SUMBER AWAN MENGGUNAKAN CARIAN

HARMONI MONARCH RAMA-RAMA DAN PENAAKULAN BERASASKAN

KES

ABSTRAK

Perkhidmatan awan telah berkembang pesat dan kebanyakannya telah menggu-

nakan senibina pelbagai peringkat untuk fleksibiliti dan penggunaan semula. Pelbagai

pendekatan berasaskan peraturan dan model telah direka untuk menguruskan kualiti

perkhidmatan (QoS) untuk perkhidmatan ini. Sebahagian daripada pendekatan ini ada-

lah bertujuan untuk meningkatkan keuntungan peruntukan perkidmatan awan. Walau

bagaimanapun, ianya berdasarkan algoritma pencarian optimum di mana ia mungkin

tidak berupaya untuk mencari cadangan peruntukan perkhidmatan yang terbaik dalam

persekitaran awan yang berskala tinggi. Kajian ini mencadangkan rangka kerja sum-

ber pengoptimuman dan peruntukan (ROP) yang baru untuk mengenalpasti, menyele-

saikan kesesakan, dan mencapai keperluan QoS peringkat perkhidmatan bagi pelbagai

perkhidmatan multi peringkat awan dan meningkatkan keuntungan peruntukan perki­

dmatan awan. Rangka kerja ROP terdiri daripada dua komponen utama: pengoptimum

sumber global dan pengecam sumber. Kajian ini juga bertujuan untuk memperting-

katkan algoritma pengoptimumam rama-rama dan menggunakan algoritma tersebut ke

dalam ROP sebagai pengoptimum sumber global. Selain itu, pengecam sumber baru

telah dibangunkan menggunakan penaakulan berasaskan kes dan disertakan ke dalam

rangka kerja ROP. Sebuah prototaip di platform awan telah dibangunkan, dan penja-

naan beban kerja serta perkhidmatan modal pelbagai peringkat telah digunakan untuk

xix



menunjukkan keberkesanan ROP berbanding dengan pendekatan-pendekatan lain yang

telah dicadangkan dalam kajian ini. Keputusan yang diperolehi menunjukkan bahawa

rangka kerja ROP boleh menjimatkan 20% daripada jumlah tuntutan mesin maya dan

juga memberikan jaminan perkidmatan QoS peringkat perkhidmatan bagi perkhidmat-

an yang kritikal.
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CLOUD RESOURCE MANAGEMENT FRAMEWORK USING MONARCH

BUTTERFLY HARMONY SEARCH AND CASE BASED REASONING

ABSTRACT

Cloud services have evolved rapidly and some have adopted a multi-tier architec­

ture for flexibility and reusability. Various rule- and model-based approaches have

designed to manage quality of service for these services. A few of existing resource

management approaches aim to increase the cloud provider (CP) service provisioning

profits. However, they are based on local search optimization algorithms, which may

not obtain the best resource provisioning decision in a large-scale cloud environment.

This research proposes a new resource optimization and provisioning (ROP) framework

to detect, solve the bottlenecks, and satisfy the service-level QoS requirements of sev­

eral multi-tier cloud services and to increase the CP service provisioning profits. The

ROP framework consists of two main components: global resource optimizer (GRO)

and resource identifier (RI). This research enhances the butterfly optimization algo­

rithm and plugs the resulting algorithm into the ROP as a GRO. In addition, a new RI

is developed using case-based reasoning and is then plugged into the ROP framework.

To demonstrate the effectiveness of the proposed ROP against rule- and model-based

approaches, a prototype running on a cloud platform is developed, and a workload gen­

erator and multi-tier service model are adopted. Results show that the ROP framework

guarantee for critical services.

xxi

can save 20% of the total virtual machine demands while providing service-level QoS



CHAPTER 1

INTRODUCTION

1.1 Background

The recent decade has marked the birth of cloud computing. Cloud computing of­

fers a reliable, customized, and dynamic environment for hosting distributed services

and applications through a conceptual layer that runs on the top of a virtual infras­

tructure. Organizations

infrastructure and improve the resource management and provisioning services by ei­

ther outsourcing their computation to the cloud or building their own private cloud

(Zafar et al., 2017). Currently, cloud providers (CPs), such as Google Compute Engine

and Amazon Web Service (AWS) offer a computing platform for hosting services and

applications with high availability and quality of service (QoS).

The success of the cloud computing mainly depends on how it can effectively man­

age the underlying resources to satisfy the time-varying performance requirements of

the running services, which are characterized by QoS (e.g., throughput, response time,

high availability, and security) based on the service-level agreements (SLAs) (Gullhav,

Cordeau, Hvattum, & Nygreen, 2017). In this regard, an SLA is a legal contract between

the CP and the service owner and states the QoS guarantees that the cloud computing

platform has to provide with its running service.

Given that QoS significantly influences the growth of the cloud computing paradigm,

research communities pay much attention to the QoS guarantees within the context of

1

can avoid high up-front expenditures in a private computing



cloud computing. The CPs offer QoS guarantees for the hosted services and applica­

tions on the basis of the contracted SLAs to increase the service provisioning profits.

However, some high-demanding services adopt a multi-tier architecture for software

reusability and flexible scaling. The most significant QoS performance metric for such

services is response time. Response time is a measure of the time taken to serve the

request and to return the reply to the end user and is also known as end-to-end delay.

Response time is measured either by the average time or 95th percentile of the time

taken to serve requests over a period of time.

Providing QoS guarantees for multi-tier services is not a straightforward task be­

cause of two main reasons: one is that the workload patterns

continuously change over time, and the other is that the complex interaction between

tiers increases the difficulty in identifying the bottlenecks and resolving them automat­

ically (Iqbal, 2012). Therefore, the CP needs to adopt a dynamic resource provisioning

and optimization approach to fulfill the obligation to the service owners regarding the

SLA requirements. Given that the said services run on a shared infrastructure, the

CP needs to optimize the resource provisioning between the different running services

when the aggregate resource demands exceed the CP resource pool capacity to increase

the CP service provisioning profits.

In summary, the CPs should adopt a dynamic resource management framework to

satisfy the varying QoS requirements of the hosted multi-tier cloud services and thus

reduce the SLA violation penalties and increase the service provisioning profits.

2

are unpredictable and



1.2 Problem Statements and Research Questions

The cloud infrastructure is shared among several multi-tier services. Some of

these services have high-demanding resources and adopt a multi-tier architecture. The

resource demands of these services are time varying in accordance with the concurrent

gate on-demand resources from all services sharing the cloud infrastructure exceed the

capacity of the CP resource pool. However, some services on a shared infrastructure

commonly have different priority levels of resource provisioning based on the SLAs.

Therefore, performance isolation and differentiation between co-hosted services need

to be provided to offer QoS for critical services and increase the CP service provisioning

profits.

Iqbal, Dailey, Carrera, and Janecek (2011); Lama and Zhou (2012, 2013) proposed

resource provisioning approaches for multi-tier services. They employ a set of rules

to identify the amount of required resources for offering QoS guarantees of the hosted

multi-tier service. However, these approaches have several limitations. First, the con­

struction of these rules incurs high computational complexity that cannot be ignored.

Second, the learning speed directly influences the SLA violation rate.

Other existing resource provisioning approaches (Ashraf, Byholm, Lehtinen, &

Porres, 2012; Jiang, Lu, Zhang, & Long, 2013; Urgaonkar, Shenoy, Chandra, Goyal, &

Wood, 2008; X. Wang, Du, Chen, & Li, 2008) employ a performance model to describe

a residual error during identification of on-demand resources. These approaches also

3

users and workload patterns. The cloud infrastructure can be saturated if the aggre-

demand resources. They approximate this relationship to be linear, thereby incurring

the relationship between the target performance in terms of response time and on-



result in inaccuracy if the workload deviates from the one used to identify the model

parameters.

The main aim of the existing resource provisioning in multi-tier cloud service is

ning services. Their performance depends mainly on adjusting the model parameters

according to the changing workload pattern rate, thereby making them service depen­

dent.

A few of existing resource provisioning approaches of multi-tier service have stud­

ied resource optimization to increase the CP service provisioning profits, but the focus

is on the use of local search optimization algorithms. Therefore, these approaches may

not find the best resource provisioning decision, thereby increasing the SLA violation

penalties. Thus, they may be inappropriate in a large-scale cloud environment. To

address these problems, this research focuses on answering the following questions:

1. How can the on-demand resource for each individual service be identified?

2. How can effective resource provisioning approach be provided when the cloud

infrastructure is overloaded?

3. How effective is the proposed solution in satisfying the SLA performance level

in terms of response time while increasing the CP service provisioning profits?

1.3 Research Objectives

This research aims to design a resource optimization and provisioning (ROP) frame­

work for managing the performance of several multi-tier cloud services in relation to

their SLA performance level requirements and optimizing the CP service provisioning

4

to offer QoS guarantees. These approaches may require prior knowledge of the run-



profits. The proposed framework continuously manages the resource provisioning of

running services and optimizes the resource provisioning between the hosted services.

Therefore, the objectives of this research are as follows:

To develop a new resource identifier for reducing SLA violation in terms of re-1.

sponse time.

To develop a new metaheuristic optimization algorithm for increasing CP service2.

provisioning profits.

To propose a new ROP framework to simulate, integrate, and evaluate the effi-3.

ciency of different resource optimizers.

1.4 Research Contributions

The proposed ROP framework for resource management differs from the existing

resource provisioning frameworks such as rule- and model-based approaches. The

rule-based approaches use predefined static rules (e.g., central processing unit (CPU)

threshold (Iqbal, 2012)) and dynamic rules (e.g., fuzzy controller and neural network

(Lama & Zhou, 2012, 2013)) to identify on-demand resources that can fulfill the SLA

performance level.

The model-based approaches use network queuing theory (Urgaonkar et al., 2008)

and control theory (Ashraf, Byholm, Lehtinen, & Porres, 2012) to build a theoretical

performance model for identifying on-demand resources. Although these approaches

be able to find the best resource provisioning decision for increasing the CP service

provisioning profits given insufficient resources of CP.

5

can improve service performance, most of them are service dependent and may not
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Figure 1.1: Research contribution

The existing resource provisioning approaches of multi-tier cloud services focuses

mainly on providing QoS guarantees, and a few of these approaches study resource

optimization when the cloud infrastructure is overloaded. However, these approaches

only focus on the local search algorithms and may not be able to find the appropri­

ate resource provisioning decision for increasing the CP service provisioning profits.

Figure 1.1 illustrates the difference between the proposed framework and the existing

frameworks such as rule- and model-based approaches.

The contributions of this research are as follows:

1. This research introduces a new resource provisioning technique that uses case-

vides service-level decision on the on-demand resources and the best time to

provide them to satisfy the target SLA performance level.

2. This research identifies the best optimization algorithm and enhances the perfor-

into the proposed ROP framework as a GRO to find the appropriate resource pro-
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pool capacity.

3. This research designs a resource management framework for multiple multi­

tier cloud services running over a virtualized infrastructure. The proposed ROP

framework identifies the on-demand resources for each individual service and

finds the appropriate resource provisioning decision for reducing the cloud in­

frastructure overload. The proposed framework continuously maintains the tar­

get SLA performance level and increases the CP service provisioning profits.

1.5 Research Methodology

The design and development of the proposed ROP framework include four stages.

The first stage identifies the architecture of the multi-tier service, specifies the function

of each individual tier, and determines different request types that can be processed

by multi-tier services. Moreover, this stage explores different techniques for providing

QoS guarantees to multi-tier services and increasing the CP service provisioning prof­

its, including admission control, service differentiation, and resource management. In

addition, this stage reviews the existing resource provisioning approaches and deter­

mines the research gaps between these approaches. In accordance with the research

problem and the proposed contributions, this stage explores the using of metaheuristic

optimization algorithms, and case-based reasoning techniques in the cloud computing

environment.

The second stage presents an overview of the proposed ROP framework. The pro­

posed ROP framework consists of two main components: the RI and the GRO. The RI

7

visioning decision when the aggregate resource demands exceed the CP resource



module provides service-level decisions

satisfy the target service-level QoS guarantees in terms of response time. Meanwhile,

the GRO module adjusts the resource provisioning among several co-hosted multi-tier

services to increase the CP service provisioning profits when the aggregate resource de­

mands exceed the CP capacity. The ROP framework includes other helping components

such as the load balancer, VM profiling agent, and monitoring agent.

A new resource provisioning method based on case-based reasoning is introduced.

This method can be plugged into the ROP framework as an RI to determine the VM de­

mands for each individual service for satisfying the target performance requirement in

terms of response time. This stage also identifies the monarch butterfly optimization

(MBO) algorithm as the best metaheuristic optimization algorithm. MBO is enhanced by

incorporating harmony search (HS) as the mutation operator, thereby developing the so-

called monarch butterfly with HS (MBHS) algorithm. The performance of the hybridized

MBHS algorithm is evaluated as an optimization algorithm to solve global numerical op­

timization problems by use of 14 standard benchmark functions. The hybridized MBHS

algorithm can be plugged into the ROP framework as a GRO to optimize the resource

provisioning for increasing the CP service provisioning profits and reducing the target

service-level performance violation.

The third stage develops a prototype running

performance of the proposed ROP framework and thus achieve the research objectives.

ponents. Thereafter, different experiments are designed to evaluate the performance

of the proposed ROP framework, workload generator that produces different workload
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on a cloud platform to evaluate the

on the on-demand virtual machines (VMs) to

The prototype includes the implementation of the RI, GRO, and other assisting com-



patterns, RUBiS benchmark as a model for multi-tier service, and implementation and

offline profiling of some existing resource provisioning approaches.

The final stage evaluates the capability of the proposed ROP framework to manage

the multi-tier service performance and to increase the CP service provisioning profits

provisioning method as an RI of the ROP framework to satisfy the service-level perfor­

mance requirement in terms of response time against other existing approaches. The

second experiment evaluates the performance ofMBHS as a GRO of the ROP framework

to meet service-level QoS guarantee of critical services, increase the CP service pro­

visioning profits, and reduce the target service-level performance violation penalties.

Finally, the third experiment compares the performance of MBHS as a GRO with other

existing resource optimization algorithms for increasing the CP service provisioning

profits and reducing the service-level performance violation penalties.

1.6 Research Scope

vice running in a shared cloud infrastructure. The research focuses on the design of

on-demand resources for each individual service and to optimize resource provisioning

between the hosted services. Furthermore, this research adopts read-intensive service

to investigate the effectiveness of the proposed framework. This service has a two-tier

architecture and runs on a homogeneous cloud infrastructure.

9

through a series of experiments. The first experiment evaluates the proposed resource

The research scope is the resource management of multiple multi-tier cloud ser-

a resource management framework for several multi-tier cloud services to identify the



1.7 Research Significance

The proposed framework is a useful middleware for CPs. It enables CPs to achieve

the SLA performance requirements and satisfy the service owner. The final goal is to

increase the CP service provisioning profits by optimizing the resource provisioning

between the hosted services. The best service provisioning profits can be achieved by

identifying the best service configuration that provides high profits to the provider and

satisfies the target SLA performance requirements for each individual service.

1.8 Thesis Layout

This thesis is organized as follows. Chapter 2 presents a review of existing re­

source provisioning techniques for multi-tier cloud service, metaheuristic optimiza­

tion algorithms, and case-based reasoning method. Chapter 3 introduces the details

of the proposed R.0P framework and research justifications. Chapter 4 examines the

implementation of the proposed ROP framework and existing resource provisioning ap­

proaches. Chapter 5 discusses and analyzes the experimental results. Finally, Chapter

6 concludes and revisits the contributions and suggests future works.

10



CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter describes the cloud service architecture and explores existing tech-

isting resource management approaches as well as the performance metrics to evaluate

these approaches are reviewed. On the basis of the research problem and the proposed

solution, the using of optimization algorithms and case-based reasoning techniques in

the field of cloud computing is reviewed. Then, existing cloud platforms are reviewed.

Finally, the open challenges and research gaps of the existing resource management

approaches are examined.

2.2 Cloud Service Architecture

High-demanding services adopt a multi-tier architecture to offer flexibility, modu-

vice, the processing of request traverses through a pipeline in which each tier receives

partial processed requests from the preceding stage, performs local processing, and

forwards these requests to the subsequent tier. Figure 2.1 demonstrates the architec­

ture of an e-commerce application that consists of three tiers: web server, application,

and database tiers.
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larity, scalability, and reliability in deploying services (Berry, 2003). In multi-tier ser-

niques for providing service-level QoS guarantees of multi-tier service first. Then, ex-



The web server acts as the presentation layer and has three functions: (1) accept-

ing/rejecling incoming requests and serving static content, (2) forwarding complex

requests to the application server, and (3) receiving the response from the application

server and sending a reply back to the client. Microsoft Internet Information Server

and Apache are good examples of web servers (Fielding & Kaiser, 1997).

LBO
Internet

HTTP Requests

Figure 2.1: Architecture of three tier e-commerce application

The application server implements complex business logic and provides function­

alities for security, session state, and database access. For example, the application

server Tomcat (Tomcat, 2015) is a servlet engine container that implements Java Server

Pages and Java Servlet (Community, 2015). The database tier is considered the data

house, which is used to store user accounts, customer orders, and site information.

Examples of database engines in a multi-tier application are Microsoft SQL, Sybase,

MySQL, Oracle, and PostgreSQL.

Each service tier is ideally distributed across distinct servers. Furthermore, a tier

may be clustered based

based on the SLA requirements. For example, the web server can be run on multiple

VMs, and the number of replicas should be identified to provide a sufficient capacity.
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The said architecture introduces new resource management opportunities and chal­

lenges, such as the problem of identifying the bottleneck tiers and resolving them au­

tomatically, and preventing over resource provisioning by determining the on-demand

resources is nonlinear because each tier needs different types and amounts of resources

and affects the QoS in varying degrees (Kleinrock, 1975; Lloyd et al., 2013; Menasce

& Almeida, 2001).

2.3 Existing Techniques for Guaranteeing QoS and Increasing CP Profits

The key resource management objective in a multi-tier cloud service is to provide

QoS with least resource usage costs. The running time of the service is divided into

epochs, and the length of every epoch is adjusted to balance the gain and the overhead

of the QoS management techniques. Considering the fluctuation and unpredictable be­

havior of multi-tier service workload, providing QoS guarantee is a challenge. There­

fore, a good QoS management technique not only provides QoS guarantees but also

improves resource utilization. Three different techniques offer QoS guarantees: admis­

sion control, resource management, and service differentiation.

The admission control is considered the gateway of every request. It avoids the

system overload caused by workload burst and provides QoS guarantees at the begin­

ning of each epoch. The admission control identifies the number of requests that can be

served under the current resource provisioning and rejects excess requests. However,

the admission control design is challenging because the resources required to serve

each request differ and a tradeoff between dropping and admitting requests is required.

13

resources. Furthermore, the relationship between service performance and on-demand



The resource management offers QoS guarantees by scaling the running service

up or down depending on the workload fluctuation. It has two types of scaling: vertical

scaling and horizontal scaling. In vertical scaling, the resource management algorithm

at the service layer determines the resource demands of every running VM and then the

resource scheduler residing on each physical node allocates the estimated resources to

the hosted VM. If the physical host has insufficient resources to resize the VM, then the

resource scheduler initiates the VM migration to another physical host with sufficient

resources. At present, some infrastructure providers, such as Rackspace, use vertical

scaling to provide QoS guarantees for the hosted services (Rackspace, 2015)).

Horizontal scaling offers QoS guarantees by changing the number of running VMs

in each tier on the basis of the workload fluctuation and the current configuration of

each tier. For example, AWS and Amazon Elastic Compute Cloud (EC2) offer dozens of

VM instances with different computing capabilities. In particular, vertical scaling and

horizontal scaling are complementary to each other and can be applied to provide QoS

guarantees.

Service differentiation offers QoS guarantees to high-priority services and im­

proves performance of other services when the CP infrastructure is insufficient to sat­

isfy all the on-demand resources of the running services. In other words, the service

differentiation approach moves the resources between running services in case of in­

sufficient resource to meet SLA performance requirements of the premium service class

and provide improved performance for the basic service class.

14



2.4 Performance Metrics for Evaluation the Work in the Literature

The final objective of resource management approaches is to provide an efficient

virtual server provisioning scheme with the end-to-end response time guarantee for

multi-tier service. The service dependency, cost-latency tradeoff, and how the perfor-

are used to evaluate the existing research management approaches.

The service dependency measures how the resource management approach can

adapt its parameters to handle the workload changes. In other words, the service pro­

filing needs to be done offline for each workload pattern before the service replication

and allocation. However, because multi-tier service workloads are often highly dy­

namic in nature, the service profiling itself can be complex and time consuming. For

instance, the model based approaches are service dependent because every time the

multi-tier service workload change, the values of the service model parameters have to

be re-estimated.

The resource management approach has to consider not only achieving the per­

formance requirements but also the cost of the running virtual server. Moreover, the

researchers envision that the performance metric of 95th percentile response time com­

pared to the average response time, has the benefit that is both easy to reason about

and to capture the user’s perception of multi-tier service performance (Lama & Zhou,

2012).
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mance of multi-tier service is calculated are the three main performance metrics that



2.5 State of the Art for Guaranteeing QoS of Multi-tier Service

Numerous methods for providing QoS guarantees in multi-tier service and increas­

ing the CP service provisioning profits have been developed. In general, these methods

of response time and on-demand resources. These approaches are based on action se­

lection techniques, including fuzzy control logic, reinforcement, and static machine

learning. The rule-based approaches can identify on-demand resources through learn­

ing the service behavior from historical data but may not provide QoS guarantees during

the learning stages.

Table 2.1: Comparison between different resource provisioning approaches

Key Rule-based Model-based

Techniques

Advantages

Disadvantages

The model-based approaches include control theory and queuing network theory.

They provide QoS guarantees, theoretical performance model and guidelines for anal-
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1. Fuzzy control logic
2. Reinforcement learning
3. Statistical machine learning

1. Do not require an explicit 
performance model

2. Approximate on demand 
resources based on 
historical data

1. Do not provide QoS 
guarantee

1. Queueing network
2. Control theory

2. Control theory may experience 
a mistake of modeling dynamic 
workload

1. Queuing-based approaches are 
mean oriented

use a set of rules to describe the relationship between the target performance in terms

1. Offer QoS guarantee
2. Provide an explicit 

performance model
3. Provide rigorous and guidelines 

for analysis, design and 
evaluate the system

can be categorized into rule- and model-based approaches. The rule-based approaches



ysis, and design and evaluation of the computing system. For example, the theoretical

control techniques have been applied to non-linear computing systems to offer QoS

guarantees by providing a linear performance model for multi-tier service. However,

this model may experience inaccuracy when the workload deviates from those used

to identify the model parameters. Table 2.1 summarizes the advantages and disadvan­

tages of rule- and model-based approaches (Lama & Zhou, 2013).

The next two sections discuss and analyze the existing resource management ap­

proaches based on the afore-mentioned classification (e.g., rule-based and model-based)

for offering QoS guarantees, increasing the CP service provisioning profits in multi-tier

services, and giving rules to design and develop of the proposed ROP framework.

2.6 Model-based Resource Management Approaches

This section discusses the existing model-based resource management approaches

(e.g., control theory, and queuing network theory) for providing the service-level QoS

guarantees of multi-tier services.

2.6.1 Power and Performance Management Through Look-a-head Control

layer resource management framework for multi-tier application to increase the CP

sequential optimization problem. They

system configurations based on the number of active servers, number of VMs, required
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revenue by reducing the energy consumption, switching costs, and SLA violations. The

authors identified resource provisioning as a

Kusic, Kephart, Hanson, Kandasamy, and Jiang (2009) proposed a dynamic two

employed the limited look-a-head control (LLC) and control theory to identify the new



CPU capacity to be provisioned to each VM, and number of servers to be turned off.

The results showed that LLC can achieve power savings of up to 26% with SLA vio­

lations of not more than 1.6% of the total requests over 24 h. Their proposed model is

limited by that it requires prior knowledge of the shared CPU of each VM. Moreover, the

resource optimization requires more than 30 min for a small system, thereby making it

inapplicable to large-scale systems.

2.6.2 Cost-aware of Multi-tier Applications

Han, Ghanem, Guo, Guo, and Osmond (2014) proposed a single layer framework

to address the resource scaling problem of multi-tier service in order to minimize the

resource usage costs. The scaling process detects all the bottleneck tiers first and then

iteratively resolves these tiers to prevent the creation of another bottleneck. For ex­

ample, if the workload change trends increase the request rate, then the scaling-up

desired response time is achieved. On the contrary, if the workload change trends de-

each time from the tiers. Notably, removing one server does not violate the SLA.

The results showed that the proposed method can successfully identify the bottle­

neck and requires 2-3 min to restore the desired response time. Their proposed ap­

proach is limited by that it reduces the resource provisioning costs at the service level

and ignores the resource shorten at the data center level, thereby significantly affecting

the resource usage costs.
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server to this tier. The scaling algorithm repeats the service scale-up process until the

crease the request rate, then the scaling-down algorithm iteratively removes one server

algorithm identifies the tier that has the least cost as the bottleneck and adds a new



2.6.3 Resource Scaling for Web Applications

Jiang et al. (2013) investigated the problem of virtual resource scaling for web

applications to achieve a cost-latency tradeoff by reducing the resource usage costs and

SLA violations. The authors developed a regression model to predict the web request

volume in the future time unit. They employed an autocorrelation function to identify

the key features of the regression model. The authors developed a performance model

using queuing network theory and Marko’s chain to make a decision for application

scaling based on the predicted latency time. The authors employed the regression and

performance models to formulate the resource scaling as optimization problems and

applied an exhaustive search method to determine the on-demand resources.

The results demonstrated that the linear regression model can identify future web

requests with minimum prediction error. The comparison with PEAK, PEAK (x3/4),

and CAP (x2) approaches indicated that the proposed approach can improve cost sav­

ing and reduce SLA violations. This approach is limited by that the performance model

is application dependent, and the prediction padding should be adjusted for each ap­

plication.

2.6.4 Feedback Control Resource Management in Multiple Web Applications

Ashraf, Byholm, Lehtinen, and Porres (2012) proposed a reactive feedback control

given infrastructure and to scale the application tier as well as the physical server and

thus reduce the resource usage costs. The main idea is to deploy multiple simultaneous

applications on a single VM. ARVUE does not need any prior knowledge of the running

19

framework called ARVUE to automatically scale and deploy multiple applications on a



applications and only uses the lower and upper CPU thresholds. The algorithm has two

main components: global and local controllers. The global controller implements the

scaling operations for the application server tier, and the web applications based on the

CPU thresholds. The local controller logs the server- and application-level utilizations

and sends the utilization data to the global controller. The authors employed additional

VMs to absorb the sudden peak load and to reduce the VM provisioning delay.

The experimental results showed that sharing VM resources among different web

applications can drastically minimize the number of running VMs. ARVUE is limited by

that the CPU thresholds should be adjusted depending on each application behavior,

the additional VMs incur excess resource usage costs, and the algorithm ignores the VM

migration costs.

2.6.5 Economical Resource Provisioning of A^-tier Applications

Xiong et al. (2011) addressed the resource management problem in multi-tier ser­

vice under resource budget and performance constraint. The resource provisioning

problem is divided into two sub-problems (e.g., service level, and VM level): one is

trailer employs feedback with the Lagrange function to determine the optimal amount

of resources that can reduce the resource usage cost with a minimum SLA performance

by the application controller among the application tiers to achieve the target response

time.
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the identification of on-demand resources, and the other is the partition of resources.

Queuing network theory is applied to build a performance model. The application con-

violation. On the container level, a second controller partitions the identified resources



The experimental results demonstrated that the performance controllers saved re­

posed approach is limited by that it needs to solve complex optimization problem, the

application controller is centralized, and the performance model may not capture the

shape of the response time distribution.

2.6.6 Agile Resource Allocation of Multi-tier Applications

Urgaonkar et al. (2008) addressed the problem of dynamic VM provisioning in

multi-tier applications that have long- and short-term workload variations. The objec­

tive is to determine the amount of resources to be allocated for maintaining the de­

sired QoS. The proposed resource management framework includes a nucleus software

component that resides in every server and periodically measures the performance and

resource utilization. The component then delivers these measurements to the control

panel. The control panel applies a queuing-based analytical model to estimate the re­

quired capacity to be allocated to each tier for satisfying the performance metrics based

on the decomposition and the end-to-end delay across various tiers. The resource man­

agement framework has two distinct modules: predictive and reactive modules. The

predictive module predicts the trends of workload variation based on historical ob­

servations first and then estimates the required resources to accommodate long-term

change in workload.

The reactive module corrects the errors caused by the deviation of the long-term

workload or by unanticipated flash crowds. However, allocating new resources is time
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sources up to 20% compared with utilization and equal-share approaches. Their pro­

consuming. Therefore, resources are switched from one application to another to re-



duce VM deployment overhead. Consequently, two approaches are employed: fixed-rate

and measurement-based ramp downs. The resources in the fixed-rate ramp down are

switched from under-loaded service to another in a fixed period of time. On the con­

trary, the measurement-based ramp down is a conservative approach and significantly

depends on decreasing the rate of the resource usage of the existing session.

The experimental results showed that the proposed resource management frame­

work accurately identifies the bottleneck tier and precisely determines the required

capacity. The comparison of the proposed framework with the black-box approach

showed the superiority of the former as it accounts for the replication constraints im­

posed on each tier. Their proposed framework is limited by that it fails to address

the consolidation of data-intensive services (e.g., database scalability) and ignores the

release of unused system resources.

2.6.7 Analytical Model for Resource Provisioning

source allocation in multi-tier service to satisfy the SLA performance requirement. A

theoretical framework based on the regression model and queuing network theory is

introduced. The regression model estimates the on-demand CPU capacity required by

each transaction. The authors developed an analytical model of queues. This model

uses the results of the regression model to evaluate the required resources under chang­

ing workload conditions. The mean-value analysis applied to detect the mean system

throughput and end-to-end delay.
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Q. Zhang, Cherkasova, Mi, and Smimi (2008) investigated the problem of re-



The results showed that the regression model can identify the cost of the transaction

of the front-end tier with higher accuracy than the cost of the transaction of database

tier. Moreover, the results from the analytical model exactly match those from the

experiment. This approach is limited by that it is service dependent and cannot capture

the dynamic change in workload, the predication model is overestimated over 15%,

the detection of bottleneck tier is missing, and the method for adding resources for

absorbing the workload spike is not provided.

2.6.8 Queuing-model-based Resource Provisioning of Multi-tier services

Liu, Heo, Sha, and Zhu (2008) proposed adaptive admission control framework

based on queuing model predictor and an online adaptive control loop to identify the

application capacity for achieving the target response time. The queuing model pre-

sponse time given the current observed workload. The feedback control adjusts the

admitting probability and corrects the residual error as a result of the inaccuracy of

the queuing model and the change in workload. This controller adopts the regression

model for identifying the relationship between the residual error and the admitting

probability.

The authors evaluated the proposed approach through a test-bed experiment using

the TPC-W (TPC-W, 2015) benchmark. The results showed that the proposed approach

is superior to the queuing model, adaptive control (Karlsson, Karamanolis, & Zhu,

2004; Y. Lu, Abdelzaher, & Tao, 2003), and proportional-integral (PI) control (Kamra,

terms of aggregating
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Misra, & Nahum, 2004; Sha, Liu, Lu, & Abdelzaher, 2002) in

diets the probability of accepting incoming requests that can achieve the desired re-



on an offline estimation of the service time.

2.6.9 Self-tuning Controller for Multi-tier Web Applications

Kamra et al. (2004) proposed a control-theoretical method for admission control in

multi-tier service to keep the response time within the target value. The proposed self­

tuning controller called Yaksha is composed of a Proportional Integral (PI) controller

and an M/G/I processor-sharing queue. The processor-sharing queue estimates the

average response time as a function of service cost and incoming request rate and

adjusts the parameters of the feedback-based PI controller. The feedback-based PI

controller employs a closed-loop function to estimate the number of requests to be

dropped for achieving the target response time and high throughput during system

overload.

The results showed that Yaksha can successfully achieve the target response time

and provide high throughput under changing workload conditions. Yaksha is limited

by that the adaptive controller is based on control theory, the computing applications

are nonlinear, and the use of the average response time as a performance metric.

2.6.10 Virtualization-based Autonomic Resource Management

X. Wang et al. (2008) addressed the problem of resource provisioning in multi­

tier services to meet different service quality targets at a minimum resource usage cost.

They proposed a resource management framework that consists of self-configuration,

self-optimizing, self-protecting, and self-healing modules. The self-optimizing module
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error and dropping request rate. Their proposed approach is limited by that it is based


