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SENIBINA SEGMENTASI CEREBROVASCULAR DENGAN
PERHATIAN SALURAN DAN PENYARING KERNEL RUANG UNTUK

IMEJ TOF-MRA

ABSTRAK

Tesis ini  memperkenalkan pendekatan pembelajaran mendalam untuk
membahagikan struktur serebrovaskular dalam gambar angiografi resonans magnetik
(MRA) secara automatik. Penyakit serebrovaskular (CVD) adalah keadaan otak yang
rosak, yang sering kali mengakibatkan strok iskemik dan memerlukan diagnosis yang
tepat. Walapun ahli radiologi memiliki kepakaran dalam menafsirkan imej MRA,
kesilapan dalam penilaian manual masih boleh berlaku dan ini membuktikan
kepentingan mengurangkan kesilapan dan meningkatkan kecekapan tafsiran imej
MRA dalam sistem diagnosis berbantu komputer (CAD). Di samping pelbagai
rangkaian segmentasi wujud untuk pensegmenan serebrovaskular dalam imej MRA,
model UNet mempunyai keupayaan pengekstrakan ciri/sifat yang luar biasa. Namun,
sifat kompleks pembuluh darah otak menimbulkan cabaran pada senibina U-Net.
Penggabungan langsung peta ciri beresolusi tinggi dan rendah dalam U-Net berisiko
melemahkan maklumat semantik, mewujudkan variasi rawak, dan mengurangkan
ketepatan pensegmenan, terutamanya pada pembuluh darah yang lebih kecil,
menyebabkan masalah segmentasi berlebihan dan berkurangan. Untuk mengatasi
cabaran-cabaran ini, kajian ini mencadangkan model ECA-SKFNet yang baharu untuk
pensegmenan serebrovaskular dalam imej TOF-MRA. Melalui pembinaan atas
senibina U-Net, model kajian ini menggabungkan corak penelitian saluran yang efisien
(ECA) bertingkat untuk mengekstrak ciri-ciri/sifat-sifat utama dan menggunakan

penapis kernel ruang (SKF) untuk memastikan pengekstrakan ciri/sifat yang lebih



tepat dalam segmentasi pembuluh darah otak (BVS). Kajian ini menggunakan
pendekatan yang unggul dalam membahagikan seluruh struktur pembuluh darah
sambil memberi penekanan yang lebih besar kepada pencerapan pembuluh darah yang
kecil (<5 mm radius) dengan ketepatan tinggi. Kaedah yang dicadangkan dinilai dalam
dataset MIDAS menunjukkan prestasi yang kompetitif dengan hasil penilaian yang
cemerlang. Pendekatan ini mencapai nilai pekali persamaan Dice (DSC) sebanyak
0.6741, pekali Jaccard sebanyak 0.5015, purata jarak Hausdorff (AHD) sebanyak
69.33, dan persamaan isipadu (VS) sebanyak 0.9755, dan mengatasi hasil model lain
yang digunakan dalam ujikaji. Keberkesanan pendekatan ini ditekankan, dan
mempersembahkan kaedah pensegmenan serebrovaskular yang meyakinkan dan
membolehkan visualisasi yang lebih baik terhadap struktur pembuluh darah,
terutamanya pembuluh darah yang kecil. Penemuan dalam kajian ini menyumbang
kepada kemajuan sistem berkomputer untuk mendiagnosis penyakit serebrovaskular,
dengan potensi untuk menyelamatkan nyawa, mengurangkan masa diagnosis, dan

menurunkan kos.
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CEREBROVASCULAR SEGMENTATION ARCHITECTURE WITH
CHANNEL ATTENTION AND SPATIAL KERNEL FILTERING FOR TOF-

MRA IMAGES

ABSTRACT

This thesis introduces a deep learning approach to automatically segment
cerebrovascular structures in magnetic resonance angiography (MRA) images.
Cerebrovascular disease (CVD), a debilitating brain condition often leading to
ischemic stroke, necessitates accurate diagnosis. Despite the expertise of human
radiologists in interpreting MRA images, the fallibility of manual assessments
underscores the importance of computer-aided diagnosis (CAD) systems for error
reduction and enhanced efficiency. While various segmentation networks exist for
cerebrovascular segmentation in MRA images, the U-Net model stands out for its
exceptional feature extraction capabilities. However, the complex nature of brain
vessels poses challenges to the U-Net architecture. The direct concatenation of high-
and low-resolution feature maps in U-Net risks diluting semantic information,
introducing noise, and compromising segmentation accuracy, particularly with smaller
vessels, leading to over and under-segmentation. To address these challenges, we
propose a novel ECA-SKFNet model for cerebrovascular segmentation in TOF-MRA
images. Building upon the U-Net architecture, our model incorporates a cascaded
Efficient Channel Attention (ECA) pattern to extract salient features and employs
spatial kernel filtering (SKF) to ensure sharper feature extraction in brain vessel
segmentation (BVS). This study utilizes an approach that excels in segmenting the
entire vessel structure while placing increased emphasis on accurately capturing small

vessels (< 5 mm radius). The proposed method was evaluated on the MIDAS dataset,

Xii



demonstrating its competitive performance with exceptional evaluation results. The
approach achieved a Dice Similarity Coefficient (DSC) score of 0.6741, Jaccard
coefficient of 0.5015, Average Hausdorff Distance (AHD) of 69.33, and Volumetric
Similarity (VS) of 0.9755 surpassing the results obtained by other models employed
in the experiments. The effectiveness of the approach was highlighted, presenting a
promising avenue for improved cerebrovascular segmentation, and enabling enhanced
visualization of vascular structures, particularly smaller vessels. The findings of this
study contribute to the advancement of a computerized system for diagnosing
cerebrovascular disease, with the potential to save lives, reduce diagnosing time, and

lower expenses.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter provides a comprehensive overview of the Cerebrovascular
segmentation research, offering insights into its background, motivation, problem
statement, research questions, aim, objectives, expected contribution, scope,
limitations, and organization. Firstly, it delves into the background of the research,
offering context and understanding of the topic. Subsequently, it discusses the
motivation behind undertaking this study, shedding light on the driving factors that
sparked the research. The problem statement is then presented, clearly articulating the
issue and the need for further investigation. Next, the research questions are
formulated, outlining the specific inquiries the study aims to address. The aim and
objectives of the research are defined, indicating the ultimate goal and the specific
milestones to be achieved. Furthermore, the expected contribution of the study is
highlighted, emphasizing the potential impact and value it may bring to the field.
Additionally, the scope and limitations of the research are elucidated, clarifying the
boundaries within which the study operates and acknowledging any potential
constraints. Finally, the organization of the work is outlined, providing a roadmap for

readers to navigate through the subsequent chapters and sections.

1.2 Background of the Research

Cerebrovascular diseases (CVD) constitute a spectrum of conditions affecting
blood vessels in the brain, including ischemic and hemorrhagic strokes, transient
ischemic attack (TIA), and vascular dementia. These conditions manifest diverse

pathophysiological features within the cerebral vasculature. CVD is a prominent cause



of disability, functional loss, and cognitive decline in adults. Notably, stroke holds a
prominent position, prevailing in prevalence and significantly impacting morbidity
and mortality within the broader spectrum of cerebrovascular disorders. A stroke is an
abrupt blockage of cerebral arteries that compromises brain perfusion. Despite a rise
in global stroke prevalence, mortality has declined due to higher life expectancy (Fang
et al., 2014). 85% of stroke subtypes are ischemic (due to blockage), while the rest are
hemorrhagic (due to rupture) (Mozaffarian et al., 2016). Recognizing and treating a
stroke early is crucial for reducing mortality and morbidity. According to research, up
to 45% of dementia cases are CVD-related (Pantoni & Gorelick, 2014). Up to 65% of
ischemic strokes are attributable to cerebral small vessel disease (CSVD) (Khaku et
al., 2021). Hypertension is a leading risk factor for stroke in women, especially. Type-
2 diabetes, smoking, obesity, drug use, and atrial fibrillation are other cardio-
cerebrovascular risk factors (Khaku et al., 2021). Hypertension can affect anyone,
especially those with a family history. Over time, hypertension alters brain vasculature.
Clinically, cerebral vascular alterations, including diameter and tortuosity, are often
present before hypertension symptoms (ladecola & Davisson, 2008). Changes in
cerebral vasculature and perfusion are also key hypertension indications. Uncontrolled
chronic hypertension can cause CSVD, especially in the thalamus, pons, internal
capsule, and cerebellum (Shi & Wardlaw, 2016). (Warnert et al., 2016) argued that
hypertension-induced remodeling of cerebral vasculature maintains blood circulation
equilibrium. In animal models and humans, cerebral vascular remodeling and greater
cerebral perfusion pressure occur before hypertension. In contrast, excessive or
aberrant blood artery tortuosity is linked to numerous indications of ischemic stroke

owing to systemic hypertension (Abdalla et al., 2015; Han, 2012).



1.3 Motivation

Cerebrovascular Disease (CVD) is a collection of cerebrovascular diseases
caused by the blood-brain barrier leaking. It is a primary cause of functional loss and
cognitive decline in the aged and plays a vital role in ischemic stroke and brain
hemorrhages. In 2018, stroke was responsible for one-sixth (1/6) of all fatalities due
to cardiovascular disease in the USA. According to researchers, hypertension causes
alterations in brain vasculature. It is one of the most common causes of stroke in people
of all ages. In rats, chronically high blood pressure was associated with alterations in
carotid artery diameter. Excessive or abnormal blood vessel tortuosity has been related
to several hazardous conditions, including hypertension. Early detection of
hypertension enables people to receive more effective therapy before they become
dangerously sick.

Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography
(MRA) represent non-invasive imaging modalities utilizing magnetic fields and radio
waves to produce intricate visualizations of internal anatomical structures. Although
both techniques share this foundational principle, MRA is specifically adept at
elucidating the intricate details of blood vessels, offering pivotal information regarding
vascular anatomy and the dynamics of blood flow. MRA facilitates knowledge of
numerous arteries throughout the body, including those in the brain, which aids in
diagnosing CSVD. Blood vessel extraction is a complex process due to the prevalence
of noise, an intrinsic quality that might distort the MRA images and result in inaccurate
classification.

In the diagnosis of cerebrovascular diseases (CVD), patients undergo imaging
procedures, and a proficient radiologist meticulously evaluates the images to compose

a diagnostic report guiding subsequent medical actions. A pivotal stage in this



diagnostic process entails the segmentation of the vascular network within images,
enabling a clear visualization of blood vessels to identify potential ruptures or
anomalies. This segmentation procedure plays a crucial role in the thorough evaluation
and precise diagnosis of cerebrovascular conditions. The manual segmentation of
thousands of images by human professionals for diagnosing Magnetic Resonance
Angiography (MRA) images can be both time-consuming and subject to
inconsistencies. Even among experts, achieving identical segmentations repeatedly is
challenging, leading to variations in outcomes. Consequently, the need for automated
brain vessel segmentation is imperative. An automated approach utilizing image
segmentation proves advantageous in terms of efficiency and time conservation, aiding
clinicians in disease identification through MRA data. Ongoing research endeavors
focus on cerebral blood vessel segmentation, with a prominent emphasis on deep
learning methodologies as the most promising avenue for accurate and reproducible

results.

1.4  Problem Statement

Cerebrovascular system segmentation using magnetic resonance angiography
(MRA) has been extensively studied, employing various techniques. Previous
approaches included automatic, semi-automated, and manual segmentation methods
such as atlas-based algorithms, active contour models, machine learning techniques,
and statistical models. Active contour models were widely utilized in clinical practice
until recently, but they have limitations when examining microscopic features and their
time complexity increases with larger data volumes. The introduction of deep learning
to brain vessel segmentation (BVS) in 2017 presented a new and effective solution to

address previous limitations. Deep learning models automatically extract complex



features from the data, which is challenging to achieve manually using traditional
models. The intricate nature of brain representations, consisting of tissue, blood
vessels, and noise, renders hand-crafted features impractical. Deep learning models
have proven to be superior in extracting complex image features compared to other
strategies.

In recent years, deep learning algorithms have gained significant popularity in
medical imaging due to their ability to extract robust features, achieve accurate
classification, and demonstrate compatibility. Among the various deep learning
architectures, Convolutional Neural Networks (CNNs) have emerged as the most
widely used for image processing and segmentation tasks. In the context of segmenting
blood arteries in the brain, CNN-based architectures exhibit strong performance and
deliver excellent segmentation accuracy. The features extracted from multiple layers,
such as convolutional and pooling layers, are inherently robust and challenging to
manually construct. One notable network architecture, the Fully Convolutional
Network (FCN), introduced by (Long et al., 2015), replaces the final fully connected
layer with a fully convolutional layer, enabling pixel-by-pixel prediction. Another
advanced design is the U-Net, which combines CNN and FCN models to extract
features from images and demonstrates exceptional segmentation performance.

Despite its strengths, U-Net has limitations in the domain of Brain Vessel
Segmentation (BVYS), specifically in dealing with challenges related to over and under-
segmentation. In U-Net, the direct concatenation of high- and low-resolution feature
maps poses a risk of diluting semantic information, introducing noise, and
compromising segmentation accuracy in fine-grained structures. While skip
connections capture local and global features, the absence of a mechanism to

selectively prioritize features during concatenation limits seamless integration of



contextual information, potentially including extraneous details or noise. This
deficiency impacts accuracy in diverse and complex scenes. Furthermore, it is essential
to consider the broader concern of generalization in medical image analysis, as the
performance of segmentation models may vary across diverse datasets and imaging
modalities.

Accurate feature extraction plays a pivotal role in Brain Vessel Segmentation
(BVS), and the U-Net model has demonstrated proficiency in automatically extracting
intricate features from brain images, including unintended elements like noise and non-
vascular organ structures. However, optimizing its clinical applicability is imperative
to address segmentation errors and enhance accuracy while efficiently utilizing
computational resources. The integration of an attention mechanism, emphasizing
relevant features within the image, proves beneficial in mitigating U-Net's limitations.
Additionally, incorporating an intermittent filtering technique to enhance the quality
of sharper features provides additional advantages for segmenting complex structures,
particularly in cerebrovascular networks. This promising approach holds potential to
advance BVS in clinical settings, yielding more reliable and accurate segmentation
results. Moreover, it exhibits promise in overcoming segmentation challenges

associated with smaller vessels, a common obstacle for existing segmentation models.

15 Research Questions
Aligned with the problem statement and the identified research gap, the research
addresses the following key questions:

1. What are the impact of integrating an attention mechanism into the U-Net

model for BVS?



2. What outcomes arise from incorporating the spatial kernel filter technique into

the previously modified U-Net model?

1.6 Research Objective

The objective of this research is given below:

1. Toenhance the salient feature extraction of U-Net model through the seamless
integration of the channel attention mechanism for improved Brain Vessel
Segmentation (BVS).

2. To refine the feature extraction technique by incorporating spatial kernel
filtering to extract sharper features for accurate segmentation of small vessels

in brain images (MRA).

1.7  Contributions

This work makes a substantial contribution by seamlessly integrating a channel
attention-based modification and spatial kernel filter into the U-Net model. The
primary objective is to elevate the segmentation accuracy of medical images,
particularly in contexts where preserving intricate details is paramount, all while
adhering to computational efficiency constraints. Despite the approach entailing the
augmentation of attention and spatial filtering within the established U-Net
architecture, rather than proposing an entirely new network, these introduced
modifications decisively enhance the model's performance in medical image

segmentation.

1.8  Scope And Limitations
The proposed research utilizes two-dimensional images, but the MRA data is

three-dimensional. The 3D brain scans contain more spatial information regarding the



vessel's anatomy. Due to computing resource limits, research is being conducted on
2D model architecture. Although the proposed model can also be scaled in three
dimensions, we failed to conduct a comparative analysis of the three-dimensional

model in our ablation study.

1.9  Thesis Organization

The thesis is organized as follows:

Chapter One provides a comprehensive overview of the research on
Cerebrovascular segmentation, including its background, motivation, problem
statement, research questions, aim, objectives, expected contribution, scope,
limitations, and organization, discussing the context, driving factors, specific inquiries,

ultimate goal, potential impact, boundaries, and roadmap for readers.

Chapter Two provides an overview of the background of CVD, its diagnosis
process, the need for automated segmentation, the advantages and limitations of deep
learning methods, current trends in deep learning in BVS, and the theory behind the

hypothesis.

Chapter Three outlines the methodology, including dataset description,
preprocessing techniques, model selection, architectural design, experimental setup,
and relevant considerations.

Chapter Four provides a comprehensive quantitative and visual analysis of
our models, comparing their performance based on various metrics, uncovering
patterns and trends, and offering insights and implications for future CVD diagnosis

studies.



Chapter Five draws conclusion based on the results of the proposed

mechanisms and offers insightful suggestions for future research in the academic field.

1.10 Summary

This chapter provides an overview of the research as a whole. It describes the
background, motivation, problem description, aims, anticipated contribution,
limitations, and scope of the study. The problem's context will be explored in detail in
the subsequent chapters. In addition, the emergence of deep learning over other
techniques and the current trends of the model used in BVS will be presented in the

following chapter, along with the difficulties inherent in deep learning.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The preceding chapter offer an overview of the direction of the research. This
chapter will address the background of CVD and its diagnosis process, the need for
automated segmentation approaches, the advantages of deep learning methods over
other techniques, and the limitations of deep learning in the domain. This chapter also
discusses the current trends in deep learning in CVD and the theory used in developing

the hypothesis.

2.2  Cerebrovascular Disease (CVD)

Cerebrovascular diseases (CVD) constitute a diverse range of conditions
impacting blood vessels in the brain, including ischemic stroke, hemorrhagic stroke,
transient ischemic attack (TIA), and vascular dementia. Each subtype introduces
distinct pathophysiological characteristics, contributing to the intricate landscape of
cerebrovascular disorders. Of notable significance within this category is stroke, which
not only prevails in prevalence but also exerts a considerable influence on morbidity
and mortality across the broader spectrum of cerebrovascular ailments. Stroke is an
acute interruption of cerebral vasculature leading to a compromised perfusion to the
brain parenchyma. Over the past decades, despite an increment in the global stroke
prevalence, the rate of mortality is decreasing owing to a longer life expectancy (Fang
etal., 2014). CVD also represents a significant cause of disability and mortality, where
stroke is recognized as the leading cause of adult’s disability or functional loss and
cognitive decline (Khaku et al., 2021; Mozaffarian et al., 2016; Pantoni & Gorelick,

2014). Additionally, it is widely accepted that about 85% of stroke subtype are
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ischemic in nature (i.e., due to blockage), whilst the remaining are haemorrhagic stroke
(i.e., due to rupture) (Mozaffarian et al., 2016). Therefore, recognizing stroke at an
early stage and treating it promptly are important to prevent or minimize mortality
and/or morbidity. Of note, studies also reported that up to 45% cases of dementia are
CVD-related (Pantoni & Gorelick, 2014).

The etiology of ischemic stroke includes microthrombosis, embolism, and
lacunar with up to 65% of the etiologies are thought to be due to cerebral small vessel
disease (CSVD) (Khaku et al., 2021). There are multiple cardio-cerebrovascular risk
factors of stroke, with hypertension (i.e., elevated arterial blood pressure) serves a
leading risk factor of stroke, especially in women. Other cardio-cerebrovascular risk
factors include type-2 diabetes, smoking, high body mass index (or obesity), drug use
and atrial fibrillation (Khaku et al., 2021). Hypertension may afflict anyone at any age,
especially someone with a family history of hypertension. Researchers have
discovered specific changes in brain vasculature due to hypertension over time. As per
a clinical hypothesis, cerebral vasculature changes, such as changes in the diameter
and tortuosity, are frequently evident before hypertension develops symptoms
(ladecola & Davisson, 2008). Changes in cerebral vasculature and cerebral perfusion
are also important indicators of the aetiogenesis of hypertension. Moreover, chronic
uncontrolled hypertension may lead to CSVD mainly in deep subcortical region such
as thalamus, pons, internal capsule, and cerebellum (Shi & Wardlaw, 2016).

In addition, hypertensive individuals may also have genetic-based
cerebrovascular susceptibility than non-hypertensive people according to (Warnert et
al., 2016) who proposed the hypertension-induced remodelling of cerebral vasculature
to maintain blood circulation balance. Other research reinforces this prior finding,

claiming that cerebral vascular remodelling and higher cerebral perfusion pressure
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occur before the onset of hypertension. Predictably, chronically elevated blood
pressure has been linked to changes in carotid artery diameter while blood artery
tortuosity that is excessive or aberrant has been linked to multiple manifestation of
ischemic stroke due to the systemic hypertension as reflected by the brain and

vasculature imaging (Abdalla et al., 2015; Han, 2012).

2.2.1 Brain Imaging Used For CVD Diagnosis

Neuroimaging of biomarkers is commonly utilized for cerebrovascular
diseases (CVD) detection. Despite recent advances, understanding the pathogenesis of
vascular disorders remains limited, necessitating human intervention for diagnosis,
particularly in techniques like Magnetic Resonance Imaging (MRI) or Computed
Tomography (CT) where expert interpretation is vital for discerning subtle cerebral
blood vessel anomalies. Recognizing the need for early diagnosis, automating these
tasks emerges as a viable option. Presently, medical imaging, a cost-effective
diagnostic method, prompts interdisciplinary collaboration to explore automation
solutions, particularly in the intricate diagnosis of CVD (Cuadrado-Godia et al., 2018).
Image segmentation, precision delineation of cerebral blood vessels, enables
quantitative analysis, aiding in the identification of subtle abnormalities and
contributing to accurate cerebrovascular disease diagnosis. These studies underscore
the importance of achieving high-precision early diagnosis, highlighting the potential
of image segmentation techniques in addressing this diagnostic challenge.

Roentgen discovered the first technique of structural imaging in 1895, termed
X-ray (Weber, 2001). However, it was not until 1927 that Egas Moniz conducted the
first human cerebral angiography (Antunes, 1974). Before 1927, Haschek and
Lindenthal used an opaque fluid to inject into human corpses to create radiographs of

blood arteries. The latest advances in science and computing have resulted in
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increasingly sophisticated systems for acquiring data from the brain. Computed
tomography (CT), positron emission tomography (PET), and magnetic resonance
imaging (MRI) are the three primary techniques that have been utilized for decades;
MRI was created most recently by Nobel laureate Lauterbur and Mansfield. Magnetic
resonance angiography (MRA) is a collection of techniques that leverage MRI to
depict the brain's blood vessels in detail. TOF-MRA is the most frequently used
modality nowadays for cerebrovascular radiography. Together with other imaging
modalities, such as digital subtraction angiography (DSA), photoacoustic imaging
(PAI), and transcranial doppler (TCD), the techniques above have advanced our
comprehension of the brain's vasculature, thereby increasing and improving our
knowledge of the central nervous system's complexity (CNS) (Lavifia, 2017).

The cerebral network of the brain is intricately connected to different brain
tissues, making it difficult to physically identify the tiny arteries, let alone detect Blood
Brain Barrier (BBB) leakage. Noise is an inherent component of all magnetic
resonance images that degrades the image's resolution and contrast, which are critical
for segmenting tiny brain vasculature. Using noise reduction to retrieve the brain's
vascular network from an MR image is crucial in medical imaging. Numerous
strategies for segmenting the vascular network from MR images have evolved,
indicating a good chance of overcoming the problem through recent research.
However, such an application is still in its infancy in the clinical setting. As medical
imaging modalities advance at a breakneck pace, new application-specific
segmentation challenges emerge, and novel approaches are regularly investigated and
proposed (Despotovi¢ et al., 2015). Choosing the most appropriate method for a

particular application is a difficult task.
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2.3 Image Processing For Medical Image Segmentation

Image segmentation involves the nuanced task of partitioning images based on
attributes like color, intensity, and texture. Embedded within a classification
framework, this process entails categorizing N elements into K regions, resembling
the intricate resolution of a combinatorial optimization problem (Pham et al., 2000).
The efficacy of segmentation techniques hinges on the intrinsic characteristics inherent
in processed images, which can be broadly classified into Thresholding, Region-based
methods, Clustering, Edge detection, and Model-based methods. Fundamentally,
image segmentation in image processing relies on two foundational aspects—
discontinuity and similarity. Discontinuity facilitates the separation of regions marked
by abrupt intensity changes, while similarity enables the identification of pixels
sharing comparable properties within a predefined range. This dual framework serves
as the bedrock for various segmentation techniques, offering a nuanced and adaptable
approach to image analysis. The subsequent sections will delve into traditional image

processing approaches for the segmentation of medical images.

2.3.1 Thresholding Method

Thresholding is a crucial image segmentation method, converting greyscale
images into binary representations using a chosen threshold value. Standard techniques
include the maximum entropy method (Gonzalez & Woods, 2002), Otsu's method, and
K-means clustering (Haralick & Shapiro, 1985). Efficacy is influenced by noise and
indistinct boundaries, prompting strategies like Thresholding with Edge detection for

improved performance.

2.3.2 Region-Based Method

Region-based techniques present diverse approaches to image segmentation,

each method tailored to address specific challenges and offer application-specific
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advantages. The region-growing algorithm, initiated by a seed pixel, expands regions
based on connectivity and similarity criteria, such as greyscale intensity or color (J.
Wu et al., 2009). Adaptive algorithms enhance segmentation by incorporating
statistical information and prior knowledge (Thakur & Anand, 2007). The region Split
and Merge method, utilizing quadtree information, involves splitting an image into
quadrants and merging uniform neighboring segments, effectively eliminating high-
frequency artifacts. This approach proves valuable in the evaluation of breast and cyst
masses (Thakur & Anand, 2007). The Watershed Approach treats the image as a
topographic surface, interpreting low-intensity pixels as valleys and high-intensity
pixels as hills or peaks (McElhaney, 1983). Using water sources (seeds), this algorithm
floods valleys and constructs barriers to prevent merging. While standard watershed
methods encounter challenges with noise, power watershed algorithms effectively
address these issues, showcasing efficacy in tasks such as breast tumor (Huang &
Chen, 2004), contour extraction from ultrasound images (L6pez-Mir et al., 2014) and

liver segmentation (Benson C. C. et al., 2015).

2.3.3 Clustering Method

Clustering, a process of grouping homogeneous data, is exemplified by the
foundational "K-means clustering™ algorithm assigning each dataset component to a
single cluster. In contrast, soft clustering, as seen in Fuzzy C-Means (FCM), permits
pixel membership in multiple groups. FCM, applicable to both grey and color images,
employs fuzzy community function values for membership determination, guided by
an objective function measuring squared Euclidean and fuzzy community distances
(Ahmed et al., 2002). Addressing challenges like noise in MR images, enhancements
such as Kernelized Fuzzy C-Means (KFCM) (D.-Q. Zhang & Chen, 2004) and Fast

Generalized Fuzzy C-Means (FGFCM) (Cai et al., 2007) have been introduced. FCM
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variations, including Type-Il Fuzzy C-Means (T2FCM) and Intuitionist Fuzzy C-
Means (IFCM), demonstrate efficacy in noise removal and image segmentation.
Innovations like Fuzzy-based Artificial Bee Colony (FABC) (Aneja & Rawat, 2013)
integrate Artificial Bee Colony Optimization with FCM for efficient synthetic and

medical image clustering.

2.34 Edge Detection Method

Edge detection, a conventional approach for identifying image irregularities,
focuses on distinguishing boundaries between regions with distinct intensity or grey
levels. Employing derivative operations through convolution functions, the Canny
edge detector stands out for its efficiency, relying on gradient extent thresholds, non-
maximal suppression, and hysteresis thresholding (Mahmood et al., 2015). Critical
pre-processing steps, including Gaussian smoothing, are essential to address noise
impact. Thoughtful consideration of image pre-processing is imperative to prevent
inaccurate edge detection, thereby facilitating the implementation of multi-resolution

edge detection and tracing techniques (Lopez-Molina et al., 2013).

2.35 Model-Based Method

Model-based approaches in image analysis, characterized by integrating
models encapsulating shape and structure information, demonstrate enhanced
robustness against artifacts compared to conventional algorithms. Markov Random
Field (MRF) models, drawing inspiration from the Ising model (Kindermann & Snell,
1980), find widespread application in image segmentation, preserving edges through
parameter approximation (Held et al., 1997). The Hidden Markov Random Field
(HMRF) (Y. Zhang et al., 2001) introduces a stochastic process with unobservable
states, enhancing segmentation precision through an Expectation Maximization (EM)

framework. The combination of MRF and Self-Organizing Feature Map (SOFM)
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contributes to improved smoothness in region partitioning (Li & Chi, 2005). Atlas-
based approaches leverage images with anatomical details for segmentation,
employing image registration to ensure accurate partitioning (H. Park et al., 2003).
Graph cut algorithms, rooted in graph theory, effectively partition images into
foreground and background based on pixel similarities. This technique is demonstrated
in photo, video editing, and medical image processing applications (Boykov & Jolly,
2001). The Lattice Boltzmann Method (LBM), a simulation technique bridging
microscopic and macroscopic scales, proves influential in image analysis,
encompassing tasks such as image smoothing, inpainting, and segmentation (Grunau
et al., 1993). Anisotropic diffusion models based on LBM exhibit efficacy in clinical

Image segmentation.

2.4 Recent Growth Of Deep Learning In Medical Imaging

Deep learning-based techniques for medical imaging have grown in popularity
in recent years due to their robust feature extraction, accurate classification, and
compatibility compared to the traditional image processing techniques. The
Convolutional Neural Network (CNN) architecture is the most frequently used deep
learning architecture for image processing and segmentation. The feature extracted
using many layers (convolutional layer, pooling layer) is highly robust and impractical
to produce manually. Depending on the input data, 2D, 2.5D, and 3D CNNs are
utilized for medical imaging. In 2D CNN, the input picture is given in a two-
dimensional format to apply a two-dimensional filter for segmentation. With transfer
learning, a similar architecture was used, in which pre-trained 2D models on ImageNet
were used in conjunction with low-level filters (Bar et al., 2015). 2.5D architecture

delivers much more spatial information than 2D design at a lower computational cost
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than 3D architecture prompted its development. According to some studies, the 2.5D
training technique with 2D labelled data is more compatible with present technology
than the 3D training technique (Moeskops et al., 2016; Prasoon et al., 2013; Roth et
al., 2018). They cannot employ 3D filters that require 3D CNN since 2D architecture
is still limited to 2D kernels. The voxels from 3D patches are used in 3D architecture
to predict the label, like 2D CNN but with more spatial information. Most medical
images are in 3D format, and researchers preferred the architecture because of the
availability of processing capacity (Vaidhya et al., 2016).

Fully convolutional network (FCN) is another network proposed by (Long et
al., 2015). FCN substitutes the final fully connected layer with a fully convolutional
layer, enabling the network to make pixel-by-pixel predictions. This layer enhances
the dense pixel-wise prediction in a single forward pass from a full-sized image
compared to a patch-wise prediction. High-resolution activation maps are linked with
upsampled outputs and fed into the convolution layers to create a more precise result
by enhancing localization performance. FCN is frequently utilized to segment organs
(X. Zhou et al., 2016, 2017) using 2.5D and 3D images. There are more FCN versions,
including Cascade FCN (Christ et al., 2016), Focal FCN (X. Y. Zhou et al., 2018), and
Multi-stream FCN (Zeng & Zheng, 2018), that are widely used in medical imaging
with high accuracy. One of the most commonly used architectures in medical imaging
today is U-Net, which was proposed by (Ronneberger et al., 2015). This model
employs deconvolution and FCN to create a U-shaped architecture comprising 19
layers. Two steps are included in the model: encoding and decoding. The encoding
step makes use of a CNN structure with layers for downsampling. The decoding is
accomplished by a series of upsampling layers followed by a deconvolution layer.

Though the first structure was designed for 2D pictures, it lacked localization
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capability. Later, (Cicek etal., 2016) created the 3D U-Net to provide additional spatial
information to the network, employed in vascular border identification (Kleesiek et al.,
2016). 3D U-Net is a memory-intensive algorithm. V-net is the most well-known
adaptation of U-Net, presented by (Milletari et al., 2016). Other potential deep learning
models are being applied in medical imaging, including Convolutional Residual
Networks (CRNs) (He et al., 2016), Recurrent Neural Networks (RNNs) and their
variations, long short-term memory (LSTM), Contextual LSTM (J. Chen et al., 2016),
Gated recurrent unit (GRU), and clockwork RNN (CW-RNN). More details on the
models and their application were discussed in (Hesamian et al., 2019). Figure 2.1

illustrates the FCN network which is briefly explained above.
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Figure 2.1 FCN architecture proposed by (Long et al., 2015)
24.1 Emergence Of Deep Learning For CVD

Numerous studies on segmentation have been conducted, including atlas-based
algorithms (Cuadra et al., 2004; Kirisli et al., 2010; H. Wang et al., 2013) , active
contour models (Mishra, 2010; Tian et al., 2013), machine learning techniques
(Othman & Tizhoosh, 2011; H. Wang et al., 2013), and statistical models (Chung et
al., 2004; Gao et al., 2011). A previous review on blood vessel segmentation discussed
in detail the mentioned methods (Zhao et al., 2017). Some proposed models can be

classified as manual, semi-automated, or automated. However, of all the models, the
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Active contour model (ACM) is the most extensively used clinically, where images
can be identified based on their edges, regions, or higher knowledge (Shang et al.,
2011) — until recently. When it comes to microscopic features, the ACM has
limitations, and time complexity increases as data volume grows. Since the problem is
well-known, researchers are looking for a more robust solution, and deep learning is
becoming more popular as an alternative. The First deep learning-based segmentation

was performed very recently by (Phellan et al., 2017) in 2017.

2.4.2 Computer-Aided Diagnostic (CAD) And Deep Learning

Since 2017, a lot of deep learning-based research has been done on brain blood
vessel segmentation (BVS), leading to the focus on developing Computer-Aided
Diagnostic (CAD). Radiologists employ CAD tools to recognize and evaluate medical
images automatically. It provides a crucial second opinion and reduces Intra and
Interobserver variability, allowing for faster, more accurate, and consistent diagnosis.
Conventional CAD systems can automatically diagnose various CVD disorders,
including intracranial aneurysms (IA). Due to low sensitivity and high false positive
(FP) rates, such methods are not commonly used in medical practice. However, thanks
to the advancement of deep learning models and computer vision in medical imaging,
CAD systems have recently evolved. MRA has been regularly used in CAD-based
systems for IA incorporating various deep learning architectures in recent years. 2D
CNN model to detect IA on maximum intensity MRA (Nakao et al., 2018), DeepMedic
CNN on TOF-MRA (Faron et al., 2019) and CTA (Shahzad et al., 2020), 18-layers
CNN Residual network on MRI (Ueda et al., 2019), 3D Resnet on TOF-MRA (Sohn
et al., 2021), 3D U-Net on TOF-MRA (G. Chen et al., 2020), HeadXNet model on
CTA (A. Park et al., 2019) all are the current methods used in the CAD system to

diagnose 1A with sensitivity ranging from 70% to 94%. Recent advancements in CAD
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systems suggest an increase in medical research. More on the development of CAD
based system for 1A can be found in this article (Mensah et al., 2022). Assume that a
CAD-based system can be enhanced to the point where the system's sensitivity and
accuracy are therapeutically beneficial. In that situation, it will improve radiologists'

capacity to diagnose brain imaging.

2.5  Deep Learning For Brain Vessel Segmentation (BVS)

Recent advances in deep learning are transforming medical imaging,
particularly cerebrovascular vessels' segmentation. A substantial amount of research
IS being conducted on this topic utilizing deep learning. Generally, a deep learning
model for vessel segmentation follows a generalized pipeline which is shown in Figure
2.2. The pipeline is developed based on the multiple works done on the topic as a

summary.

25.1 Dataset Used In BVS

The study of brain vascular segmentation (BVS) needs Magnetic Resonance
Imaging (MRI), and MRA is a particular type of MRI. Because of its short echo time
and utilization of flow correction, TOF-MRA is the most widely used technology for
non-contrast bright-blood imaging of the human vasculature. Concerned with privacy
and ethics, most BVS research uses TOF-MRA data acquired by the research team. As
a result, the majority of the datasets utilized in earlier studies were private. Table 2.1
is an overview of the dataset widely utilized by academics, including the resolution

and quantity of the data.
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Table 2.1 Summary of MRA datasets used in brain blood vessel segmentation

: Resolution Total
Dataset Modality Source (mm?) subject
Swedish
CardioPulmonsary . 0.48x0.48%0
biolmage Study (SCAPIS) CE-MRA | Private | g 194
(Bergstrom et al., 2015)
PEGASUS (Martin et al., i . 0.50x0.50x0.
2015) TOF-MRA | Private 20 74
7UP (Madai et al., 2012) | TOF-MRA | Private 2660)‘0'60’(0' 9
Multimodal
iggg)PLUS (Hotter et al., (Including | Private 2552x0.52x0. 1200
TOF-MRA)
MIDAS (Bullitt et al., . 0.51x0.51x0.
2005) TOF-MRA | Public 80 109
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Figure 2.2 Summarized pipeline of the cerebrovascular segmentation using deep
learning model

2.5.2 Evaluation Metrics

In medical imaging, image voxels are categorized as vessel voxel (Positive) or
non-vessel voxel (Negative). To determine the identity of each voxel, ground truth
labels are compared with voxel identification. True positive (TP), true negative (TN),

false positive (FP), and false-negative (FN) are the four fundamental measurements.

The metrics are presented in Table 2.2 below.
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Table 2.2 Pixel measure in vessel segmentation

Ground truth
Vessel Non-vessel
Segmentation Vessel TP FP
result Non- FN TN
vessel

In BVS using deep learning, data annotation is a significant component of the
process. As most of the study follows a supervised technique, the ground truth of the
data is mandatory. Even though some research tries to adopt an unsupervised method,
ground truth is still essential to qualitatively examine the unsupervised output to
measure the model's performance. In most situations, the annotation is done manually
by experienced observers with several years of expertise in Radiology. The observer
utilizes software to segment each voxel manually. Some software is used frequently
for ground truth segmentation, i.e., ITK-SNAP (Yushkevich et al., 2006), MevisLab
(Ritter et al., 2011), etc.

Usually, the annotation process is determined by the data collection technique.
Before segmenting the actual mask, image processing, active contour techniques, or
statistical models are employed to identify the Region of Interest (ROI). For example,
in the paper (Liu et al., 2022), the observer used ITK SNAP software to generate a pre-
segmentation mask using the active contour segmentation pipeline. Later, domain
experts utilized the pre-segmentation mask for post-manual enhancement. In the study
(Cheng et al., 2021), the grey transformation was utilized as a method of image
processing to help distribute grey image values for improved annotation. In a different
study (de Vos etal., 2021), histogram-based thresholding on maximum image intensity
was employed to select the ROI, which was then manually annotated by an observer.
Manual segmentation may require post-processing to guarantee that the mask has no

discontinuous regions or holes (Ziegler et al., 2021).
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Table 2.3 Evaluation metrics regularly used in BVS

Metrics Expression
TP

(TP + FN)
TN

(TN + FP)
TP

TP+ FP
2xTP

(FP + FN + 2+ TP)
TP + TN

TP+ TN+ FP + FN
FP

Sensitivity

Specificity

Precision

Dice Similarity Coefficient

Accuracy

False Positive Rate S—
TN + FP

1
X mind(x,y)
Average Hausdorff Distance xeRyer

1
+7 Z mind(x,y)

XEX,yEY

Some of the principal assessment matrices typically utilized in the BVS study
are listed in Table 2.3 a few matrices may have distinct names but equivalent
expressions; for instance, DSC and F1 scores are equivalent, and the true positive rate
(TPR) is equivalent to Recall and Sensitivity. The average Hausdorff distance from
point set X to Y is the sum of all minimum distances between all points in X and Y,
divided by the number of points in X where X is the ground truth, and Y is the

segmentation.

2.5.3 Preprocessing Used In BVS

Deep learning algorithms typically extract features from unprocessed data,
with researchers mainly focusing on model optimization rather than data
preprocessing. However, some standard preparation is required for the medical image
because it contains noise. Following is a discussion of some standard approaches

utilized to solve this issue.
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