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PENGESANAN DAN PENGELASAN KALSIFIKAST KANSER PAYUDARA
MENGGUNAKAN PEMBELAJARAN MESIN DENGAN TEKNIK
AUGMENTASI

ABSTRAK

Kalsifikasi kanser payudara merupakan antara petunjuk awal malignan tetapi sering sukar
dikesan kerana penampilannya yang halus dan bergantung kepada tafsiran radiologi yang
subjektif. Kajian ini bertujuan untuk meningkatkan pengesanan dan pengelasan kalsifikasi
payudara dalam imej mamogram melalui integrasi teknik pra-pemprosesan imej dan
augmentasi bersama pembelajaran mesin. Sebanyak 234 imej mamogram beranotasi telah
dikumpulkan daripada Sistem Pengarkiban dan Komunikasi Imej di Hospital Pakar
Universiti Sains Malaysia. Imej-imej ini telah diaugmentasi menggunakan pelbagai
transformasi termasuk putaran, pusingan cermin, kabur Gaussian, dan deformasi elastik,
menghasilkan jumlah dataset sebanyak 2574 imej bagi meningkatkan kepelbagaian dan
mengurangkan risiko overfitting. Teknik pra-pemprosesan seperti penukaran ke skala
kelabu, peningkatan kontras menggunakan CLAHE, dan penapisan top hat telah
digunakan untuk meningkatkan keterlihatan ciri kalsifikasi. Lima model pembelajaran
mesin telah dinilai termasuk Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Random Forest (RF), Logistic Regression (LR), dan model ensemble Soft Voting.
Prestasi model diukur menggunakan ketepatan, ketepatan positif (precision),
kebolehpulihan (recall), spesifikiti, dan skor F1. Pengesahan dilakukan menggunakan 5-
fold cross validation dan kepentingan statistik diuji dengan ujian Friedman dan ujian
Wilcoxon Signed Rank. Berdasarkan keputusan, model KNN mencapai ketepatan purata

tertinggi sebanyak 87.61% diikuti oleh SVM sebanyak 79.07%, RF sebanyak 78.64%, dan

xiil



LR sebanyak 69.62%. Penemuan menunjukkan bahawa model KNN sangat berkesan
dalam membezakan antara kalsifikasi benign dan malignan kerana kepekaannya terhadap
corak ciri tempatan. Walaupun Logistic Regression mempunyai masa latihan paling
singkat, ia menunjukkan prestasi terburuk dalam semua metrik penilaian, menandakan
bahawa kelajuan latihan sahaja tidak mencukupi sebagai ukuran utiliti diagnostik.
Keputusan juga menegaskan bahawa augmentasi dan pra-pemprosesan yang betul bukan
sahaja meningkatkan ketepatan model tetapi juga menyumbang kepada prestasi yang lebih
seimbang antara kepekaan dan spesifikiti. Penggunaan pengesahan statistik mengesahkan
bahawa perbezaan antara prestasi model adalah signifikan, sekali gus mengukuhkan
kebolehpercayaan penemuan. Kajian ini menunjukkan bahawa model pembelajaran mesin
apabila disokong oleh strategi penyediaan data yang betul, boleh menjadi alat yang
berkesan dalam pembangunan sistem diagnostik bantuan komputer untuk pengesanan
awal kanser payudara.

Kata kunci: Kanser payudara, kalsifikasi, mamogram, pembelajaran mesin, augmentasi,

pengelasan
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DETECTION AND CLASSIFICATION OF BREAST CANCER
CALCIFICATIONS USING MACHINE LEARNING WITH AUGMENTATION
TECHNIQUE

ABSTRACT

Breast cancer calcifications are among the earliest indicators of malignancy but are often
difficult to detect due to their subtle appearance and reliance on subjective radiological
interpretation. This study aimed to enhance the detection and classification of breast
calcifications in mammographic images through the integration of image preprocessing
and augmentation techniques with machine learning. A total of 234 annotated
mammographic images were collected from the Picture Archiving and Communication
System at Hospital Pakar Universiti Sains Malaysia. These images were augmented using
various transformations including rotation, flipping, Gaussian blur, and -elastic
deformation, resulting in a total dataset of 2574 images to improve variability and reduce
the risk of overfitting. Preprocessing techniques such as grayscale conversion, contrast
enhancement using CLAHE, and top hat filtering were applied to improve the visibility
of calcification features. Five machine learning models were evaluated including Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Logistic
Regression (LR), and a Soft Voting ensemble model. Model performance was measured
using accuracy, precision, recall, specificity, and F1 score. Validation was performed using
5-fold cross validation and statistical significance was tested with the Friedman test and
Wilcoxon Signed Rank test. Based on the results, the KNN model achieved the highest
average accuracy of 87.61% followed by SVM at 79.07%, RF at 78.64% and LR at

69.62%. The findings suggest that the KNN model was particularly effective at
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distinguishing between benign and malignant calcifications due to its sensitivity to local
feature patterns. Although Logistic Regression had the shortest training time, it performed
the poorest in all evaluation metrics, indicating that training speed alone is not a sufficient
measure of diagnostic utility. The results also highlight that proper augmentation and
preprocessing not only improve model accuracy but also contribute to more balanced
performance across sensitivity and specificity. The use of statistical validation confirmed
that differences among the model performances were significant, thus reinforcing the
reliability of the findings. This study demonstrates that machine learning models when
supported by proper data preparation strategies, can serve as effective tools in the
development of computer assisted diagnostic systems for early breast cancer detection.

Keywords: Breast cancer, calcification, mammogram, machine learning, augmentation,

classification
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Breast cancer remains a critical health concern for women globally, requiring
continuous advancements in early detection and diagnosis (Nawaz et al., 2018). However,
the interpretation of medical images, such as mammograms, often relies on manual
analysis by radiologists, which can be subjective and increases the risk of diagnostic
variability and human error (Madani et al., 2022). To address these limitations, artificial
intelligence (Al), particularly machine learning (ML) and deep learning (DL) techniques,
has appeared as a promising approach to enhance the accuracy and efficiency of breast
cancer detection in medical imaging (Madani et al., 2022). The integration of artificial
intelligence into biomedical technology has led to remarkable progress in various domains
(Kormpos et al., 2025). The application of artificial intelligence in breast cancer screening
and detection has huge significance, potentially saving radiologists time and

compensating for beginners' inexperience (Gg et al., 2019).

The development and refinement of computer-aided diagnosis (CAD) systems
utilising deep learning methodologies offer a pathway to automatically analyse breast
images and improve diagnostic accuracy, reducing the need for manual feature extraction
(Jiménez-Gaona et al., 2020). Nonetheless, the success of such models heavily depends
on the availability of large, diverse, and balanced datasets which the conditions that are
often unmet in medical imaging, especially in detecting subtle features like calcifications.

Data augmentation has appeared as a powerful strategy to address dataset limitations by

1



synthetically increasing training sample variability (Shorten el al., 2019). While
conventional augmentation techniques can help reduce overfitting, they often failed to
capture the complex textures and subtle patterns of calcifications in mammographic
images (Oza et al., 2022). Oza et al. (2022) stated that recent advances, including the use
of generative adversarial networks (GANs) and medical-specific transformations, offer

promising alternatives but remain underexplored in this context.

1.2 Problem Statement

Calcifications can vary significantly in size, shape, and distribution. This variability
can make it difficult for radiologists to develop a consistent approach in identifying them.
The presence of overlapping structures in mammograms can further complicate the
detection process. Radiologists often face difficulties in accurately analysing
mammograms to differentiate between benign and malignant calcifications. This can lead
to unnecessary biopsies or missed diagnoses, adversely affecting patient outcomes

(Mahmood et al., 2021).

The ability to accurately detect calcifications is highly dependent on the radiologist's
experience and training. Less experienced radiologists may struggle more with identifying
calcifications, leading to variability in diagnostic accuracy across different practitioners.
The analysis of mammograms is often time-consuming and subjective, which can result
in inconsistencies in diagnosis. This subjectivity in interpretation can lead to missed
detections or false positives, highlighting the need for more reliable methods (Grinet et

al., 2024).



The primary goal is to enhance the diagnostic accuracy of CAD systems in
detecting breast cancer calcifications by leveraging machine learning models and
augmentation methods to improve feature extraction and classification. The ability of
models to generalise new data is crucial for their practical application in medical imaging
(Prodan et al., 2023). However, achieving this capability is challenging, especially when
the training dataset is small or imbalanced. The validation error should ideally decrease
alongside the training error, indicating that the model is learning effectively and can
generalise well. Overfitting is a common issue in CAD systems due to the limited dataset
size, emphasising the need for augmentation techniques to prevent overfitting and improve

model generalisation (Prodan et al., 2023).

1.3 Objective

1.3.1 General Objective

To improve detection accuracy of calcifications in mammograms using

augmentation techniques.

1.3.2 Specific Objectives

1. To apply image processing to specify details of calcifications by using
augmentation techniques.

2. To classify the image of breast calcifications as benign or malignant using
machine learning models.

3. To evaluate the performance of machine learning models in classifying the

image of breast calcifications.



1.4 Hypothesis

1.4.1 Null Hypothesis

Machine learning classifiers failed in differentiation between benign and
malignant breast calcification compared to BIRADS' subjective assessment with

pathology report evidence.

1.4.2 Alternative Hypothesis

Machine learning classifiers has high accuracy in differentiation between benign
and malignant breast calcification compared to BIRADS' subjective assessment

with pathology report evidence.

1.5 Significant of Study

While augmentation techniques are essential for improving breast cancer
detection, addressing their limitations is crucial for enhancing model robustness and
generalisation in clinical settings. There are still future research that should focus on
developing standardised protocols for augmentation and exploring the integration of
diverse datasets. Therefore, this study aims to explore and apply various data
augmentation techniques to enhance the performance of machine learning models in
detecting and classifying breast cancer calcifications in mammographic images. By
implementing and evaluating a range of augmentation methods, the study seeks to
determine their impact on model robustness, accuracy, and generalisability. The findings
aim to provide practical insights into the application of augmentation strategies for
developing reliable Al-based diagnostic tools, ultimately improving early detection of

breast cancer calcifications.



1.6 Conceptual Framework

This study proposes a structured framework for developing and evaluating
machine learning models to detect breast cancer calcifications. It begins with labeling
mammographic images as malignant or benign, followed by data augmentation to improve
variability and address class imbalance. The images are then preprocessed, and key
features are extracted for classification. The dataset is split into training and testing sets
(80:20) to ensure reliable model development. Machine learning classifiers are trained and
validated, and their performance is evaluated using standard metrics. This framework
provides a systematic and replicable approach to enhancing the accuracy and reliability of

computer-aided breast cancer detection.

|dentify the dataset as malignant and benign

h 4

Data preprocessing

h 4

Data splitting

|
| :

Training set (80% of dataset) Testing set (20% of dataset)
I |

¥

Model training and evaluation

k

Model validation

Figure 1.1 Conceptual Framework adapted from Aziz et al. (2024)



CHAPTER 2

LITERATURE REVIEW

2.1 Breast Cancer Calcifications and Imaging Technique

Breast cancer disease is one of the most recorded cancers which leads to morbidity
and death among women around the world. Breast cancer occurs when the cells in the
lobules or the ducts become abnormal and divide uncontrollably (Jiménez-Gaona et al.,
2020). These abnormal cells begin to invade the surrounding breast tissue and may
eventually spread via blood vessels and lymphatic channels to the lymph nodes, lungs,
bones, brain and liver. Breast calcifications are small calcium deposits that can appear in
mammograms and are often associated with breast cancer. Their presence can indicate
benign or malignant lesions, making accurate diagnosis crucial for effective treatment
(Udoh et al., 2024). The challenge lies in distinguishing between these types of lesions, as

the automatic classification of microcalcification clusters remains complex.

flatty tissue Side view of breast

\ i skin lobules

ducts

nipple

cyst

Lymph nodes

Figure 2.1 The anatomical structure of the female breast, highlighting the lobes—regions where
epithelial tumors or cysts commonly develop (Jiménez-Gaona et al., 2020).



Early detection remains the most effective approach for improving breast cancer
outcomes, with screening playing a crucial role in identifying the disease at an early, more
treatable stage (Trimboli et al., 2020). Among the available screening methods,
mammography has been widely validated as an effective tool, contributing to a reduction
in breast cancer mortality rates by approximately 10% to 30% (Saadatmand et al., 2015).
According to Trimboli et al. (2020), as an X-ray—based imaging technique, mammography
is the most employed radiological method by healthcare providers for routine breast

cancer.

The Breast Imaging Reporting and Data System (BI-RADS), developed by the
American College of Radiology, serves as a standardised framework for interpreting and
reporting findings from breast imaging modalities. This system aids in assessing the
probability of malignancy and guides clinical management decisions. BIRADS categories
range from 0 to 6, with each category indicating a different level of suspicion for cancer,
thus facilitating communication among healthcare providers and ensuring consistent
patient care (Barazi and Gunduru, 2023). By providing a uniform language for reporting,
BI-RADS enhances diagnostic accuracy and supports informed clinical decision-making,

thereby contributing to improved patient management and outcomes.

However, radiologists face significant challenges in distinguishing benign from
malignant calcifications in mammograms, primarily due to the subtle differences in shape,
size, and distribution of calcifications (Kim et al., 2018). Uncertain calcifications may be
falsely identified as malignant, resulting in unnecessary biopsies, anxiety for patients, and

increased healthcare costs. On the other hand, missed malignant calcifications may delay
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critical treatment, adversely affecting patient outcomes (Mahmood et al., 2021). Kim et

al. (2018) highlights that even experienced radiologists can struggle with this

differentiation, especially in dense breast tissue, which can obscure calcifications.

Table 2.1 BI-RADS classification. Adopted from ARC BI-RADS Atlas.

Category

Need additional
(0] imaging or prior
examinations

1 Negative

Management
Recall for additional
imaging and/or await prior
examinations

Routine screening

Likelihood of cancer

n/a

Essentially 0%

2 Benign

3 Probably Benign

Routine screening

Short interval-follow-up (6
month) or continued

Essentially 0%

>0 % but < 2%

4 Suspicious

of malignancy

6 Known biopsy-
proven

Highly suggestive

Tissue diagnosis

Tissue diagnosis

Surgical excision when
clinical appropriate

2.2 Modern Diagnostic Tools in Medicine

4a. low suspicion for
malignancy (>2% to < 10%)

4b. moderate suspicion for
malignancy (>10% to < 50%)

4c¢. high suspicion for

malignancy (>50% to <95%)

295%

n/a

The analysis of mammograms is essentially time-consuming and subjective, often

leading to diagnostic inconsistencies between radiologists. Differences in training,

experience, and individual judgment consequently lead to high false positive result,

particularly in complex cases with subtle abnormalities. This variability introduces a risk

of missed detections, both of which significantly impact patient care (Prodan et al., 2023).

Subjectivity 1s a known challenge in radiology, especially in high stakes diagnoses like

breast cancer. Al-based tools have been explored to address this issue, aiming to provide

standardised interpretations that reduce the dependency on individual judgment. In a

recent review, Prodan et al. (2023) claimed that Al trained on large, diverse datasets can
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assist radiologists by providing consistent analyses, potentially reducing the number of

missed diagnoses and unnecessary procedures.

Since the introduction of digital imaging and the establishment of the Digital Imaging
and Communications in Medicine (DICOM) format as the industry standard, traditional
computer-aided diagnosis (CAD) systems have primarily functioned as supportive tools
in radiological diagnostics. These systems control domain knowledge and manually
crafted rules to perform specific tasks, such as detecting, classifying, and segmenting
medical images (Russell, 2021). In contrast, contemporary artificial intelligence (Al)-
based CAD systems operate more autonomously, functioning as standalone diagnostic
tools. Rather than relying on predefined rules, they utilise statistical methods, machine
learning (ML) or deep learning (DL) techniques to execute tasks, eliminating the need for

specific domain expertise (Russell, 2021).

Al represents the main concept of machines that own intelligence like or even
exceeding human cognitive abilities. This enables them to perform complex tasks that
require advanced perception and problem-solving skills, like those carried out by humans
(Russell, 2021). Within the field of AI, ML and DL, equips machines with the ability to
learn how to solve problems by analysing relevant data. This enables machines to develop

highly refined and sophisticated representations based on the data they process.



Artificial Intelligence

Machine Learning
(Classical Methods)

Deep Learning

Figure 2.2 The relationship between Al, ML and DL (Prodan et al., 2023).

Binary classification has been widely adopted in the field of breast cancer detection
due to its simplicity and effectiveness. By focusing on two distinct outcomes, typically
benign versus malignant, it simplifies the classification task, making the results easier to
interpret and the model performance more transparent (Lin et al., 2025). This approach is

particularly beneficial in medical diagnostics, where clear decision-making is essential.

According to Lin et al. (2025), studies have shown that binary classification
models can achieve high levels of accuracy and sensitivity, which is critical in
minimising misclassification and ensuring timely treatment. For instance, feature-
based machine learning algorithms have demonstrated strong performance in
distinguishing between benign and malignant mammograms. The clarity provided by
binary outcomes assists radiologists in making informed clinical decisions, especially
in cases where early detection significantly improves patient prognosis.

In addition, binary classification helps streamline the use of resources by
prioritizing patients who require immediate medical attention, contributing to more

efficient healthcare delivery (Loizidou et al., 2023). Its straightforward structure also
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allows for easier visualization and interpretation of decision boundaries, making it a
useful starting point for both practical applications and further research (Lin et al.,
2025). Furthermore, it requires relatively less computational effort compared to multi-
class classification models, which adds to its practicality. Studies by Loizidou et al.
(2023) mentioned that the binary classification framework also serves as a foundation
for the development of more advanced systems, such as multi-class classification or
longitudinal image analysis using sequential mammograms. Overall, binary
classification presents a reliable, efficient, and interpretable method for supporting

breast cancer diagnosis and enhancing early detection outcomes.

2.3 Image Preprocessing

Image preprocessing is a crucial step in breast cancer classification using machine
learning, as medical images often contain noise, artifacts, or sensitive data that needs to
be addressed before being processed by a CAD system (Grinet et al., 2024). Preprocessing
enhances image quality by removing noise, which is essential for improving segmentation
results (Al-Fahaidy et al., 2022). Various techniques are employed to improve the
detection of microcalcifications, which are early indicators of breast cancer. Research
studies have consistently demonstrated the effectiveness of these preprocessing methods
in improving diagnostic accuracy and facilitating automated cancer detection (Murcia-

Gomez et al., 2022)

One of the fundamental preprocessing techniques is noise reduction, which removes
unwanted artifacts that can obscure essential features in medical images (Jiménez-Gaona

et al., 2020). Median filtering is widely used to eliminate salt-and-pepper noise while
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preserving important edges, ensuring better clarity in mammograms. Similarly, Gaussian
filtering smooths textures and reduces random noise, making abnormalities such as
microcalcifications more visible for analysis (Gomez-Flores and Pereira, 2023). These
methods enhance image quality, allowing machine learning models to process clearer

inputs for improved classification performance.

Different traditional methods such as Histogram equalization (HE), Adaptive
Histogram Equalization (AHE) and Contrast limited adaptive Histogram Equalization
(CLAHE) can be used to enhance the image (Jiménez-Gaona et al., 2020). Contrast
enhancement techniques are crucial in medical imaging, as they improve the visibility of
subtle abnormalities. HE redistributes pixel intensities, making variations in breast tissue
more distinct. CLAHE further refines this process by adjusting local contrast and
preventing over-amplification, which can distort image features. These contrast
enhancement methods significantly aid in distinguishing between benign and malignant
lesions, contributing to more precise diagnosis and classification (Abo-El-Rejal et al.,

2024).

Grayscale conversion is an essential step in image preprocessing, particularly for
medical imaging applications. Converting RGB images to grayscale simplifies processing
and reduces computational complexity while preserving critical pixel variations that are
essential for detecting tumors. The weighted sum method is commonly used to maintain
intensity differences while removing unnecessary color information, ensuring that

machine learning models focus on relevant features (Murcia-Gomez et al., 2022). This
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transformation facilitates better segmentation and feature extraction for cancer

classification.

Normalisation ensures consistency across images, allowing machine learning
models to generalise effectively. Min-Max scaling normalises pixel values within a
specified range, ensuring uniformity across datasets, while Z-score normalisation
standardizes pixel intensities by adjusting them based on statistical measures such as mean
and standard deviation. These normalisation methods mitigate discrepancies between
images, reducing bias and improving classification accuracy (Goémez-Flores and Pereira,

2023).

Segmentation is the separation of region of interest (ROI) such as
microcalcifications from the background of the image. For cancerous images, it is
necessary to identify the lesion area and extract its relevant features for further analysis
(Prodan et al., 2023). In traditional CAD systems, the tasks of specifying ROI such as
initial boundary or lesions, are accomplished with the expertise of radiologists. In digital
mammography, traditional segmentation methods are generally categorised into four main
types which are threshold-based segmentation, region-based segmentation, pixel-based
segmentation, and model-based segmentation (Jiménez-Gaona et al., 2020). Otsu’s
thresholding is an effective method that automatically determines an optimal threshold to
differentiate foreground and background regions, making lesion identification more

precise. (Abo-El-Rejal et al., 2024).

After segmentation, feature extraction and selection are the next steps to remove

the irrelevant and redundant information of the data being processed. Features are
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characteristics of the ROI taken from the shape and margin of lesions, masses, and
calcifications. These features can be categorised into texture and morphologic features,
descriptor, and model-based features, and help to discriminate benign and malignant
lesions. Most of the texture features are calculated from the entire image or ROIs using
the gray level value and the morphologic features focus on some local characteristics of
the lesion (Jiménez-Gaona et al., 2020). Feature extraction plays a key role in breast
cancer classification, enabling machine learning models to identify distinct characteristics
of malignant and benign lesions. Edge detection techniques, such as Sobel and Canny
filters, highlight tumor boundaries, aiding in precise classification (Murcia-Gomez et al.,

2022).

Standardising image dimensions through resizing ensure compatibility with
machine learning models, while cropping refining image inputs by focusing on specific
regions containing potential abnormalities. These preprocessing adjustments improve
classification accuracy by ensuring that models concentrate on relevant features without
unnecessary distractions (Abo-El-Rejal et al., 2024). Preprocessed images undergo
validation to confirm the effectiveness of applied techniques. Visualisation tools allow
researchers to examine processed images, ensuring enhanced clarity and feature visibility.
Comparing preprocessed images with raw images helps assess the improvements achieved
through noise reduction, contrast enhancement, segmentation, and normalisation (Murcia-

Gomez et al., 2022).

The study by Soliman et al. (2021) highlights that fuzzy image enhancement

technique not only improves the visual quality of the images but also enhances the
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performance of subsequent image analysis steps. The segmentation process, which utilizes
Otsu's multiple thresholding method, achieves a high accuracy rate, with the segmented
tumor region corresponding to 81% of the ground truth provided by an expert. This
indicates that the proposed segmentation method is effective in accurately identifying
tumor regions in mammograms. The performance of the proposed framework is evaluated
using various metrics, including the Dice coefficient, Hausdorff distance, and Peak Signal-
to-Noise Ratio (PSNR). These metrics confirm the framework's capability to deliver

reliable and precise results in breast cancer detection.

The data preprocessing step involved addressing class imbalance using the
Synthetic Minority Oversampling Technique (SMOTE). SMOTE is designed to tackle the
issue of class imbalance, which is common in medical datasets where one class, for
example malignant cases, may be significantly underrepresented compared to the other
class, for example, benign cases (Kumari et al., 2020). This imbalance can lead to biased
model performance. SMOTE generates synthetic samples for the minority class by
interpolating between existing minority class instances. This means that instead of simply
duplicating existing data points, SMOTE creates new, unique examples that are like the
minority class instances. According to Kumari et al. (2020), for each instance in the
minority class, SMOTE identifies its nearest neighbors and creates new instances by
taking a weighted average of the features of the instance and its neighbors. This helps in

enriching the dataset with more diverse examples of the minority class.

By applying SMOTE, the researchers were able to create a more balanced dataset,

which is crucial for training machine learning models effectively. A balanced dataset helps
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in improving the model's ability to learn from both classes equally, leading to better
generalisation and performance. The study by Nuraeni et al. (2024) also combined
SMOTE with Recursive Feature Elimination (RFE) for feature selection, ensuring that the
models were trained on the most relevant features while also addressing class imbalance

effectively.

2.4 Image Augmentation in Machine Learning

Data augmentation is a technique used to expand the size of a training dataset by
adding variations to existing samples while preserving their class labels. This process
helps improve a machine learning model’s ability to recognize patterns and make accurate
predictions (Al-Fahaidy et al., 2022). One key principle of data augmentation is state
perturbation, where images are slightly altered to create new versions. By artificially
increasing the diversity of training datasets, augmentation techniques can help address
issues such as limited data availability and class imbalances, which are common in

medical imaging (Arshad et al., 2023).

Original Image

MY LR

Rotated by 45° Horizontally flipped Shifted Rotated by 90° Vertically flipped Rotated by 45° with
reshape = True

Figure 2.3 Example of images augmentation after applying geometric transformation (Oza et al.,
2022).
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In deep learning applications for computer vision, three common types of data
augmentation exist which are dataset generation and expansion, on-the-fly data
augmentation, and a combination of both methods (Oza et al., 2022). Since supervised DL
models require large amounts of training data to develop strong inference capabilities,
data augmentation is particularly valuable in cases where only a limited number of images
are available. It involves applying random transformations such as rotation and flipping
to generate new samples, which are then used during the training phase. While dataset
generation and expansion can create numerous new images, these methods do not always
enhance a model’s ability to generalise to unseen data (Al-Fahaidy et al., 2022). On-the-
fly data augmentation, also known as in-place augmentation, is another approach where
image batches undergo random transformations during each training phase. This method
introduces new variations to the model throughout the training process, allowing it to learn

from a more diverse set of images (Oza et al., 2022).

The study by Huang et al. (2024) highlights the significant role of data augmentation
in enhancing model performance, particularly in the context of calcification detection in
mammograms. The proposed CalAttnMix method outperformed existing state-of-the-art
(SOTA) augmentation techniques, achieving an increase in average recall by 3.40% and
mean Average Precision (mAP) by 2.30% compared to the best results from other methods
like Mosaic. The study emphasizes that many existing augmentation methods fail to
ensure class balance, which is critical in medical imaging where certain conditions may
be underrepresented. CalAttnMix addresses this issue by focusing on the minor class,

thereby generating a more balanced dataset that enhances the model's ability to detect
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calcifications accurately. This indicates that effective data augmentation can lead to better

model performance in detecting calcifications.

This technique helps overcome the problem of limited labeled datasets, which is
common in medical imaging. Similarly, another study utilized a sophisticated data
augmentation process that leveraged data denoising, contrast enhancement, and GAN
application, resulting in a significant improvement in classification accuracy ranging from
22.5% to 42.5% compared to traditional scans (Alawee et al., 2024). Different studies
have employed various augmentation techniques. One study used rotation as a form of
data augmentation to increase the size of the input data (Ragab et al., 2019). Another
research incorporated advanced data preprocessing and augmentation techniques along
with a cyclical learning rate strategy to enhance model performance, achieving an

impressive accuracy rate of 99.68% (Al Moteri et al., 2024).

2.5 Machine Learning Models

Machine learning algorithms are automatic learning methods designed to learn from
training data, identifying patterns and performing inference on novel data. These
algorithms can be broadly categorised into supervised and unsupervised learning methods
(Grinet et al., 2024). Supervised learning requires a labeled training dataset, while
unsupervised learning can be trained without labeled data. Supervised machine learning
methods can be further applied as homogeneous or heterogeneous ensemble techniques.
Common machine learning algorithms used in breast cancer diagnosis include Decision
Trees (DT), Naive Bayes (NB), Support Vector Machines (SVM), and Neural Networks

(NN) (Yixuan et al., 2018).
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Based on Yixuan and Zixuan (2018) research, it stated that although surpassed in
performance by deep learning in recent years, traditional ML methods remain relevant,
especially when paired with data augmentation techniques to overcome challenges like
data imbalance and limited annotated datasets. Study by Loizidou et al. (2023), also
mentioned that many traditional machine learning methods have been extensively studied
and validated in various applications, including medical imaging. Their established nature

provides a level of confidence in their performance and reliability.

SVM is a popular algorithm used to classify mammogram images into categories such
as benign or malignant. It works by finding an optimal boundary that separates different
classes as clearly as possible. In the scenario of nonlinearly separable data, the SVM can
use a kernel function to transform the feature space into a higher-dimensional space (Islam

et al., 2020).

The k-Nearest Neighbors (k-NN) algorithm is a simple, instance-based classifier that
predicts the class of a new image based on the majority vote of its k closest samples in the
training set. Although easy to implement, k-NN is sensitive to noise and unbalanced
datasets, which makes augmentation a helpful technique to enhance its performance

(ElOuassif et al., 2021).

Random Forest (RF) is an ensemble learning method composed of multiple decision
trees, offering robustness against overfitting and noise. It is particularly effective when
the dataset is enhanced with augmented images or features, as it can capture complex

relationships between inputs (Nadarajan and Sulaiman, 2021).
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Logistic Regression (LR) is a supervised learning algorithm designed primarily for
binary classification tasks. It models the probability that a given input belongs to a
particular class, using a logistic function to map predicted values between 0 and 1 (Grinet
et al., 2024). In medical image analysis, LR is valued for its simplicity, ease of

interpretation, and effectiveness on linearly separable data.

NB classifiers use probability models to predict the class of input data based on the
assumption of feature independence. Though often less accurate than other methods for
complex imaging tasks, its performance can be improved with balanced feature

representation through augmentation (Nadarajan and Sulaiman, 2021).

Decision Trees (DT) are hierarchical models that split data based on feature thresholds
to create a tree-like structure. Each internal node represents a test condition, and each
terminal node assigns a class label. Due to their intuitive structure and interpretability,

decision trees are widely used in medical diagnostics (ElOuassif et al., 2021).

NN are computational models inspired by the human brain's architecture. Even before
the advent of deep learning, shallow neural networks were widely used in medical
applications due to their capacity to model non-linear relationships between features
(Grinet et al., 2024). These networks consist of input, hidden, and output layers, and use

activation functions to learn complex patterns within the data.

According to Nuraeni et al. (2024) study, the SVM algorithm consistently
outperformed the DT across all metrics, achieving the highest accuracy of 96.64%. This

indicates that SVM is more reliable and effective for breast cancer classification compared
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to DT. The findings suggest that SVM could be a promising tool for early detection and
treatment of breast cancer, potentially leading to improved patient outcomes. The findings
from Alobaid and Bonny (2024) highlights the critical importance of selecting appropriate
Al models to enhance the accuracy of breast cancer diagnosis. Comparative analysis
underscores that while many models can be effective, some significantly outperform

others, which can have substantial implications for early detection and treatment.

Ensemble learning methods have become essential in improving the accuracy and
reliability of breast cancer classification systems. These techniques involve combining the
outputs of multiple classifiers to create a single, more accurate predictive model. By
integrating the strengths of various algorithms, ensemble methods reduce errors, minimise
overfitting, and enhance model generalisation (Al-masni et al., 2018). In breast cancer

detection, where precision is critical, ensemble models are particularly beneficial.

One of the popular ensemble technique is called Bagging, short for Bootstrap
Aggregating. This method works by creating many versions of the original dataset using
random sampling. Each version is used to train a separate model, and the final prediction
is made by averaging the results for regression tasks, or by taking a majority vote for
classification tasks. Bagging helps make predictions more stable and less prone to

overfitting, meaning the model performs better on new data (Wang et al., 2025).

Another method, Boosting, builds a strong model by training a series of smaller,
weaker models one after another. Each new model focuses on correcting the mistakes
made by the previous one. By doing this, the overall system becomes more accurate over

time and is especially effective at handling difficult cases (Wang et al., 2025).
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Lastly, Voting is a straightforward method that combines predictions from several
models. In hard voting, each model gives a vote, and the most common prediction is
chosen. In soft voting, each model provides a probability for each class, and the final
prediction is based on the average of those probabilities. Sometimes, certain models can

be given more weight than others to improve the overall outcome (Cao-Van et al., 2024).

Study by Cao-Van et al. (2024) stated that, each ensemble learning method has its own
strengths and weaknesses. Bagging helps reduce prediction variance and improves
accuracy by combining several models, but it does not address model bias and can be
computationally expensive. Boosting focuses on reducing bias by giving more attention
to difficult cases, which improves accuracy, but it can be overfit on noisy data and takes
longer to train. Stacking combines different models using a meta-learner to reduce both
bias and variance, offering strong performance, though it is complex and resource
intensive. Voting is simple to implement and improves stability by averaging multiple
models, but it cannot fix bias if the base models are already biased. Overall, ensemble
learning is a powerful technique in disease prediction, helping support early diagnosis and

reducing health-related risks

2.6 Evaluation Metrics and Validation Methods

Accurate assessment of machine learning models is crucial in breast cancer
classification to ensure reliable detection of malignant and benign calcifications. Various
evaluation metrics and validation strategies are utilized to measure model effectiveness,
optimise classification accuracy, and validate the impact of augmentation techniques.

Given the range of tasks, including classification, detection, and segmentation, a model's
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performance can be assessed using a number of measures (Grinet et al., 2024). The most
widely used metrics for evaluating the effectiveness of classification techniques are
accuracy, precision, recall, specificity, false-positive rate (FPR), and F1 score (Yixuan and

Zixuan, 2018).

A confusion matrix is a fundamental evaluation tool used in classification problems to
assess the performance of a predictive model by comparing the actual class labels with
those predicted by the model (Hernandez-Del-Toro et al., 2021). These metrics are
determined by quantifying the true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) samples in the dataset. True positive rate (TPR) and sensitivity

are other names for recall. These measurements are provided by:
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Figure 2.4 Concept of confusion matrix (Shanbehzadeh et al., 2022)

Accuracy is the most reported metric in breast cancer classification studies. It
measures the proportion of true results, both true positives and true negatives, among the
total number of cases examined. However, accuracy alone may not provide a complete
picture of model performance, especially in imbalanced datasets (Guo et al., 2024). Area
Under the Curve (AUC) is another frequently reported metric, which evaluates the model's
ability to distinguish between classes. It represents the probability that a randomly chosen
positive instance is ranked higher than a randomly chosen negative instance. This metric

1s particularly useful in binary classification tasks (Yixuan and Zixuan, 2018).

According to Grinet et al. (2024), while less than half of the studies reported
precision or recall, these metrics are essential for understanding the model's performance
in identifying positive cases. Precision measures the accuracy of positive predictions,
while recall or sensitivity assesses the model's ability to identify all relevant instances. In
addition to the Intersection over Union (IoU) of the detection model's bounding boxes,
these metrics are used to evaluate the performance of detection approaches. The IoU, also
known as the Jaccard similarity index (JSI), is a key statistic for evaluating segmentation

algorithms based on the relationship between TP, FP, and FN. It is stated as follows:
24





