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KAJIAN KETEGUHAN CIRI RADIOMIK 18F-FDG PET/CT UNTUK 

PEMBANGUNAN BIOPENANDA BERASASKAN IMEJ UNTUK KANSER 

KEPALA DAN LEHER 

 

ABSTRAK 

Secara konvensional, 18F-FDG PET/CT telah dinilai melalui matrik 

biopenanda seperti isipadu tumor metabolisme (MTV),  nilai ambilan piawai 

(SUVs)untuk ramalan kanser. Walaubagaimanapun, ia tidak mengukur kepelbagaian 

tumor yang mencetuskan tentangan terhadap rawatan. Radiomik boeh mengukur 

kepelbagaian tumor dengan mengenal ciri dan corak yang ada pada 18F-FDG PET/CT. 

Ciri radiomik 18F-FDG PET/CT diperlukan untuk ketepatan atau dalam kata lain teguh 

untuk tetapan pensegmenan berbeza.  Tujuan kajian penyelidikan ini adalah untuk 

mengkaji keteguhan ciri radiomik 18F-FDG PET/CT untuk pembangunan imej 

berasaskan biopenanda untuk kanser kepala dan leher. Kajian penyelidikan ini 

mengkaji keteguhan 44 ciri radiomik terhadap variasi pensegmenan imej, dan 

hubungan dengan parameter kualiti imej- nisbah kontras kepada hingar (CNR), nisbah 

isyarat kepada hingar (SNR) dan MTV. Kajian ini melibatkan 59 data pesakit kanser 

kepala dan leher daripada arkib pengimejan kanser dengan kebenaran.  Manual dan 

juga semi-automatik pensegmenan bahagian yang dikehendaki (ROI) telah dilakukan 

pada dataset. Kepelbagaian antara pemerhati dan dalam pemerhati telah dibuang 

dengan melakukan pensegmenan ROI dua belas kali sesi menggunakan kedua-dua 

kaedah oleh tiga pakar perubatan nuklear. 44 ciri radiomik daripada 6 kluster ciri 

radiomik telah dikeluarkan daripada ROI. 44 ciri ini dikategorikan kepada lima 

kumpulan termasuklah – 3 ciri Global, 9 Ciri Matrik Kejadian Bersama Skala Kelabu 



xiv 

(GLCM), 13 Ciri Marik Panjang-Lari Skala -Kelabu (GLRLM), 13 Ciri Matrik Saiz 

Zon Skala-Kelabu (GLSZM), 5 Ciri Matrik Perbezaan Ton-Kelabu Kejiranan 

(NGTDM) dan satu ciri berasaskan saiz dan bentuk. Analisis kepelbagaian pekali 

(COV) telah dilakukan untuk mengkategorikan keteguhan ciri radiomik. Analisis 

regresi linear telah menentukan hubung kait antara ciri radiomik dan parameter imej 

kualiti. 18% ciri adalah teguh (COV < 5%) berkenaan dengan kepelbagaian 

pensegmenan. Semua ciri Global, ciri bentuk dan saiz, ciri NGTDM, 5 ciri GLRLM, 

7 ciri GLCM, 7 ciri GLSZM adalah kurang teguh (COV  > 20%) berkenaan dengan 

kepelbagaian pensegmenan. 4 ciri teguh GLRLM bersama dengan kekasaran NGTDM 

dan LZE GLSZM tidak menunjukkan hubungan dengan MTV, CNR, dan SNR (nilai 

p > 0.05). Keenam-enam ciri ini adalah calon yang baik untuk pembangunan 

biopenanda. Perbandingan pensegmenan manual dan semi-automatik telah 

menunjukkan kebolehulangan kaedah pensegmenan semi-automatik adalah lebih 

besar daripada kaedah pensegmenan manual. Kepelbagaian penyempadanan ROI telah 

berlaku lebih banyak untuk MTV lebih kecil, CNR dan SNR yang rendah. Dalam kajan 

ini, pensegmenan semi-automatik lebih digemari berbanding pensegmenan manual 

untuk penyempadanan ROI bagi tumor kecil. Keteguhan ciri radiomik dengan kaedah 

konvensional matrik 18F-FDG PET/CT boleh digunakan untuk melaporkan 

kepelbagaian maklumat untuk pencirian tumor yang lebih baik. Pencirian tumor yang 

baik mempromosikan ketepatan rawatan dan diagnostik yang lebih tinggi dengan 

menyelesaikan maslaah berkaitan kepelbagaian, perbezaan tisu sihat daripada tumor 

dan jangkaan ramalan maklumbalas. 

  



xv 

INVESTIGATION OF ROBUSTNESS OF 18F-FDG PET/CT 

RADIOMICS FEATURES FOR THE DEVELOPMENT OF IMAGE BASED 

BIOMARKERS FOR HEAD AND NECK CANCER 

ABSTRACT 

Conventionally, 18F-FDG PET/CT is evaluated through biomarker matrices for 

example metabolic tumour volume (MTV) and standardised uptake values (SUVs) for 

cancer prognosis. However, they do not quantify tumour heterogeneity that induces 

resistance to treatment. Radiomics may quantify tumour heterogeneity by recognising 

features and patterns present in the 18F-FDG PET/CT. The radiomics feature of 18F-

FDG PET/CT need to be accurate in other words robust for different segmentation 

settings. This study aimed to investigate the robustness of 18F-FDG PET/CT radiomics 

features for image-based biomarker development for head and neck cancer diagnosis. 

The robustness of 44 radiomics features was examined over image segmentation 

variation, and their relationship with MTV and image quality parameters - signal to 

noise ratio (SNR), contrast to noise ratio (CNR). This study involved head and neck 

cancer image dataset in 18F-FDG-PET/CT modality of 59 patients from the cancer 

imaging archive with permission. Manual and semi-automated segmentations were 

performed on the adopted dataset to delineate the region of interest (ROI). Twelve 

sessions for each ROI segmentation was performed using both methods by three 

nuclear medicine specialists to remove inter and intra observer variation. 44 radiomics 

features from the 6 radiomics feature clusters were obtained from the ROI. These 44 

features were categorised into 6 groups including – 3 Global features, 9 Grey-Level 

Co-occurrence Matrix (GLCM) features; 13 Grey-Level Run-Length Matrix 

(GLRLM) features; 13 Grey-Level Size Zone Matrix (GLSZM) features; 5 
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Neighbourhood Grey-Tone Difference Matrix (NGTDM) features, and 1 shape and 

size-based feature. The coefficient of variation (COV) analysis was performed to 

categorise the robustness of the radiomics features. Linear regression analysis 

determined the correlation between radiomic features and image quality parameters. 

18% of the features were robust (COV < 5%) with respect to segmentation variation. 

All the Global features, shape and size-based features, NGTDM features, 5 GLRLM 

features, 7 GLCM features, 7 GLSZM features were least robust (COV  > 20%) with 

respect to segmentation variation. 4 GLRLM robust features along with coarseness of 

NGTDM and Large Zone Emphasis (LZE) of GLSZM showed no relation with MTV, 

CNR and SNR (p > 0.05). These six features are good candidate for biomarker 

development. Comparison of manual and semi-automated segmentation showed that 

repeatability of semi-automated segmentation method is greater than manual 

segmentation method. The variation in ROI delineation arises more with smaller MTV, 

low CNR and low SNR. In this study, semi-automated segmentation is preferred over 

manual segmentation for delineating ROI of small tumours. The robust radiomics 

features along with the conventional 18F-FDG PET/CT matrices can be used to report 

tumour heterogeneity information for better tumour characterisation. Proper 

characterisation of tumour would promote higher diagnostic and treatment accuracy 

by solving the problem of heterogeneity, distinguishing healthy tissue from tumour 

and predicting prognostic response. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background  

Head and neck Cancer (HNC) claims 450,000 deaths annually and this number 

is predicted to rise by 30% by 2030 (Sung et al., 2021, Johnson et al., 2020). Globally. 

head and neck squamous cell carcinoma (HNSCC) ranked as the seventh predominant 

cancer with the highest incidence number in Asia (Cheong et al., 2017).  Patients with 

HNC diagnosis has doubled since 1982 and this trend is expected to continue (Koh et 

al., 2019). In Malaysia, HNC is the third most dominant cancer with a total of 4,075 

cases (Bray et al., 2020, Husmeela et al., 2021). The 5-year survival rates of only about 

10 - 40% confer a poor prognosis of advanced HNC (Wong et al., 2015). The incidence 

of HNC in Malaysia was reported to be 8.5 per 100,000 which is higher than the 

average global incidence in developed regions (Wong et al., 2015). The inter and intra 

tumoral heterogeneity along with complexity present in HNC challenges the effective 

diagnosis of HNC (López et al., 2021).  

The qualitative diagnosis - invasive biopsy does not reveal the entire tumour 

characterisation as it includes extracting part of the tumour lesion. 18F-fluoro-2-deoxy-

D-Glucose positron emission tomography and computed tomography (18F-FDG 

PET/CT) is broadly used for prognosis, observation and diagnosis of head and neck 

cancer as a means of quantitative diagnosis. The common quantitative measures of 

tracer uptake for quantification of 18F-FDG PET/CT are  metabolic tumour volume 

(MTV), standardised uptake value (SUV) and SUV derivatives. However, they have 

limited potential of reflecting the spatial distribution of 18F-FDG. Integration of 

radiomics features into 18F-FDG PET/CT head and neck cancer imaging quantifies 

tumour heterogeneity by providing precise information about intensity, shape, size, 
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volume, and texture of cell phenotype that is distinct or complementary to that 

provided by clinical reports and proteomic assays (Tixier et al., 2011, Chicklore et al., 

2013, Bailly et al., 2019).  

The main goal of radiomics is the extraction of quantitative imaging features 

in an automated method and the development of prediction models for non-invasive 

diagnosis of lesion phenotypes. Radiomics enables extraction, collection and 

evaluation of higher order and statistical datasets through radiographic information 

conversion into large-scale and mineable entities (Rizzo et al., 2018, Lambin et al., 

2012). Feature can be understood as an image-derived descriptor of intensity, shape, 

texture, or any other visually assessable or quantitatively measurable characteristics of 

image appearance. Several previous studies have described a true correlation between 

radiomics features and tumour biological characteristics such as cellularity, 

heterogeneity and necrosis, which are often directly involved in other diagnostic or 

outcome variables (Cook et al., 2018, Sanduleanu et al., 2018). Imaging features 

acknowledged as biomarker have diagnostic standard that characterises the biological 

and functional activity of the body (Boellaard, 2017). 18F-FDG PET/CT radiomics 

features can be titled as biomarker only when the features become robust and standard.  

Robustness is defined as the ability of a given methodology to generate 

accurate segmented volumes under varying acquisition and image reconstruction 

conditions. Standardisation includes precise, feasible and accurate radiomics feature 

quantification. Radiomics feature analysis includes several steps starting from image 

acquisition and ending in statistical analysis. So, 18F-FDG PET/CT radiomics feature 

biomarker can be achieved by standardising  the complete radiomics analysis process. 

Figure 1.1 represents the radiomics analysis workflow and steps toward imaging 

biomarker discovery for 18F-FDG PET/CT for head and neck cancer diagnosis. Image 
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acquisition is the first step of radiomics feature analysis. The second step involves 

reconstruction of the acquired image using different software platforms. Sharpening 

and smoothing filter processes are applied during image reconstruction. Afterwards, 

tumour contour is defined using region of interest (ROI) delineation. Extraction of 

textural features from the ROI is performed and statistical model or machine learning 

algorithm is developed to attain biomarkers. 

 

Radiomics has received much attention and interest in the field of 18F-FDG 

PET/CT imaging. Nonetheless, reproducibility and validation of the published work 

are still a big challenge (Gillies et al., 2016, Boellaard et al., 2015, Berenguer et al., 

2018, Welch et al., 2019, Meyer et al., 2019). The absence of unanimously recognized 

reference values and definitions have hampered the clinical use of 18F-FDG PET/CT 

image biomarker. Furthermore, well-established image processing platform required 

to extract, compute features is absent (Vallieres et al., 2018, Hatt et al., 2017, 

Bousabarah et al., 2019). As a consequence, results published in one setting cannot be 

reproduced in different clinical settings. Manipulation and assessment of a single 

image set in two different software platforms result in dissimilar feature values (Foy 

et al., 2018). Variation of imaging procedure, 18F-FDG activities, image 

reconstruction, data comprehension and uptake time is significant (Messerli et al., 

2019, Beyer et al., 2011, Graham et al., 2011). Additionally, lack of detailed report of 

the reproducibility of the experiments and findings aggravates the situation (Traverso 

et al., 2018).  
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The situation can be solved by standardisation of the radiomics features 

definition with supportable references and coherent execution of image assessment 

strategies for feature quantification (Uthoff et al., 2019, Bogowicz et al., 2017, Hatt et 

al., 2017, Foy et al., 2018). In the interest of strengthening the application of 18F-FDG 

PET/CT as imaging biomarkers guidelines on tumour imaging using 18F-FDG PET/CT 

have been published and revised (Boellaard, 2009, Schelbert et al., 1998). Currently, 

it is well understood that harmonization of imaging modalities is vital alongside 

standardising  imaging performance for realizing computation of 18F-FDG PET/CT as 

biomarker (Boellaard, 2009). 

1.2 Problem Statement 

Imaging biomarkers, especially quantitative imaging biomarkers, are of great 

interest. They can provide a comprehensive view of the whole lesion while capturing 

clinically relevant biological predictors such as regional tumour intra-heterogeneity. 

Imaging biomarkers provides opportunities to tailor treatment decisions based on 

observed responses. Imaging-based quantification and characterisation of tumoural 

phenotypes has been the main goal of numerous efforts in recent years developing and 

integrating precision oncology in clinical practice (Creff et al., 2020, O'Connor et al., 

2017, Gambhir, 2002). Identifying optimal quantitative image features for computer-

aided diagnosis constitute crucial steps towards the development of robust, 

reproducible, standardised, and clinically relevant imaging biomarkers of head and 

neck cancer phenotypic characteristics (Hatt et al., 2018, Boellaard et al., 2015). In 

recent years, numerous quantitative imaging biomarkers based on different image 

features have been proposed. Clinical acceptance of novel imaging biomarkers is 

limited and translation into clinical practice generally takes years if not decades. 
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Currently, tumour response and tumour grading in head and neck cancer are essentially 

performed through qualitative measurements or using 1D or 2D descriptors of the size 

of lesions (Okada et al., 2005, Mountain, 2000). Subjective visual evaluation of lesions 

on clinical medical images might not capture histopathological or genetic features of 

disease activity, including intra-tumoural heterogeneity, an important biomarker of 

cancer aggressiveness (Julesz et al., 1973, Tixier et al., 2014). Therefore, improved 

tumour treatment prescriptions could be achieved with comprehensive quantitative 

imaging biomarkers, overcoming the subjectivity of visual interpretation and over-

simplistic assessment of shape markers of pathological structures on medical images. 

Thus, standardised and quantitative computational methods have the potential of 

improving radiology and oncology workflows in head and neck cancer patient 

screening, decision support, detection, and interpretation of findings to alleviate the 

current burden on radiologists and radio-oncologists. Image biomarkers cannot be 

subjective to segmentation settings rather they should be reproducible in any clinical 

settings. In this study, radiomics features were tested against segmentation, tumour 

size and image quality variation to identify the features that would be reproducible in 

different clinical settings. 

1.3 Research Objectives 

The main objective of this research was to investigate the robustness of 18F-

FDG PET/CT radiomics features for the development of image based biomarkers for 

head and neck cancer diagnosis. The specific objectives of this study were listed as 

follows: 

i. To evaluate the consistency of the radiomics features for different 

segmentation methods 
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ii. To analyse the dependency of the radiomics features on MTV and image 

quality parameters including- CNR and SNR 

iii. To evaluate the variation of manual and semi-automated segmentation methods 

for image quality parameters  

 

1.4 Scope of Study 

In this study, we focus on the importance of image segmentation for robust 

radiomics feature generation. We investigated the robustness of the radiomics features 

for obtaining stable and reliable features that reflect the biologic heterogeneity present 

in the 18F-FDG PET/CT. 44 radiomics features were evaluated to determine the stable 

and sensitive radiomics features. The stability and sensitivity were examined against 

segmentation variation. Dependency of the features on image contrast, noise and 

tumour size was evaluated. We evaluated the head and neck tumour segmentation 

accuracy of two different segmentation methods. Variation of the segmentation for 

different contrast, noise and tumour size was also examined. 

1.5 Thesis Organisation 

The thesis contains five chapters. Chapter 1 comprises a general background 

of 18F-FDG PET/CT radiomics and its potential as a biomarker. It also includes the 

problem statement that shows the need for this research, objectives, and scope of the 

research.  

Chapter 2 presents the theoretical section related to the research area. It also 

consists of the literature review were some research done by the previous researchers 

on 18F-FDG PET/CT radiomics in head and neck cancer is presented.  
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Chapter 3 includes the research methodology, where materials and the 

methodology are presented in detail. This chapter comprises open source QIN HEAD-

NECK data collection, evaluation of ROI segmentation, radiomics feature extraction 

process, and stability analysis method of the extracted features.  

The results and discussion of the results are presented in chapter 4. The chapter 

focus results obtained from stability analysis of the radiomics features. Selection of 

robust radiomics features is discussed in this chapter. This chapter includes relation 

among the image quality parameters- CNR, SNR, MTV and radiomics features. 

Results obtained from evaluation of segmentations and their relation with image 

contrast, noise and tumour are presented in this chapter with detailed discussion. 

  Finally, chapter 5 summarises and concludes the research work with some 

suggested future recommendations.  
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction 

This chapter comprises a detailed review of the available research work on 18F-

FDG PET/CT radiomics for head and neck cancer. In addition, concepts and theories 

related to this study were presented in this chapter. As diagnostic imaging is an 

important step towards radiomics analysis, the first section is dedicated towards 

diagnostic imaging. The main goal of radiomics is non-invasive quantification of 

tumour heterogeneity and so tumour heterogeneity is discussed in the following section. 

Finally, the radiomics definition, radiomics analysis process and relevant literature are 

presented in the later sections of this chapter. 

2.2 Diagnostic imaging in head and neck cancer 

 

The advances in clinical imaging play a centre part within the entirety of cancer 

management (Fass, 2008, Weissleder, 2006). It precisely identifies tumour area, ration, 

metastasis, and whether the treatment may include basic anatomical structures. 

Particularly, the integration of genomics and proteomics technologies with anatomical 

imaging conveys the molecular and physiological information with anatomical 

information, of the subject (Weissleder, 2006). The combination of molecular and 

anatomic imaging improves microlevel or macrolevel change distinction, survey and 

alter clinical planning in real-time, cancer drugs discovery simplification (Lambin et 

al., 2012). More critically, this diagnostic imaging method visualizes tissue in non-

invasive manner and avoids intrusive diagnostic tests. Conventional clinical imaging 

procedures are computed axial tomography (CT) imaging, positron emission 

tomography (PET) imaging, magnetic resonance imaging (MRI) and ultrasonography. 
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Our data set consisted PET/CT images only. So, the basic principles of hybrid PET/CT 

imaging is discussed in the next section. 

2.2.1 Hybrid PET/CT Imaging 

 

Positron emission tomography (PET) evaluates the metabolic and molecular 

features of a variety of malignancies, but its anatomical structure view is constrained. 

CT makes it easier to assess the physical features of tumours, but it cannot capture their 

metabolic and molecular characteristics (Seemann et al., 2004). As a result, the 

combination of PET and CT enables the correct integration of metabolic and molecular 

features of the disorder with anatomical findings, providing additional information for 

the diagnosis and staging of tumours. Modern full-ring 3D PET and high-end 16-slice 

CT scanners are paired in the most updated design of high PET/CT scanners. Instead of 

employing 68Ge sources for regular transmission scanning, PET/CT scanners 

attenuation-correct PET acquisition using a CT scan. As a result, the examination time 

is shortened. However, metallic objects and contrast agents that affect the quality of CT 

scans and quantitative measures of standardised uptake values (SUV) may cause 

artefacts in the PET images. 

In comparison to PET or CT imaging alone, combining PET and CT imaging 

technology into a single scanner has a number of benefits. In integrated systems, the CT 

may be utilised to precisely localise where anatomical radiotracer uptake occurs, to 

adjust for attenuation, and to help accelerate the PET examination. A study of the 

uncorrected images may be required to distinguish between actual radiotracer uptake 

and tracer activity overestimation brought on by artefacts from the CT-based attenuation 

correction. In order to avoid "false" interpretations of infection, inflammation, or even 

cancer surrounding the body, only the absence of increased activity in the unfiltered 
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captures may actually indicate absent radiotracer activity in the area of the body. These 

methodological aspects must be taken into consideration when analysing changes in 

subjective or numerical terms (Seemann et al., 2004).  

 
 

 

Figure 2.1 (a) PET/CT image; (b) PET/CT Scanner. (Retrieved from(Kim et al., 

2013) 

 

Typically, PET/CT imaging begins with a targeting beam computation 

radiograph, frequently referred as "topogram" that establishes  PET scanning scope. At 

first, the patient undergoes CT acquisition equal to the length of topogram for 

attenuation rectification and even uptake area detection. Next, PET data acquisition is 

performed. The field of view determines the scan area in single acquisition. Typically, 

15 cm (approximately) is the standard axial PET field of view. The present PET 

scanners have 22 cm, 26 cm field of view options.  Only one field of view (FOV) is 

necessary for scanning the brain or the heart; however, whole-body imaging is 

implemented for investigating the disorder degree in oncology (Figure 2.1).  

The whole body cannot be scanned in a FOV. Multiple FOVs are obtained to 

cover the total body. However, detectors sensitivity is very poor at FOV edges and so 

the fields of view comprise small amount of overlaps (Tout et al., 2016). Figure 2.2 

represents the multiple bed positions with small overlaps during the whole-body PET 

(a) (b) 
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scan. The term "bed position" refers to each of these fields of vision, and every bed 

position takes 1.5 to 5 minutes to complete. The scan time depends on the scanner's 

sensitivity and the radiopharmaceutical's affinity. Alignment between the PET and the 

CT is  utilised to identify and correct attenuation as well as reduce movement artefacts. 

Balance between patient comfort and immobilisation is very important in order to 

preserve PET and CT alignment (Tout et al., 2016). 

 

Figure 2.2 Multiple bed positions with small overlaps during PET scan (Retrieved 

from(Tout et al., 2016). 

 

Positron emission tomography (PET) imaging begins with infusing 

radiopharmaceutical into patient body. The radiopharmaceutical is composed of a 

positron emitting radionuclide coupled to a chemical component known as the "tracer," 

which functions as a physiological analogue (Basu et al., 2011b). The tracer is chosen 

to specifically target the metabolic activity of tumours. The radionuclide is employed 

to acquire images and serves as a source of radiation emission that is recorded by the 
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imaging scanner. The unstable isotopes known as radionuclides exhibit brief radioactive 

decay by positron emission. 18F-Fluorodeoxyglucose (FDG) is the most common 

radiopharmaceutical that is employed in PET imaging. The hydroxyl group of glucose 

molecule present in FDG is replaced by positron-emitting radioisotope fluorine-18 (18F) 

having 110 minutes half-life, to create the 18F FDG tracer.  

p → n + e+ + ν 

Equation 2.1 represents the decay of a proton (p) into a neutron (n), a positron 

(e+) and a neutrino (ν).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 (a) The interaction between positron and electron during PET imaging; 

(b) Gamma ray collection by the detectors during PET imaging. (Retrieved from(Tout 

et al., 2016) 

 

The positron (e+) and a neutrino (v), which are emitted from the nucleus with a 

continuous kinetic energy spectrum, receive the energy released during the conversion 

process. Depending on its energy, the positron travels a few millimetres through tissues 

after being released at a specific point in the body and encounters multiple scattering 

process. When a positron meets an electron (e) at the endpoint of its trajectory, they 

annihilate, and the remaining mass energy of the two particles is split into two photons 

that are each 511 keV in energy and approximately anti-parallel to one another. Figure 

(Eq. 2.1) 

(a) (b) 
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2.3 a represents this interaction electron and positron. In the PET scanner, several rings 

of radiation detectors are positioned circulating the body, exteriorly. These detectors 

note the detection timing of annihilating photons. Therefore, it detects photons escaping 

from the inside of patients.  

Figure 2.3 b shows the basic structure of a cylindrical PET scanner, which 

comprises many rings of detectors mounted in an axial direction with a patient in the 

centre. The high-energy photons are converted into short pulses of visible light every 

time an annihilation photon strikes a single detector on a ring composed of a scintillating 

crystal. The optically connected crystal and photomultiplier tube (PMT), transform and 

multiplies the scintillation ray into an electrical pulse. Line of response (LOR) is line 

between two detectors that identifies each annihilation. Individual LOR of the two 

concurrent photons carry the information of determining the radiopharmaceutical 

position inside the body. During image reconstruction, image projection is formed from 

the lines of response. Accurate and precise PET image reconstruction involves 

adjustment of attenuation scatters, point spread function and non-uniform response for 

a uniform source.  

 

 

Figure 2.4 (a) Fan beam projection in CT imaging, (b) Multiple detector array in 

CT imaging (Retrieved from(Bushberg and Boone, 2011). 

 

(a) (b) 
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In the CT imaging, the total body of medical interest is imaged as slices (cross-

sections) for understanding of the physiological condition of any particular location. 

The determination of X- ray attenuation beam's coefficients in the investigated region 

of interest (ROI) provides the basis of CT. During CT acquisition of patient, X-ray 

attenuation is recorded in a plane perpendicular to the lateral axis of subject together 

with a number of lines in that direction. Afterwards, the attenuation coefficients (μ) map 

is reconstructed for the plane. When the photons of the X-ray travel through the body 

they interact with tissue or pass through the vacuum unaffected. In the case of 

interaction between tissue and X-ray photons, beam attenuation takes place by 

scattering or absorption (Council, 1996). The grey-scale values denote the calculated 

amount of attenuation. Hounsfield unit (HU) is the greyscale measurement in CT 

imaging (Goldman, 2007).  

Generally, CT scanners employ fan-beam projection calculation by one else 

more arc positioned detector arrays with reference to the tube of x-ray (Bushberg and 

Boone, 2011). Figure 2.4 a represents the CT scan settings for implementing fan beam 

projection. The x-ray tube is at the top of the fan. As seen in Figure 2.4 a, the detectors 

are placed in a circle for covering a 360 view of the subject and the source moves in 

this circular path. Each detector measurement relates to a certain set of photons. In this 

geometry, the collection of rays is called a fan beam projection. The simultaneous 

acquisition of manifold slices is made possible by the employment of several X-ray 

detector arrays (Figure 2.4. b). For image reconstruction, cross-sectional measurements 

are treated as a slice of a complete ROI.  When the slices are placed one after one the 

ROI becomes visible. 
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2.3 18F-FDG PET/CT radiomics in tumour heterogeneity quantification  

Tumours in the head and neck region are very heterogeneous and therefore 

difficult to treat. This heterogeneity arises from multiple clonal sub-populations present 

in the unit composition of tissues within tumour having totally different properties 

(Padhani and Miles, 2010). The proliferation rate, expression of biosignature, ability to 

metastasize, and immunological traits are completely different in the multiple clonal 

sub-populations. The distinction in properties arises from the distinction in cell 

proliferation, blood vasculature, metabolic activity, pH, oxygenation level and necrotic 

areas present in sub-population at intervals tumour (Fouad and Aanei, 2017, Lin et al., 

2017). As a result, different spatial intensity patterns are formed from the intratumoural 

variations. The difference present in multiple clonal sub-populations within a tumour is 

called intratumoural heterogeneity (O'Connor et al., 2015, Davnall et al., 2012, Sala et 

al., 2017). Figure 2.5 represents tumour heterogeneity. 

 

Figure 2.5 Conceptual illustration of tumour heterogeneity in head and neck 

cancer comprising tumour cells, lymphocytes, fibroblast and macrophages. 

 

In solid cancers, tumour heterogeneousness creates resistance towards treatment 

leading to poor prognosis (Samanta and Semenza, 2018). However, the spatial and 

temporal variations are captured in 18F-FDG PET/CT images in multi-level due to 



17 

underlying cellular microenvironments, tissue and anatomical landmarks within tumour 

(Basu et al., 2011a, Yang and Knopp, 2011).  Adequate information of tumour 

heterogeneity may lead towards precision medicine. Standard tumour heterogeneity 

study would provide patient specific molecular traits and these may accelerate tumour 

aggressiveness and sensitivity to therapeutic response identification prior to treatment. 

Investigation of tumour heterogeneity from histopathological samples (Biopsies) is 

challenging because inherent variation of sampling (Vaidyanathan et al., 2019). Also, 

characteristic of a particular tumour region does not carry the information of the total 

tumour as tumours are mostly heterogenous (Dagogo-Jack and Shaw, 2018, Mroz et al., 

2013). An alternative to the invasive approach could be a deeper analysis of medical 

imaging.  

Images contain more information than our eye can decipher (Gillies et al., 2016). 

Researchers are actively investigating on biomarker measured from medical images as 

it holds the potential to quantify tumour heterogeneity. Particularly, morphology (shape, 

volume, eccentricity), histograms (variance, skewness, kurtosis) and texture traits hold 

information related to tumour heterogeneity (Willaime et al., 2012). 18F-FDG PET/CT 

radiomics analysis has the highest potential for characterizing tumour heterogeneity as 

it represents the spatial arrangement of grey-level intensities within a given volume of 

interest (VOI) as numerical descriptors. Presently, there are five leading radiomics 

metrices investigated by the clinical imaging researchers. These five texture units are 

grey level co-occurrence matrix (GLCM), grey level run length matrix (GLRLM), grey 

level size zone matrix (GLSZM) and neighbourhood grey tone distinction matrix 

(NGTDM) (Ang et al., 2010, Cheng et al., 2015, Vakkila and Lotze, 2004, 

Proskuryakov and Gabai, 2010, Ahn et al., 2016). Section 2.4 is dedicated for the 

features definition and methodology of computation details. 
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2.4 Definition of radiomics 

Advanced quantitative analysis of medical images holds the potential to capture 

the genomic heterogeneity of aggressive tumours that are reflected in the heterogenous 

tumour metabolism and anatomy. The term ‘radiomics’ represents the advanced 

computational analysis of diagnostic images. Radiomics is the study of tumour 

characteristics through the generation of higher order spatial data extracted from 

medical images (Hatt et al., 2017, Yip and Aerts, 2016). Radiomics analysis is a “top 

to bottom” approach for understanding the underlying tumour biology. Substantial 

computational textural traits are mined from clinical images in the radiomics analysis 

process. These extracted features are associated with different tumour phenotypes. In 

the past years, the emerging field of radiomics experienced an exponential growth. 

Radiomics is in its early development stage needing standardisation and validation. 

However, the use of high-order imaging biomarkers dedicated to the quantification of 

intratumoural heterogeneity holds great promise for better tumour aggressiveness 

assessment and subsequent treatment personalization.  

The workflow of radiomics analysis for its translation into clinical settings is 

illustrated in Figure 2.6. Feature extraction from the region of interest (ROI) in the first 

and foremost step (Figure 2.6 a) (Mayerhoefer et al., 2020). A complete description of 

radiomic features mentioned in the thesis is listed in appendix A. Afterwards, 

Spearman’s correlation coefficient, Pearson correlation coefficient, concordance 

correlation coefficient or interclass correlation are evaluated so that coefficient 

robustness and the reproducibility can be determined (Figure 2.6 b). Depending on the 

robustness and reproducibility results, the optimum features are nominated and 

redundant features are omitted (Figure 2.6 c) (Cutaia et al., 2021). Artificial 

intelligence-based models are developed for disease prediction, prognosis and diagnosis 
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for incorporating automatization into the clinical practice (Figure 2.6 d) (Mayerhoefer 

et al., 2020). The final outcome will be application of radiomics for achieving clinical 

outcomes such as survival prediction and prognosis prediction (Figure 2.6 e) (Li et al., 

2018). 

 

 

Figure 2.6 The workflow of radiomics analysis for its translation into clinical 

settings. 

 

Radiomic characteristics are derived from ROI. Thousands of distinct features 

may presently be obtained by using various mathematical algorithms and operations, 

even using artificial intelligence (Figure 2.7). Manual features and automated features 

are the two main categories of radiomics features. Through the use of some appropriate 

mathematical functions, manual properties are achieved. Shape and texture 

characteristics are the most prevalent ones. Deep learning features are acquired 
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intuitively by training on massive image samples. The features employed in this thesis 

are briefly mentioned below without claiming to be all-inclusive. "Image biomarker 

standardisation initiative" (IBSI) document extensively explains each feature (Hatt et 

al., 2018). 

 

Figure 2.7 Categories of radiomic features. 

 

In radiomics analysis, textures are a central type of features that can be extracted 

from a tumour ROI. Other types of features include morphological and histogram-based 

features (Appendix A). However, textures remain the core of radiomic feature 

computation given their higher-order characterisation of spatial patterns in imaging 

volumes. In this thesis, texture features from five major categories were extracted: a) 

Global; b) Grey-Level Co-occurrence Matrix (GLCM) features; c) Grey- Level Run-

Length Matrix (GLRLM) features; d) Grey-Level Size Zone Matrix (GLSZM) features; 

and e) Neighbourhood Grey-Tone Difference Matrix (NGTDM) features. The primary 

and important step towards the computation of the different texture features from these 
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four categories is to calculate a matrix P summarizing the neighbourhood properties of 

interest (differently for each category). Thereafter, different mathematical operations 

can be applied to the different matrices to obtain the final texture features.  

First order grey level statistics are known as the Global texture features.  In the 

ROI, the frequency distribution per voxel intensity is expressed by Global texture 

features. Histogram of intensity frequency are employed for Global texture features 

determination and include mean, skewness and kurtosis. Among the second order grey 

level statistics, grey level co-occurrence matrix (GLCM) represents the neighbourhood 

probability of pixel intensity i and pixel intensity j (Figure 2.8). Along a specific 

orientation and at a specific length, GLCM denotes how two voxels "co-occur" with 

relation to one another. GLCM has a neighbourhood of 26 connected and so 13 distinct 

direction vector are generated in 3D with neighbouring length of 1 (Zwanenburg et al., 

2020). In 2D image, 8 connected neighbourhood with 4 distinct direction vectors is 

present with neighbouring length of 1. As a result, a ROI contains 13 distinct GLCMs 

for each of the 13 directions in a three- dimensional framework in a neighbourhood 

length of one.  

GLCM features include contrast, energy, entropy, correlation, homogeneity and 

dissimilarity, sum average. Higher value of sum average and homogeneity is correlated 

to enhancing lesion. Randomness of intensities in ROI in defined by entropy, where 

higher randomness results in higher value of entropy. Enhancing lesions tend to have 

low value of entropy. Value of correlation is higher for linear structures such as 

honeycomb patterns present in normal median nerves (Ardakani et al., 2022). Based on 

the relationships between three or more voxels, various texture matrices are used to 

derive the higher-order texture characteristics. The grey level run length-based matrix 

(GLRLM) measures the pixels length of connected pixels with equal value to determine 
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grey level path length (Figure 2.8). The (i, j)th element of a grey level run length matrix 

P(i, j |Ɵ), indicates the path value with the grey level i and length j that are present in 

the picture at angle Ɵ (Zwanenburg et al., 2020). GLRLM features includes short run 

emphasis (SRE), long run emphasis (LRE), run percentage (RP), grey level 

nonuniformity (GLN), run length nonuniformity (RLN) to name a few.  

CT scans of COVID infection, present presented fine textures in the ROI. This 

fine textures are quantified by higher value of short run emphasis and low value of long 

run emphasis (Ardakani et al., 2022). In the case of COVID-19 infection diagnosis, 

GLN is smaller and RLN is larger compared to non-COVID-19. Similar to correlation 

of GLCM, RP tends to have lower value while capturing linear structures.  In an image, 

grey level regions are denoted using the grey level size zone-based matrix (GLSZM). 

Collection of linked voxels with the same intensity of grey is referred to grey level zone 

(Figure 2.8). The number of zones in the image that have grey levels i and length j is 

represented by the (i, j)th element of the grey level size zone matrix P(i, j) (Zwanenburg 

et al., 2020). Nodes are composed of solid and cystic components. Cystic components 

are more heterogenous compared to solid components. As a result, small zone emphasis 

is greater and large zone emphasis are smaller of cyst compared to solid.  

The neighbourhood grey tone difference matrix (NGTDM) measures the 

distinction in grey values among a given value and the mean of its neighbouring value 

within a certain distance, d. The matrix contains the total of the absolute distinctions of 

i grey level (Figure 2.8) (Zwanenburg et al., 2020). For example, coarseness describes 

the inconsistency of grey value within ROI. Contrast represents spatial change of grey 

values and busyness represents rate of intensity shift within ROI. Healthy and entrapped 

median nerves can be distinguished utilizing NGTDM features. Coarseness is higher in 

healthy nerves compared to entrapped median nerves (Ardakani et al., 2022). 
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Figure 2.8 Schematic view of the radiomics feature. 

 

2.5 18F-FDG PET/CT radiomics for head and neck cancer 

Radiomics textures features hold the potential for head and neck tumour tissue 

characterization, prediction of therapeutic response and monitoring prognosis. 

Busyness, contrast and coarseness of the NGTDM feature group are found to have 

differentiation capability. These features recognised tumour tissue from the healthy 

tissue (Yu et al., 2009). Tumour tissues presents higher contrast and lower busyness 

and contrast compared to healthy tissue in the PET/CT image. Texture features can also 

predict therapeutic outcome (El Naqa et al., 2009). A study performed by El Naqa et. 

al. demonstrated that first and second order features characterises tumour uptake in the 

microenvironment and conveys information about treatment resistance. In another study 

on oesophageal cancer, researchers found that GLCM features can classify 

chemotherapy responders from non-responders (Tixier et al., 2011). The heterogeneity 

detected in image is due to difference in tumour tissue component arrangement 

(Henriksson et al., 2007).  

18F-FDG uptake is higher in tumour cells compared to stroma and necrosis. The 

association of texture feature with tumour characteristics is complex hence careful 

investigation is required to establish reliable and accurate relation between these two 

parameters. Researchers have focused on repeatability and reproducibility of radiomics 
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features. GLCM features homogeneity, correlation and GLRLM features long run 

emphasis and short run emphasis were concluded to be robust compared to SUV (Shiri 

et al., 2017, Pfaehler et al., 2019). The metrices used to report reproducibility were 

mainly inter-class correlation coefficient (ICC), concordance correlation coefficient 

(CCC) and coefficient of variation (COV). The clinical studies found in the literature 

mainly concentrated on the dependency of the radiomics features on voxel discretization 

and feature extraction parameters (Belli et al., 2018, Lv et al., 2018). All of the studies 

were coherent with a strong correlation between feature reproducibility and image 

quantization. According to one study, the features of GLSZM were the least 

reproducible. Impact of tumour delineation variation on features was also focused in 

two studies.  

The researchers reported a strong correlation between tumour delineation 

variation and radiomics features. GLSZM feature zone percentage was sensitive to 

tumour delineation variation and GLCM features entropy, dissimilarity, and GLSZM 

feature high intensity large area emphasis were robust against tumour delineation 

variation. Drawing any conclusion in reproducibility and repeatability of the radiomics 

features is challenging due to the large variation of tumour types analysed and 

diagnostic settings. However, most studies found the first order features GLCM and 

GLRLM robust and GLSZM least robust. Following a standardised process might 

eliminate this challenge. The future studies should include detail information about the 

matrices and cut-offs used to classify the features into a degree of reproducibility that 

is absent in the studies found in the present literature.  

Another group of researchers focused on the development of radiomics 

signatures to improve predictive models for specific cancers (Aerts et al., 2014). The 

study included 440 features from 1,019 patients with either head and neck cancer  


