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KAJIAN KETEGUHAN CIRI RADIOMIK ®F-FDG PET/CT UNTUK
PEMBANGUNAN BIOPENANDA BERASASKAN IMEJ UNTUK KANSER

KEPALA DAN LEHER

ABSTRAK

Secara konvensional, !®F-FDG PET/CT telah dinilai melalui matrik
biopenanda seperti isipadu tumor metabolisme (MTV), nilai ambilan piawai
(SUVs)untuk ramalan kanser. Walaubagaimanapun, ia tidak mengukur kepelbagaian
tumor yang mencetuskan tentangan terhadap rawatan. Radiomik boeh mengukur
kepelbagaian tumor dengan mengenal ciri dan corak yang ada pada ®F-FDG PET/CT.
Ciri radiomik ®F-FDG PET/CT diperlukan untuk ketepatan atau dalam Kkata lain teguh
untuk tetapan pensegmenan berbeza. Tujuan kajian penyelidikan ini adalah untuk
mengkaji keteguhan ciri radiomik !8F-FDG PET/CT untuk pembangunan imej
berasaskan biopenanda untuk kanser kepala dan leher. Kajian penyelidikan ini
mengkaji keteguhan 44 ciri radiomik terhadap variasi pensegmenan imej, dan
hubungan dengan parameter kualiti imej- nisbah kontras kepada hingar (CNR), nisbah
isyarat kepada hingar (SNR) dan MTV. Kajian ini melibatkan 59 data pesakit kanser
kepala dan leher daripada arkib pengimejan kanser dengan kebenaran. Manual dan
juga semi-automatik pensegmenan bahagian yang dikehendaki (ROI) telah dilakukan
pada dataset. Kepelbagaian antara pemerhati dan dalam pemerhati telah dibuang
dengan melakukan pensegmenan ROI dua belas kali sesi menggunakan kedua-dua
kaedah oleh tiga pakar perubatan nuklear. 44 ciri radiomik daripada 6 Kluster ciri
radiomik telah dikeluarkan daripada ROI. 44 ciri ini dikategorikan kepada lima

kumpulan termasuklah — 3 ciri Global, 9 Ciri Matrik Kejadian Bersama Skala Kelabu

Xiii



(GLCM), 13 Ciri Marik Panjang-Lari Skala -Kelabu (GLRLM), 13 Ciri Matrik Saiz
Zon Skala-Kelabu (GLSZM), 5 Ciri Matrik Perbezaan Ton-Kelabu Kejiranan
(NGTDM) dan satu ciri berasaskan saiz dan bentuk. Analisis kepelbagaian pekali
(COV) telah dilakukan untuk mengkategorikan keteguhan ciri radiomik. Analisis
regresi linear telah menentukan hubung kait antara ciri radiomik dan parameter imej
kualiti. 18% ciri adalah teguh (COV < 5%) berkenaan dengan kepelbagaian
pensegmenan. Semua ciri Global, ciri bentuk dan saiz, ciri NGTDM, 5 ciri GLRLM,
7 ciri GLCM, 7 ciri GLSZM adalah kurang teguh (COV > 20%) berkenaan dengan
kepelbagaian pensegmenan. 4 ciri teguh GLRLM bersama dengan kekasaran NGTDM
dan LZE GLSZM tidak menunjukkan hubungan dengan MTV, CNR, dan SNR (nilai
p > 0.05). Keenam-enam ciri ini adalah calon yang baik untuk pembangunan
biopenanda. Perbandingan pensegmenan manual dan semi-automatik telah
menunjukkan kebolehulangan kaedah pensegmenan semi-automatik adalah lebih
besar daripada kaedah pensegmenan manual. Kepelbagaian penyempadanan ROI telah
berlaku lebih banyak untuk MTV lebih kecil, CNR dan SNR yang rendah. Dalam kajan
ini, pensegmenan semi-automatik lebih digemari berbanding pensegmenan manual
untuk penyempadanan ROI bagi tumor kecil. Keteguhan ciri radiomik dengan kaedah
konvensional matrik ®F-FDG PET/CT boleh digunakan untuk melaporkan
kepelbagaian maklumat untuk pencirian tumor yang lebih baik. Pencirian tumor yang
baik mempromosikan ketepatan rawatan dan diagnostik yang lebih tinggi dengan
menyelesaikan maslaah berkaitan kepelbagaian, perbezaan tisu sihat daripada tumor

dan jangkaan ramalan maklumbalas.
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INVESTIGATION OF ROBUSTNESS OF ®F-FDG PET/CT
RADIOMICS FEATURES FOR THE DEVELOPMENT OF IMAGE BASED

BIOMARKERS FOR HEAD AND NECK CANCER

ABSTRACT

Conventionally, 8F-FDG PET/CT is evaluated through biomarker matrices for
example metabolic tumour volume (MTV) and standardised uptake values (SUVs) for
cancer prognosis. However, they do not quantify tumour heterogeneity that induces
resistance to treatment. Radiomics may quantify tumour heterogeneity by recognising
features and patterns present in the ®F-FDG PET/CT. The radiomics feature of 8F-
FDG PET/CT need to be accurate in other words robust for different segmentation
settings. This study aimed to investigate the robustness of F-FDG PET/CT radiomics
features for image-based biomarker development for head and neck cancer diagnosis.
The robustness of 44 radiomics features was examined over image segmentation
variation, and their relationship with MTV and image quality parameters - signal to
noise ratio (SNR), contrast to noise ratio (CNR). This study involved head and neck
cancer image dataset in ®F-FDG-PET/CT modality of 59 patients from the cancer
imaging archive with permission. Manual and semi-automated segmentations were
performed on the adopted dataset to delineate the region of interest (ROI). Twelve
sessions for each ROl segmentation was performed using both methods by three
nuclear medicine specialists to remove inter and intra observer variation. 44 radiomics
features from the 6 radiomics feature clusters were obtained from the ROI. These 44
features were categorised into 6 groups including — 3 Global features, 9 Grey-Level
Co-occurrence Matrix (GLCM) features; 13 Grey-Level Run-Length Matrix

(GLRLM) features; 13 Grey-Level Size Zone Matrix (GLSZM) features; 5
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Neighbourhood Grey-Tone Difference Matrix (NGTDM) features, and 1 shape and
size-based feature. The coefficient of variation (COV) analysis was performed to
categorise the robustness of the radiomics features. Linear regression analysis
determined the correlation between radiomic features and image quality parameters.
18% of the features were robust (COV < 5%) with respect to segmentation variation.
All the Global features, shape and size-based features, NGTDM features, 5 GLRLM
features, 7 GLCM features, 7 GLSZM features were least robust (COV > 20%) with
respect to segmentation variation. 4 GLRLM robust features along with coarseness of
NGTDM and Large Zone Emphasis (LZE) of GLSZM showed no relation with MTV,
CNR and SNR (p > 0.05). These six features are good candidate for biomarker
development. Comparison of manual and semi-automated segmentation showed that
repeatability of semi-automated segmentation method is greater than manual
segmentation method. The variation in ROl delineation arises more with smaller MTV,
low CNR and low SNR. In this study, semi-automated segmentation is preferred over
manual segmentation for delineating ROI of small tumours. The robust radiomics
features along with the conventional ®F-FDG PET/CT matrices can be used to report
tumour heterogeneity information for better tumour characterisation. Proper
characterisation of tumour would promote higher diagnostic and treatment accuracy
by solving the problem of heterogeneity, distinguishing healthy tissue from tumour

and predicting prognostic response.
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CHAPTER 1

INTRODUCTION

1.1  Background

Head and neck Cancer (HNC) claims 450,000 deaths annually and this number
is predicted to rise by 30% by 2030 (Sung et al., 2021, Johnson et al., 2020). Globally.
head and neck squamous cell carcinoma (HNSCC) ranked as the seventh predominant
cancer with the highest incidence number in Asia (Cheong et al., 2017). Patients with
HNC diagnosis has doubled since 1982 and this trend is expected to continue (Koh et
al., 2019). In Malaysia, HNC is the third most dominant cancer with a total of 4,075
cases (Bray et al., 2020, Husmeela et al., 2021). The 5-year survival rates of only about
10 - 40% confer a poor prognosis of advanced HNC (Wong et al., 2015). The incidence
of HNC in Malaysia was reported to be 8.5 per 100,000 which is higher than the
average global incidence in developed regions (Wong et al., 2015). The inter and intra
tumoral heterogeneity along with complexity present in HNC challenges the effective
diagnosis of HNC (Lépez et al., 2021).

The qualitative diagnosis - invasive biopsy does not reveal the entire tumour
characterisation as it includes extracting part of the tumour lesion. ®F-fluoro-2-deoxy-
D-Glucose positron emission tomography and computed tomography (**F-FDG
PET/CT) is broadly used for prognosis, observation and diagnosis of head and neck
cancer as a means of quantitative diagnosis. The common quantitative measures of
tracer uptake for quantification of 8F-FDG PET/CT are metabolic tumour volume
(MTV), standardised uptake value (SUV) and SUV derivatives. However, they have
limited potential of reflecting the spatial distribution of ®F-FDG. Integration of
radiomics features into ®F-FDG PET/CT head and neck cancer imaging quantifies

tumour heterogeneity by providing precise information about intensity, shape, size,



volume, and texture of cell phenotype that is distinct or complementary to that
provided by clinical reports and proteomic assays (Tixier et al., 2011, Chicklore et al.,
2013, Bailly et al., 2019).

The main goal of radiomics is the extraction of quantitative imaging features
in an automated method and the development of prediction models for non-invasive
diagnosis of lesion phenotypes. Radiomics enables extraction, collection and
evaluation of higher order and statistical datasets through radiographic information
conversion into large-scale and mineable entities (Rizzo et al., 2018, Lambin et al.,
2012). Feature can be understood as an image-derived descriptor of intensity, shape,
texture, or any other visually assessable or quantitatively measurable characteristics of
Image appearance. Several previous studies have described a true correlation between
radiomics features and tumour biological characteristics such as cellularity,
heterogeneity and necrosis, which are often directly involved in other diagnostic or
outcome variables (Cook et al., 2018, Sanduleanu et al., 2018). Imaging features
acknowledged as biomarker have diagnostic standard that characterises the biological
and functional activity of the body (Boellaard, 2017). ¥F-FDG PET/CT radiomics
features can be titled as biomarker only when the features become robust and standard.

Robustness is defined as the ability of a given methodology to generate
accurate segmented volumes under varying acquisition and image reconstruction
conditions. Standardisation includes precise, feasible and accurate radiomics feature
quantification. Radiomics feature analysis includes several steps starting from image
acquisition and ending in statistical analysis. So, *®F-FDG PET/CT radiomics feature
biomarker can be achieved by standardising the complete radiomics analysis process.
Figure 1.1 represents the radiomics analysis workflow and steps toward imaging

biomarker discovery for *8F-FDG PET/CT for head and neck cancer diagnosis. Image



acquisition is the first step of radiomics feature analysis. The second step involves
reconstruction of the acquired image using different software platforms. Sharpening
and smoothing filter processes are applied during image reconstruction. Afterwards,
tumour contour is defined using region of interest (ROI) delineation. Extraction of
textural features from the ROI is performed and statistical model or machine learning

algorithm is developed to attain biomarkers.

Radiomics has received much attention and interest in the field of 8F-FDG
PET/CT imaging. Nonetheless, reproducibility and validation of the published work
are still a big challenge (Gillies et al., 2016, Boellaard et al., 2015, Berenguer et al.,
2018, Welch et al., 2019, Meyer et al., 2019). The absence of unanimously recognized
reference values and definitions have hampered the clinical use of 8F-FDG PET/CT
image biomarker. Furthermore, well-established image processing platform required
to extract, compute features is absent (Vallieres et al., 2018, Hatt et al., 2017,
Bousabarah et al., 2019). As a consequence, results published in one setting cannot be
reproduced in different clinical settings. Manipulation and assessment of a single
image set in two different software platforms result in dissimilar feature values (Foy
et al., 2018). Variation of imaging procedure, 8F-FDG activities, image
reconstruction, data comprehension and uptake time is significant (Messerli et al.,
2019, Beyer et al., 2011, Graham et al., 2011). Additionally, lack of detailed report of
the reproducibility of the experiments and findings aggravates the situation (Traverso

etal., 2018).
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The situation can be solved by standardisation of the radiomics features
definition with supportable references and coherent execution of image assessment
strategies for feature quantification (Uthoff et al., 2019, Bogowicz et al., 2017, Hatt et
al., 2017, Foy et al., 2018). In the interest of strengthening the application of 8F-FDG
PET/CT as imaging biomarkers guidelines on tumour imaging using ®F-FDG PET/CT
have been published and revised (Boellaard, 2009, Schelbert et al., 1998). Currently,
it is well understood that harmonization of imaging modalities is vital alongside
standardising imaging performance for realizing computation of 8F-FDG PET/CT as

biomarker (Boellaard, 2009).

1.2 Problem Statement

Imaging biomarkers, especially quantitative imaging biomarkers, are of great
interest. They can provide a comprehensive view of the whole lesion while capturing
clinically relevant biological predictors such as regional tumour intra-heterogeneity.
Imaging biomarkers provides opportunities to tailor treatment decisions based on
observed responses. Imaging-based quantification and characterisation of tumoural
phenotypes has been the main goal of numerous efforts in recent years developing and
integrating precision oncology in clinical practice (Creff et al., 2020, O'Connor et al.,
2017, Gambhir, 2002). Identifying optimal quantitative image features for computer-
aided diagnosis constitute crucial steps towards the development of robust,
reproducible, standardised, and clinically relevant imaging biomarkers of head and
neck cancer phenotypic characteristics (Hatt et al., 2018, Boellaard et al., 2015). In
recent years, numerous quantitative imaging biomarkers based on different image
features have been proposed. Clinical acceptance of novel imaging biomarkers is

limited and translation into clinical practice generally takes years if not decades.



Currently, tumour response and tumour grading in head and neck cancer are essentially
performed through qualitative measurements or using 1D or 2D descriptors of the size
of lesions (Okada et al., 2005, Mountain, 2000). Subjective visual evaluation of lesions
on clinical medical images might not capture histopathological or genetic features of
disease activity, including intra-tumoural heterogeneity, an important biomarker of
cancer aggressiveness (Julesz et al., 1973, Tixier et al., 2014). Therefore, improved
tumour treatment prescriptions could be achieved with comprehensive quantitative
imaging biomarkers, overcoming the subjectivity of visual interpretation and over-
simplistic assessment of shape markers of pathological structures on medical images.
Thus, standardised and quantitative computational methods have the potential of
improving radiology and oncology workflows in head and neck cancer patient
screening, decision support, detection, and interpretation of findings to alleviate the
current burden on radiologists and radio-oncologists. Image biomarkers cannot be
subjective to segmentation settings rather they should be reproducible in any clinical
settings. In this study, radiomics features were tested against segmentation, tumour
size and image quality variation to identify the features that would be reproducible in

different clinical settings.

1.3 Research Objectives
The main objective of this research was to investigate the robustness of 8F-
FDG PET/CT radiomics features for the development of image based biomarkers for
head and neck cancer diagnosis. The specific objectives of this study were listed as
follows:
i. To evaluate the consistency of the radiomics features for different

segmentation methods



ii.  To analyse the dependency of the radiomics features on MTV and image
quality parameters including- CNR and SNR
iii.  Toevaluate the variation of manual and semi-automated segmentation methods

for image quality parameters

1.4 Scope of Study

In this study, we focus on the importance of image segmentation for robust
radiomics feature generation. We investigated the robustness of the radiomics features
for obtaining stable and reliable features that reflect the biologic heterogeneity present
in the 8F-FDG PET/CT. 44 radiomics features were evaluated to determine the stable
and sensitive radiomics features. The stability and sensitivity were examined against
segmentation variation. Dependency of the features on image contrast, noise and
tumour size was evaluated. We evaluated the head and neck tumour segmentation
accuracy of two different segmentation methods. Variation of the segmentation for

different contrast, noise and tumour size was also examined.

1.5  Thesis Organisation

The thesis contains five chapters. Chapter 1 comprises a general background
of ®F-FDG PET/CT radiomics and its potential as a biomarker. It also includes the
problem statement that shows the need for this research, objectives, and scope of the
research.

Chapter 2 presents the theoretical section related to the research area. It also
consists of the literature review were some research done by the previous researchers

on F-FDG PET/CT radiomics in head and neck cancer is presented.



Chapter 3 includes the research methodology, where materials and the
methodology are presented in detail. This chapter comprises open source QIN HEAD-
NECK data collection, evaluation of ROI segmentation, radiomics feature extraction
process, and stability analysis method of the extracted features.

The results and discussion of the results are presented in chapter 4. The chapter
focus results obtained from stability analysis of the radiomics features. Selection of
robust radiomics features is discussed in this chapter. This chapter includes relation
among the image quality parameters- CNR, SNR, MTV and radiomics features.
Results obtained from evaluation of segmentations and their relation with image
contrast, noise and tumour are presented in this chapter with detailed discussion.

Finally, chapter 5 summarises and concludes the research work with some

suggested future recommendations.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter comprises a detailed review of the available research work on *8F-
FDG PET/CT radiomics for head and neck cancer. In addition, concepts and theories
related to this study were presented in this chapter. As diagnostic imaging is an
important step towards radiomics analysis, the first section is dedicated towards
diagnostic imaging. The main goal of radiomics is non-invasive quantification of
tumour heterogeneity and so tumour heterogeneity is discussed in the following section.
Finally, the radiomics definition, radiomics analysis process and relevant literature are

presented in the later sections of this chapter.

2.2  Diagnostic imaging in head and neck cancer

The advances in clinical imaging play a centre part within the entirety of cancer
management (Fass, 2008, Weissleder, 2006). It precisely identifies tumour area, ration,
metastasis, and whether the treatment may include basic anatomical structures.
Particularly, the integration of genomics and proteomics technologies with anatomical
imaging conveys the molecular and physiological information with anatomical
information, of the subject (Weissleder, 2006). The combination of molecular and
anatomic imaging improves microlevel or macrolevel change distinction, survey and
alter clinical planning in real-time, cancer drugs discovery simplification (Lambin et
al., 2012). More critically, this diagnostic imaging method visualizes tissue in non-
invasive manner and avoids intrusive diagnostic tests. Conventional clinical imaging
procedures are computed axial tomography (CT) imaging, positron emission

tomography (PET) imaging, magnetic resonance imaging (MRI) and ultrasonography.



Our data set consisted PET/CT images only. So, the basic principles of hybrid PET/CT

imaging is discussed in the next section.

221 Hybrid PET/CT Imaging

Positron emission tomography (PET) evaluates the metabolic and molecular
features of a variety of malignancies, but its anatomical structure view is constrained.
CT makes it easier to assess the physical features of tumours, but it cannot capture their
metabolic and molecular characteristics (Seemann et al., 2004). As a result, the
combination of PET and CT enables the correct integration of metabolic and molecular
features of the disorder with anatomical findings, providing additional information for
the diagnosis and staging of tumours. Modern full-ring 3D PET and high-end 16-slice
CT scanners are paired in the most updated design of high PET/CT scanners. Instead of
employing %Ge sources for regular transmission scanning, PET/CT scanners
attenuation-correct PET acquisition using a CT scan. As a result, the examination time
is shortened. However, metallic objects and contrast agents that affect the quality of CT
scans and quantitative measures of standardised uptake values (SUV) may cause

artefacts in the PET images.

In comparison to PET or CT imaging alone, combining PET and CT imaging
technology into a single scanner has a number of benefits. In integrated systems, the CT
may be utilised to precisely localise where anatomical radiotracer uptake occurs, to
adjust for attenuation, and to help accelerate the PET examination. A study of the
uncorrected images may be required to distinguish between actual radiotracer uptake
and tracer activity overestimation brought on by artefacts from the CT-based attenuation
correction. In order to avoid "false™ interpretations of infection, inflammation, or even

cancer surrounding the body, only the absence of increased activity in the unfiltered
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captures may actually indicate absent radiotracer activity in the area of the body. These
methodological aspects must be taken into consideration when analysing changes in

subjective or numerical terms (Seemann et al., 2004).

(@) (b)

Figure 2.1 (@) PET/CT image; (b) PET/CT Scanner. (Retrieved from Kim et al.,
2013)

Typically, PET/CT imaging begins with a targeting beam computation
radiograph, frequently referred as "topogram™ that establishes PET scanning scope. At
first, the patient undergoes CT acquisition equal to the length of topogram for
attenuation rectification and even uptake area detection. Next, PET data acquisition is
performed. The field of view determines the scan area in single acquisition. Typically,
15 cm (approximately) is the standard axial PET field of view. The present PET
scanners have 22 cm, 26 cm field of view options. Only one field of view (FOV) is
necessary for scanning the brain or the heart; however, whole-body imaging is
implemented for investigating the disorder degree in oncology (Figure 2.1).

The whole body cannot be scanned in a FOV. Multiple FOVs are obtained to
cover the total body. However, detectors sensitivity is very poor at FOV edges and so
the fields of view comprise small amount of overlaps (Tout et al., 2016). Figure 2.2

represents the multiple bed positions with small overlaps during the whole-body PET
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scan. The term "bed position™ refers to each of these fields of vision, and every bed
position takes 1.5 to 5 minutes to complete. The scan time depends on the scanner's
sensitivity and the radiopharmaceutical's affinity. Alignment between the PET and the
CT is utilised to identify and correct attenuation as well as reduce movement artefacts.
Balance between patient comfort and immobilisation is very important in order to

preserve PET and CT alignment (Tout et al., 2016).

y %
e
SRS :
I e
: »2 -
3 y :
— h """" |
. L |
1 4 \ I
I e |
I |
I — — g S _ _ |
| |
1 5 I
PR - L o W |
L __ L s i
o % .
| ' |
| I
i i s |

Figure 2.2 Multiple bed positions with small overlaps during PET scan (Retrieved
from Tout et al., 2016).

Positron emission tomography (PET) imaging begins with infusing
radiopharmaceutical into patient body. The radiopharmaceutical is composed of a
positron emitting radionuclide coupled to a chemical component known as the "tracer,"
which functions as a physiological analogue (Basu et al., 2011b). The tracer is chosen
to specifically target the metabolic activity of tumours. The radionuclide is employed

to acquire images and serves as a source of radiation emission that is recorded by the
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imaging scanner. The unstable isotopes known as radionuclides exhibit brief radioactive

decay by positron emission. ®F-Fluorodeoxyglucose (FDG) is the most common

radiopharmaceutical that is employed in PET imaging. The hydroxyl group of glucose

molecule present in FDG is replaced by positron-emitting radioisotope fluorine-18 (8F)
having 110 minutes half-life, to create the 8F FDG tracer.

p—nte +v (Eq. 2.1)

Equation 2.1 represents the decay of a proton (p) into a neutron (n), a positron

(e") and a neutrino (v).
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Figure 2.3 (a) The interaction between positron and electron during PET imaging;
(b) Gamma ray collection by the detectors during PET imaging. (Retrieved from Tout
etal., 2016)

The positron (e*) and a neutrino (v), which are emitted from the nucleus with a
continuous kinetic energy spectrum, receive the energy released during the conversion
process. Depending on its energy, the positron travels a few millimetres through tissues
after being released at a specific point in the body and encounters multiple scattering
process. When a positron meets an electron (e) at the endpoint of its trajectory, they

annihilate, and the remaining mass energy of the two particles is split into two photons

that are each 511 keV in energy and approximately anti-parallel to one another. Figure
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2.3 a represents this interaction electron and positron. In the PET scanner, several rings
of radiation detectors are positioned circulating the body, exteriorly. These detectors
note the detection timing of annihilating photons. Therefore, it detects photons escaping
from the inside of patients.

Figure 2.3 b shows the basic structure of a cylindrical PET scanner, which
comprises many rings of detectors mounted in an axial direction with a patient in the
centre. The high-energy photons are converted into short pulses of visible light every
time an annihilation photon strikes a single detector on a ring composed of a scintillating
crystal. The optically connected crystal and photomultiplier tube (PMT), transform and
multiplies the scintillation ray into an electrical pulse. Line of response (LOR) is line
between two detectors that identifies each annihilation. Individual LOR of the two
concurrent photons carry the information of determining the radiopharmaceutical
position inside the body. During image reconstruction, image projection is formed from
the lines of response. Accurate and precise PET image reconstruction involves
adjustment of attenuation scatters, point spread function and non-uniform response for

a uniform source.

Ring of fixed detectors Rotating X-ray tube and

()

Figure 2.4 (a) Fan beam projection in CT imaging, (b) Multiple detector array in
CT imaging (Retrieved from Bushberg and Boone, 2011).
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In the CT imaging, the total body of medical interest is imaged as slices (cross-
sections) for understanding of the physiological condition of any particular location.
The determination of X- ray attenuation beam's coefficients in the investigated region
of interest (ROI) provides the basis of CT. During CT acquisition of patient, X-ray
attenuation is recorded in a plane perpendicular to the lateral axis of subject together
with a number of lines in that direction. Afterwards, the attenuation coefficients («) map
is reconstructed for the plane. When the photons of the X-ray travel through the body
they interact with tissue or pass through the vacuum unaffected. In the case of
interaction between tissue and X-ray photons, beam attenuation takes place by
scattering or absorption (Council, 1996). The grey-scale values denote the calculated
amount of attenuation. Hounsfield unit (HU) is the greyscale measurement in CT
imaging (Goldman, 2007).

Generally, CT scanners employ fan-beam projection calculation by one else
more arc positioned detector arrays with reference to the tube of x-ray (Bushberg and
Boone, 2011). Figure 2.4 a represents the CT scan settings for implementing fan beam
projection. The x-ray tube is at the top of the fan. As seen in Figure 2.4 a, the detectors
are placed in a circle for covering a 360° view of the subject and the source moves in
this circular path. Each detector measurement relates to a certain set of photons. In this
geometry, the collection of rays is called a fan beam projection. The simultaneous
acquisition of manifold slices is made possible by the employment of several X-ray
detector arrays (Figure 2.4. b). For image reconstruction, cross-sectional measurements
are treated as a slice of a complete ROI. When the slices are placed one after one the

ROI becomes visible.
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2.3  BF-FDG PET/CT radiomics in tumour heterogeneity quantification
Tumours in the head and neck region are very heterogeneous and therefore
difficult to treat. This heterogeneity arises from multiple clonal sub-populations present
in the unit composition of tissues within tumour having totally different properties
(Padhani and Miles, 2010). The proliferation rate, expression of biosignature, ability to
metastasize, and immunological traits are completely different in the multiple clonal
sub-populations. The distinction in properties arises from the distinction in cell
proliferation, blood vasculature, metabolic activity, pH, oxygenation level and necrotic
areas present in sub-population at intervals tumour (Fouad and Aanei, 2017, Lin et al.,
2017). As a result, different spatial intensity patterns are formed from the intratumoural
variations. The difference present in multiple clonal sub-populations within a tumour is
called intratumoural heterogeneity (O'Connor et al., 2015, Davnall et al., 2012, Sala et

al., 2017). Figure 2.5 represents tumour heterogeneity.

(2]
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Tumour cells Lymphocyte Fibroblast =~ Macrophage

Figure 2.5 Conceptual illustration of tumour heterogeneity in head and neck
cancer comprising tumour cells, lymphocytes, fibroblast and macrophages.

In solid cancers, tumour heterogeneousness creates resistance towards treatment
leading to poor prognosis (Samanta and Semenza, 2018). However, the spatial and

temporal variations are captured in ¥F-FDG PET/CT images in multi-level due to
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underlying cellular microenvironments, tissue and anatomical landmarks within tumour
(Basu et al., 20113, Yang and Knopp, 2011). Adequate  information of  tumour
heterogeneity may lead towards precision medicine. Standard tumour heterogeneity
study would provide patient specific molecular traits and these may accelerate tumour
aggressiveness and sensitivity to therapeutic response identification prior to treatment.
Investigation of tumour heterogeneity from histopathological samples (Biopsies) is
challenging because inherent variation of sampling (Vaidyanathan et al., 2019). Also,
characteristic of a particular tumour region does not carry the information of the total
tumour as tumours are mostly heterogenous (Dagogo-Jack and Shaw, 2018, Mroz et al.,
2013). An alternative to the invasive approach could be a deeper analysis of medical
imaging.

Images contain more information than our eye can decipher (Gillies et al., 2016).
Researchers are actively investigating on biomarker measured from medical images as
it holds the potential to quantify tumour heterogeneity. Particularly, morphology (shape,
volume, eccentricity), histograms (variance, skewness, kurtosis) and texture traits hold
information related to tumour heterogeneity (Willaime et al., 2012). ®F-FDG PET/CT
radiomics analysis has the highest potential for characterizing tumour heterogeneity as
it represents the spatial arrangement of grey-level intensities within a given volume of
interest (VOI) as numerical descriptors. Presently, there are five leading radiomics
metrices investigated by the clinical imaging researchers. These five texture units are
grey level co-occurrence matrix (GLCM), grey level run length matrix (GLRLM), grey
level size zone matrix (GLSZM) and neighbourhood grey tone distinction matrix
(NGTDM) (Ang et al.,, 2010, Cheng et al., 2015, Vakkila and Lotze, 2004,
Proskuryakov and Gabai, 2010, Ahn et al., 2016). Section 2.4 is dedicated for the

features definition and methodology of computation details.
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2.4  Definition of radiomics

Advanced quantitative analysis of medical images holds the potential to capture
the genomic heterogeneity of aggressive tumours that are reflected in the heterogenous
tumour metabolism and anatomy. The term ‘radiomics’ represents the advanced
computational analysis of diagnostic images. Radiomics is the study of tumour
characteristics through the generation of higher order spatial data extracted from
medical images (Hatt et al., 2017, Yip and Aerts, 2016). Radiomics analysis is a “top
to bottom” approach for understanding the underlying tumour biology. Substantial
computational textural traits are mined from clinical images in the radiomics analysis
process. These extracted features are associated with different tumour phenotypes. In
the past years, the emerging field of radiomics experienced an exponential growth.
Radiomics is in its early development stage needing standardisation and validation.
However, the use of high-order imaging biomarkers dedicated to the quantification of
intratumoural heterogeneity holds great promise for better tumour aggressiveness
assessment and subsequent treatment personalization.

The workflow of radiomics analysis for its translation into clinical settings is
illustrated in Figure 2.6. Feature extraction from the region of interest (ROI) in the first
and foremost step (Figure 2.6 a) (Mayerhoefer et al., 2020). A complete description of
radiomic features mentioned in the thesis is listed in appendix A. Afterwards,
Spearman’s correlation coefficient, Pearson correlation coefficient, concordance
correlation coefficient or interclass correlation are evaluated so that coefficient
robustness and the reproducibility can be determined (Figure 2.6 b). Depending on the
robustness and reproducibility results, the optimum features are nominated and
redundant features are omitted (Figure 2.6 c) (Cutaia et al., 2021). Artificial

intelligence-based models are developed for disease prediction, prognosis and diagnosis
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for incorporating automatization into the clinical practice (Figure 2.6 d) (Mayerhoefer
et al., 2020). The final outcome will be application of radiomics for achieving clinical
outcomes such as survival prediction and prognosis prediction (Figure 2.6 e) (Li et al.,

2018).
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Figure 2.6 The workflow of radiomics analysis for its translation into clinical
settings.

Radiomic characteristics are derived from ROI. Thousands of distinct features
may presently be obtained by using various mathematical algorithms and operations,
even using artificial intelligence (Figure 2.7). Manual features and automated features
are the two main categories of radiomics features. Through the use of some appropriate
mathematical functions, manual properties are achieved. Shape and texture

characteristics are the most prevalent ones. Deep learning features are acquired
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intuitively by training on massive image samples. The features employed in this thesis
are briefly mentioned below without claiming to be all-inclusive. "Image biomarker
standardisation initiative" (IBSI) document extensively explains each feature (Hatt et

al., 2018).

Deep learning (CNN)
Automated

Machine Leaning

Radiomic features Volume, Surface Area.
Compactness,
Sphericity. Flatness

etc.

Morphological Feature

First order statistics
(Entropy. Contrast,
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Correlation ete.)

Manual

Second Order
Statistics (GLCM.
GLRLM, GLSZM.

NZTDM etc.)

Texture Features

Others (Wavelet,
Gabor filter Law’s
mask)

Figure 2.7 Categories of radiomic features.

In radiomics analysis, textures are a central type of features that can be extracted
from a tumour ROI. Other types of features include morphological and histogram-based
features (Appendix A). However, textures remain the core of radiomic feature
computation given their higher-order characterisation of spatial patterns in imaging
volumes. In this thesis, texture features from five major categories were extracted: a)
Global; b) Grey-Level Co-occurrence Matrix (GLCM) features; ¢) Grey- Level Run-
Length Matrix (GLRLM) features; d) Grey-Level Size Zone Matrix (GLSZM) features;
and e) Neighbourhood Grey-Tone Difference Matrix (NGTDM) features. The primary

and important step towards the computation of the different texture features from these
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four categories is to calculate a matrix P summarizing the neighbourhood properties of
interest (differently for each category). Thereafter, different mathematical operations
can be applied to the different matrices to obtain the final texture features.

First order grey level statistics are known as the Global texture features. In the
ROI, the frequency distribution per voxel intensity is expressed by Global texture
features. Histogram of intensity frequency are employed for Global texture features
determination and include mean, skewness and kurtosis. Among the second order grey
level statistics, grey level co-occurrence matrix (GLCM) represents the neighbourhood
probability of pixel intensity i and pixel intensity j (Figure 2.8). Along a specific
orientation and at a specific length, GLCM denotes how two voxels "co-occur™ with
relation to one another. GLCM has a neighbourhood of 26 connected and so 13 distinct
direction vector are generated in 3D with neighbouring length of 1 (Zwanenburg et al.,
2020). In 2D image, 8 connected neighbourhood with 4 distinct direction vectors is
present with neighbouring length of 1. As a result, a ROI contains 13 distinct GLCMs
for each of the 13 directions in a three- dimensional framework in a neighbourhood
length of one.

GLCM features include contrast, energy, entropy, correlation, homogeneity and
dissimilarity, sum average. Higher value of sum average and homogeneity is correlated
to enhancing lesion. Randomness of intensities in ROI in defined by entropy, where
higher randomness results in higher value of entropy. Enhancing lesions tend to have
low value of entropy. Value of correlation is higher for linear structures such as
honeycomb patterns present in normal median nerves (Ardakani et al., 2022). Based on
the relationships between three or more voxels, various texture matrices are used to
derive the higher-order texture characteristics. The grey level run length-based matrix

(GLRLM) measures the pixels length of connected pixels with equal value to determine
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grey level path length (Figure 2.8). The (i, j)™ element of a grey level run length matrix
P(i, j |©), indicates the path value with the grey level i and length j that are present in
the picture at angle © (Zwanenburg et al., 2020). GLRLM features includes short run
emphasis (SRE), long run emphasis (LRE), run percentage (RP), grey level
nonuniformity (GLN), run length nonuniformity (RLN) to name a few.

CT scans of COVID infection, present presented fine textures in the ROI. This
fine textures are quantified by higher value of short run emphasis and low value of long
run emphasis (Ardakani et al., 2022). In the case of COVID-19 infection diagnosis,
GLN is smaller and RLN is larger compared to non-COVID-19. Similar to correlation
of GLCM, RP tends to have lower value while capturing linear structures. Inan image,
grey level regions are denoted using the grey level size zone-based matrix (GLSZM).
Collection of linked voxels with the same intensity of grey is referred to grey level zone
(Figure 2.8). The number of zones in the image that have grey levels i and length j is
represented by the (i, j)™ element of the grey level size zone matrix P(i, j) (Zwanenburg
et al., 2020). Nodes are composed of solid and cystic components. Cystic components
are more heterogenous compared to solid components. As a result, small zone emphasis
is greater and large zone emphasis are smaller of cyst compared to solid.

The neighbourhood grey tone difference matrix (NGTDM) measures the
distinction in grey values among a given value and the mean of its neighbouring value
within a certain distance, d. The matrix contains the total of the absolute distinctions of
i grey level (Figure 2.8) (Zwanenburg et al., 2020). For example, coarseness describes
the inconsistency of grey value within ROI. Contrast represents spatial change of grey
values and busyness represents rate of intensity shift within ROI. Healthy and entrapped
median nerves can be distinguished utilizing NGTDM features. Coarseness is higher in

healthy nerves compared to entrapped median nerves (Ardakani et al., 2022).
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Figure 2.8 Schematic view of the radiomics feature.

25 8F-FDG PET/CT radiomics for head and neck cancer

Radiomics textures features hold the potential for head and neck tumour tissue
characterization, prediction of therapeutic response and monitoring prognosis.
Busyness, contrast and coarseness of the NGTDM feature group are found to have
differentiation capability. These features recognised tumour tissue from the healthy
tissue (Yu et al., 2009). Tumour tissues presents higher contrast and lower busyness
and contrast compared to healthy tissue in the PET/CT image. Texture features can also
predict therapeutic outcome (EIl Naga et al., 2009). A study performed by EI Naga et.
al. demonstrated that first and second order features characterises tumour uptake in the
microenvironment and conveys information about treatment resistance. In another study
on oesophageal cancer, researchers found that GLCM features can classify
chemotherapy responders from non-responders (Tixier et al., 2011). The heterogeneity
detected in image is due to difference in tumour tissue component arrangement
(Henriksson et al., 2007).

BE-FDG uptake is higher in tumour cells compared to stroma and necrosis. The
association of texture feature with tumour characteristics is complex hence careful
investigation is required to establish reliable and accurate relation between these two

parameters. Researchers have focused on repeatability and reproducibility of radiomics
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features. GLCM features homogeneity, correlation and GLRLM features long run
emphasis and short run emphasis were concluded to be robust compared to SUV (Shiri
et al., 2017, Pfaehler et al., 2019). The metrices used to report reproducibility were
mainly inter-class correlation coefficient (ICC), concordance correlation coefficient
(CCC) and coefficient of variation (COV). The clinical studies found in the literature
mainly concentrated on the dependency of the radiomics features on voxel discretization
and feature extraction parameters (Belli et al., 2018, Lv et al., 2018). All of the studies
were coherent with a strong correlation between feature reproducibility and image
quantization. According to one study, the features of GLSZM were the least
reproducible. Impact of tumour delineation variation on features was also focused in
two studies.

The researchers reported a strong correlation between tumour delineation
variation and radiomics features. GLSZM feature zone percentage was sensitive to
tumour delineation variation and GLCM features entropy, dissimilarity, and GLSZM
feature high intensity large area emphasis were robust against tumour delineation
variation. Drawing any conclusion in reproducibility and repeatability of the radiomics
features is challenging due to the large variation of tumour types analysed and
diagnostic settings. However, most studies found the first order features GLCM and
GLRLM robust and GLSZM least robust. Following a standardised process might
eliminate this challenge. The future studies should include detail information about the
matrices and cut-offs used to classify the features into a degree of reproducibility that
is absent in the studies found in the present literature.

Another group of researchers focused on the development of radiomics
signatures to improve predictive models for specific cancers (Aerts et al., 2014). The

study included 440 features from 1,019 patients with either head and neck cancer
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