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SENIBINA SEGMENTASI CEREBROVASCULAR DENGAN 

PERHATIAN SALURAN DAN PENYARING KERNEL RUANG UNTUK 

IMEJ TOF-MRA 

ABSTRAK 

 

Tesis ini memperkenalkan pendekatan pembelajaran mendalam untuk 

membahagikan struktur serebrovaskular dalam gambar angiografi resonans magnetik 

(MRA) secara automatik. Penyakit serebrovaskular (CVD) adalah keadaan otak yang 

rosak, yang sering kali mengakibatkan strok iskemik dan memerlukan diagnosis yang 

tepat. Walapun ahli radiologi memiliki kepakaran dalam menafsirkan imej MRA, 

kesilapan dalam penilaian manual masih boleh berlaku dan ini membuktikan 

kepentingan mengurangkan kesilapan dan meningkatkan kecekapan tafsiran imej 

MRA dalam sistem diagnosis berbantu komputer (CAD). Di samping pelbagai 

rangkaian segmentasi wujud untuk pensegmenan serebrovaskular dalam imej MRA, 

model UNet mempunyai keupayaan pengekstrakan ciri/sifat yang luar biasa. Namun, 

sifat kompleks pembuluh darah otak menimbulkan cabaran pada senibina U-Net. 

Penggabungan langsung peta ciri beresolusi tinggi dan rendah dalam U-Net berisiko 

melemahkan maklumat semantik, mewujudkan variasi rawak, dan mengurangkan 

ketepatan pensegmenan, terutamanya pada pembuluh darah yang lebih kecil, 

menyebabkan masalah segmentasi berlebihan dan berkurangan. Untuk mengatasi 

cabaran-cabaran ini, kajian ini mencadangkan model ECA-SKFNet yang baharu untuk 

pensegmenan serebrovaskular dalam imej TOF-MRA. Melalui pembinaan atas 

senibina U-Net, model kajian ini menggabungkan corak penelitian saluran yang efisien 

(ECA) bertingkat untuk mengekstrak ciri-ciri/sifat-sifat utama dan menggunakan 

penapis kernel ruang (SKF) untuk memastikan pengekstrakan ciri/sifat yang lebih 
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tepat dalam segmentasi pembuluh darah otak (BVS). Kajian ini menggunakan 

pendekatan yang unggul dalam membahagikan seluruh struktur pembuluh darah 

sambil memberi penekanan yang lebih besar kepada pencerapan pembuluh darah yang 

kecil (<5 mm radius) dengan ketepatan tinggi. Kaedah yang dicadangkan dinilai dalam 

dataset MIDAS menunjukkan prestasi yang kompetitif dengan hasil penilaian yang 

cemerlang. Pendekatan ini mencapai nilai pekali persamaan Dice (DSC) sebanyak 

0.6741, pekali Jaccard sebanyak 0.5015, purata jarak Hausdorff (AHD) sebanyak 

69.33, dan persamaan isipadu (VS) sebanyak 0.9755, dan mengatasi hasil model lain 

yang digunakan dalam ujikaji. Keberkesanan pendekatan ini ditekankan, dan 

mempersembahkan kaedah pensegmenan serebrovaskular yang meyakinkan dan 

membolehkan visualisasi yang lebih baik terhadap struktur pembuluh darah, 

terutamanya pembuluh darah yang kecil.  Penemuan dalam kajian ini menyumbang 

kepada kemajuan sistem berkomputer untuk mendiagnosis penyakit serebrovaskular, 

dengan potensi untuk menyelamatkan nyawa, mengurangkan masa diagnosis, dan 

menurunkan kos. 
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CEREBROVASCULAR SEGMENTATION ARCHITECTURE WITH 

CHANNEL ATTENTION AND SPATIAL KERNEL FILTERING FOR TOF-

MRA IMAGES 

ABSTRACT 

This thesis introduces a deep learning approach to automatically segment 

cerebrovascular structures in magnetic resonance angiography (MRA) images. 

Cerebrovascular disease (CVD), a debilitating brain condition often leading to 

ischemic stroke, necessitates accurate diagnosis. Despite the expertise of human 

radiologists in interpreting MRA images, the fallibility of manual assessments 

underscores the importance of computer-aided diagnosis (CAD) systems for error 

reduction and enhanced efficiency. While various segmentation networks exist for 

cerebrovascular segmentation in MRA images, the U-Net model stands out for its 

exceptional feature extraction capabilities. However, the complex nature of brain 

vessels poses challenges to the U-Net architecture. The direct concatenation of high- 

and low-resolution feature maps in U-Net risks diluting semantic information, 

introducing noise, and compromising segmentation accuracy, particularly with smaller 

vessels, leading to over and under-segmentation. To address these challenges, we 

propose a novel ECA-SKFNet model for cerebrovascular segmentation in TOF-MRA 

images. Building upon the U-Net architecture, our model incorporates a cascaded 

Efficient Channel Attention (ECA) pattern to extract salient features and employs 

spatial kernel filtering (SKF) to ensure sharper feature extraction in brain vessel 

segmentation (BVS). This study utilizes an approach that excels in segmenting the 

entire vessel structure while placing increased emphasis on accurately capturing small 

vessels (< 5 mm radius). The proposed method was evaluated on the MIDAS dataset, 
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demonstrating its competitive performance with exceptional evaluation results. The 

approach achieved a Dice Similarity Coefficient (DSC) score of 0.6741, Jaccard 

coefficient of 0.5015, Average Hausdorff Distance (AHD) of 69.33, and Volumetric 

Similarity (VS) of 0.9755 surpassing the results obtained by other models employed 

in the experiments. The effectiveness of the approach was highlighted, presenting a 

promising avenue for improved cerebrovascular segmentation, and enabling enhanced 

visualization of vascular structures, particularly smaller vessels. The findings of this 

study contribute to the advancement of a computerized system for diagnosing 

cerebrovascular disease, with the potential to save lives, reduce diagnosing time, and 

lower expenses.
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CHAPTER 1  
 

INTRODUCTION 

1.1 Overview 

This chapter provides a comprehensive overview of the Cerebrovascular 

segmentation research, offering insights into its background, motivation, problem 

statement, research questions, aim, objectives, expected contribution, scope, 

limitations, and organization. Firstly, it delves into the background of the research, 

offering context and understanding of the topic. Subsequently, it discusses the 

motivation behind undertaking this study, shedding light on the driving factors that 

sparked the research. The problem statement is then presented, clearly articulating the 

issue and the need for further investigation. Next, the research questions are 

formulated, outlining the specific inquiries the study aims to address. The aim and 

objectives of the research are defined, indicating the ultimate goal and the specific 

milestones to be achieved. Furthermore, the expected contribution of the study is 

highlighted, emphasizing the potential impact and value it may bring to the field. 

Additionally, the scope and limitations of the research are elucidated, clarifying the 

boundaries within which the study operates and acknowledging any potential 

constraints. Finally, the organization of the work is outlined, providing a roadmap for 

readers to navigate through the subsequent chapters and sections. 

1.2 Background of the Research 

Cerebrovascular diseases (CVD) constitute a spectrum of conditions affecting 

blood vessels in the brain, including ischemic and hemorrhagic strokes, transient 

ischemic attack (TIA), and vascular dementia. These conditions manifest diverse 

pathophysiological features within the cerebral vasculature. CVD is a prominent cause 
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of disability, functional loss, and cognitive decline in adults. Notably, stroke holds a 

prominent position, prevailing in prevalence and significantly impacting morbidity 

and mortality within the broader spectrum of cerebrovascular disorders. A stroke is an 

abrupt blockage of cerebral arteries that compromises brain perfusion. Despite a rise 

in global stroke prevalence, mortality has declined due to higher life expectancy (Fang 

et al., 2014). 85% of stroke subtypes are ischemic (due to blockage), while the rest are 

hemorrhagic (due to rupture) (Mozaffarian et al., 2016). Recognizing and treating a 

stroke early is crucial for reducing mortality and morbidity. According to research, up 

to 45% of dementia cases are CVD-related (Pantoni & Gorelick, 2014). Up to 65% of 

ischemic strokes are attributable to cerebral small vessel disease (CSVD) (Khaku et 

al., 2021). Hypertension is a leading risk factor for stroke in women, especially. Type-

2 diabetes, smoking, obesity, drug use, and atrial fibrillation are other cardio-

cerebrovascular risk factors (Khaku et al., 2021). Hypertension can affect anyone, 

especially those with a family history. Over time, hypertension alters brain vasculature. 

Clinically, cerebral vascular alterations, including diameter and tortuosity, are often 

present before hypertension symptoms (Iadecola & Davisson, 2008). Changes in 

cerebral vasculature and perfusion are also key hypertension indications. Uncontrolled 

chronic hypertension can cause CSVD, especially in the thalamus, pons, internal 

capsule, and cerebellum (Shi & Wardlaw, 2016). (Warnert et al., 2016) argued that 

hypertension-induced remodeling of cerebral vasculature maintains blood circulation 

equilibrium. In animal models and humans, cerebral vascular remodeling and greater 

cerebral perfusion pressure occur before hypertension. In contrast, excessive or 

aberrant blood artery tortuosity is linked to numerous indications of ischemic stroke 

owing to systemic hypertension (Abdalla et al., 2015; Han, 2012). 
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1.3 Motivation 

Cerebrovascular Disease (CVD) is a collection of cerebrovascular diseases 

caused by the blood-brain barrier leaking. It is a primary cause of functional loss and 

cognitive decline in the aged and plays a vital role in ischemic stroke and brain 

hemorrhages. In 2018, stroke was responsible for one-sixth (1/6) of all fatalities due 

to cardiovascular disease in the USA. According to researchers, hypertension causes 

alterations in brain vasculature. It is one of the most common causes of stroke in people 

of all ages. In rats, chronically high blood pressure was associated with alterations in 

carotid artery diameter. Excessive or abnormal blood vessel tortuosity has been related 

to several hazardous conditions, including hypertension. Early detection of 

hypertension enables people to receive more effective therapy before they become 

dangerously sick. 

Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiography 

(MRA) represent non-invasive imaging modalities utilizing magnetic fields and radio 

waves to produce intricate visualizations of internal anatomical structures. Although 

both techniques share this foundational principle, MRA is specifically adept at 

elucidating the intricate details of blood vessels, offering pivotal information regarding 

vascular anatomy and the dynamics of blood flow. MRA facilitates knowledge of 

numerous arteries throughout the body, including those in the brain, which aids in 

diagnosing CSVD. Blood vessel extraction is a complex process due to the prevalence 

of noise, an intrinsic quality that might distort the MRA images and result in inaccurate 

classification.  

In the diagnosis of cerebrovascular diseases (CVD), patients undergo imaging 

procedures, and a proficient radiologist meticulously evaluates the images to compose 

a diagnostic report guiding subsequent medical actions. A pivotal stage in this 
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diagnostic process entails the segmentation of the vascular network within images, 

enabling a clear visualization of blood vessels to identify potential ruptures or 

anomalies. This segmentation procedure plays a crucial role in the thorough evaluation 

and precise diagnosis of cerebrovascular conditions. The manual segmentation of 

thousands of images by human professionals for diagnosing Magnetic Resonance 

Angiography (MRA) images can be both time-consuming and subject to 

inconsistencies. Even among experts, achieving identical segmentations repeatedly is 

challenging, leading to variations in outcomes. Consequently, the need for automated 

brain vessel segmentation is imperative. An automated approach utilizing image 

segmentation proves advantageous in terms of efficiency and time conservation, aiding 

clinicians in disease identification through MRA data. Ongoing research endeavors 

focus on cerebral blood vessel segmentation, with a prominent emphasis on deep 

learning methodologies as the most promising avenue for accurate and reproducible 

results. 

1.4 Problem Statement 

Cerebrovascular system segmentation using magnetic resonance angiography 

(MRA) has been extensively studied, employing various techniques. Previous 

approaches included automatic, semi-automated, and manual segmentation methods 

such as atlas-based algorithms, active contour models, machine learning techniques, 

and statistical models. Active contour models were widely utilized in clinical practice 

until recently, but they have limitations when examining microscopic features and their 

time complexity increases with larger data volumes. The introduction of deep learning 

to brain vessel segmentation (BVS) in 2017 presented a new and effective solution to 

address previous limitations. Deep learning models automatically extract complex 
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features from the data, which is challenging to achieve manually using traditional 

models. The intricate nature of brain representations, consisting of tissue, blood 

vessels, and noise, renders hand-crafted features impractical. Deep learning models 

have proven to be superior in extracting complex image features compared to other 

strategies. 

In recent years, deep learning algorithms have gained significant popularity in 

medical imaging due to their ability to extract robust features, achieve accurate 

classification, and demonstrate compatibility. Among the various deep learning 

architectures, Convolutional Neural Networks (CNNs) have emerged as the most 

widely used for image processing and segmentation tasks. In the context of segmenting 

blood arteries in the brain, CNN-based architectures exhibit strong performance and 

deliver excellent segmentation accuracy. The features extracted from multiple layers, 

such as convolutional and pooling layers, are inherently robust and challenging to 

manually construct. One notable network architecture, the Fully Convolutional 

Network (FCN), introduced by (Long et al., 2015), replaces the final fully connected 

layer with a fully convolutional layer, enabling pixel-by-pixel prediction. Another 

advanced design is the U-Net, which combines CNN and FCN models to extract 

features from images and demonstrates exceptional segmentation performance.  

Despite its strengths, U-Net has limitations in the domain of Brain Vessel 

Segmentation (BVS), specifically in dealing with challenges related to over and under-

segmentation. In U-Net, the direct concatenation of high- and low-resolution feature 

maps poses a risk of diluting semantic information, introducing noise, and 

compromising segmentation accuracy in fine-grained structures. While skip 

connections capture local and global features, the absence of a mechanism to 

selectively prioritize features during concatenation limits seamless integration of 
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contextual information, potentially including extraneous details or noise. This 

deficiency impacts accuracy in diverse and complex scenes. Furthermore, it is essential 

to consider the broader concern of generalization in medical image analysis, as the 

performance of segmentation models may vary across diverse datasets and imaging 

modalities. 

Accurate feature extraction plays a pivotal role in Brain Vessel Segmentation 

(BVS), and the U-Net model has demonstrated proficiency in automatically extracting 

intricate features from brain images, including unintended elements like noise and non-

vascular organ structures. However, optimizing its clinical applicability is imperative 

to address segmentation errors and enhance accuracy while efficiently utilizing 

computational resources. The integration of an attention mechanism, emphasizing 

relevant features within the image, proves beneficial in mitigating U-Net's limitations. 

Additionally, incorporating an intermittent filtering technique to enhance the quality 

of sharper features provides additional advantages for segmenting complex structures, 

particularly in cerebrovascular networks. This promising approach holds potential to 

advance BVS in clinical settings, yielding more reliable and accurate segmentation 

results. Moreover, it exhibits promise in overcoming segmentation challenges 

associated with smaller vessels, a common obstacle for existing segmentation models. 

1.5 Research Questions 

Aligned with the problem statement and the identified research gap, the research 

addresses the following key questions: 

1. What are the impact of integrating an attention mechanism into the U-Net 

model for BVS? 
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2. What outcomes arise from incorporating the spatial kernel filter technique into 

the previously modified U-Net model? 

1.6 Research Objective 

The objective of this research is given below: 

1. To enhance the salient feature extraction of U-Net model through the seamless 

integration of the channel attention mechanism for improved Brain Vessel 

Segmentation (BVS). 

2. To refine the feature extraction technique by incorporating spatial kernel 

filtering to extract sharper features for accurate segmentation of small vessels 

in brain images (MRA). 

1.7 Contributions 

This work makes a substantial contribution by seamlessly integrating a channel 

attention-based modification and spatial kernel filter into the U-Net model. The 

primary objective is to elevate the segmentation accuracy of medical images, 

particularly in contexts where preserving intricate details is paramount, all while 

adhering to computational efficiency constraints. Despite the approach entailing the 

augmentation of attention and spatial filtering within the established U-Net 

architecture, rather than proposing an entirely new network, these introduced 

modifications decisively enhance the model's performance in medical image 

segmentation. 

1.8 Scope And Limitations 

The proposed research utilizes two-dimensional images, but the MRA data is 

three-dimensional. The 3D brain scans contain more spatial information regarding the 
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vessel's anatomy. Due to computing resource limits, research is being conducted on 

2D model architecture. Although the proposed model can also be scaled in three 

dimensions, we failed to conduct a comparative analysis of the three-dimensional 

model in our ablation study. 

1.9 Thesis Organization 

The thesis is organized as follows: 

 

Chapter One provides a comprehensive overview of the research on 

Cerebrovascular segmentation, including its background, motivation, problem 

statement, research questions, aim, objectives, expected contribution, scope, 

limitations, and organization, discussing the context, driving factors, specific inquiries, 

ultimate goal, potential impact, boundaries, and roadmap for readers. 

 

Chapter Two provides an overview of the background of CVD, its diagnosis 

process, the need for automated segmentation, the advantages and limitations of deep 

learning methods, current trends in deep learning in BVS, and the theory behind the 

hypothesis. 

 

Chapter Three outlines the methodology, including dataset description, 

preprocessing techniques, model selection, architectural design, experimental setup, 

and relevant considerations. 

Chapter Four provides a comprehensive quantitative and visual analysis of 

our models, comparing their performance based on various metrics, uncovering 

patterns and trends, and offering insights and implications for future CVD diagnosis 

studies. 
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Chapter Five draws conclusion based on the results of the proposed 

mechanisms and offers insightful suggestions for future research in the academic field. 

1.10 Summary 

This chapter provides an overview of the research as a whole. It describes the 

background, motivation, problem description, aims, anticipated contribution, 

limitations, and scope of the study. The problem's context will be explored in detail in 

the subsequent chapters. In addition, the emergence of deep learning over other 

techniques and the current trends of the model used in BVS will be presented in the 

following chapter, along with the difficulties inherent in deep learning. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction 

The preceding chapter offer an overview of the direction of the research. This 

chapter will address the background of CVD and its diagnosis process, the need for 

automated segmentation approaches, the advantages of deep learning methods over 

other techniques, and the limitations of deep learning in the domain. This chapter also 

discusses the current trends in deep learning in CVD and the theory used in developing 

the hypothesis. 

2.2 Cerebrovascular Disease (CVD) 

Cerebrovascular diseases (CVD) constitute a diverse range of conditions 

impacting blood vessels in the brain, including ischemic stroke, hemorrhagic stroke, 

transient ischemic attack (TIA), and vascular dementia. Each subtype introduces 

distinct pathophysiological characteristics, contributing to the intricate landscape of 

cerebrovascular disorders. Of notable significance within this category is stroke, which 

not only prevails in prevalence but also exerts a considerable influence on morbidity 

and mortality across the broader spectrum of cerebrovascular ailments. Stroke is an 

acute interruption of cerebral vasculature leading to a compromised perfusion to the 

brain parenchyma. Over the past decades, despite an increment in the global stroke 

prevalence, the rate of mortality is decreasing owing to a longer life expectancy (Fang 

et al., 2014). CVD also represents a significant cause of disability and mortality, where 

stroke is recognized as the leading cause of adult’s disability or functional loss and 

cognitive decline (Khaku et al., 2021; Mozaffarian et al., 2016; Pantoni & Gorelick, 

2014). Additionally, it is widely accepted that about 85% of stroke subtype are 



11 

ischemic in nature (i.e., due to blockage), whilst the remaining are haemorrhagic stroke 

(i.e., due to rupture) (Mozaffarian et al., 2016). Therefore, recognizing stroke at an 

early stage and treating it promptly are important to prevent or minimize mortality 

and/or morbidity. Of note, studies also reported that up to 45% cases of dementia are 

CVD-related (Pantoni & Gorelick, 2014). 

The etiology of ischemic stroke includes microthrombosis, embolism, and 

lacunar with up to 65% of the etiologies are thought to be due to cerebral small vessel 

disease (CSVD) (Khaku et al., 2021). There are multiple cardio-cerebrovascular risk 

factors of stroke, with hypertension (i.e., elevated arterial blood pressure) serves a 

leading risk factor of stroke, especially in women. Other cardio-cerebrovascular risk 

factors include type-2 diabetes, smoking, high body mass index (or obesity), drug use 

and atrial fibrillation (Khaku et al., 2021). Hypertension may afflict anyone at any age, 

especially someone with a family history of hypertension. Researchers have 

discovered specific changes in brain vasculature due to hypertension over time. As per 

a clinical hypothesis, cerebral vasculature changes, such as changes in the diameter 

and tortuosity, are frequently evident before hypertension develops symptoms 

(Iadecola & Davisson, 2008). Changes in cerebral vasculature and cerebral perfusion 

are also important indicators of the aetiogenesis of hypertension. Moreover, chronic 

uncontrolled hypertension may lead to CSVD mainly in deep subcortical region such 

as thalamus, pons, internal capsule, and cerebellum (Shi & Wardlaw, 2016).  

In addition, hypertensive individuals may also have genetic-based 

cerebrovascular susceptibility than non-hypertensive people according to (Warnert et 

al., 2016) who proposed the hypertension-induced remodelling of cerebral vasculature 

to maintain blood circulation balance. Other research reinforces this prior finding, 

claiming that cerebral vascular remodelling and higher cerebral perfusion pressure 
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occur before the onset of hypertension. Predictably, chronically elevated blood 

pressure has been linked to changes in carotid artery diameter while blood artery 

tortuosity that is excessive or aberrant has been linked to multiple manifestation of 

ischemic stroke due to the systemic hypertension as reflected by the brain and 

vasculature imaging (Abdalla et al., 2015; Han, 2012). 

2.2.1 Brain Imaging Used For CVD Diagnosis 

Neuroimaging of biomarkers is commonly utilized for cerebrovascular 

diseases (CVD) detection. Despite recent advances, understanding the pathogenesis of 

vascular disorders remains limited, necessitating human intervention for diagnosis, 

particularly in techniques like Magnetic Resonance Imaging (MRI) or Computed 

Tomography (CT) where expert interpretation is vital for discerning subtle cerebral 

blood vessel anomalies. Recognizing the need for early diagnosis, automating these 

tasks emerges as a viable option. Presently, medical imaging, a cost-effective 

diagnostic method, prompts interdisciplinary collaboration to explore automation 

solutions, particularly in the intricate diagnosis of CVD (Cuadrado-Godia et al., 2018). 

Image segmentation, precision delineation of cerebral blood vessels, enables 

quantitative analysis, aiding in the identification of subtle abnormalities and 

contributing to accurate cerebrovascular disease diagnosis. These studies underscore 

the importance of achieving high-precision early diagnosis, highlighting the potential 

of image segmentation techniques in addressing this diagnostic challenge. 

Roentgen discovered the first technique of structural imaging in 1895, termed 

X-ray (Weber, 2001). However, it was not until 1927 that Egas Moniz conducted the 

first human cerebral angiography (Antunes, 1974). Before 1927, Haschek and 

Lindenthal used an opaque fluid to inject into human corpses to create radiographs of 

blood arteries. The latest advances in science and computing have resulted in 
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increasingly sophisticated systems for acquiring data from the brain. Computed 

tomography (CT), positron emission tomography (PET), and magnetic resonance 

imaging (MRI) are the three primary techniques that have been utilized for decades; 

MRI was created most recently by Nobel laureate Lauterbur and Mansfield. Magnetic 

resonance angiography (MRA) is a collection of techniques that leverage MRI to 

depict the brain's blood vessels in detail. TOF-MRA is the most frequently used 

modality nowadays for cerebrovascular radiography. Together with other imaging 

modalities, such as digital subtraction angiography (DSA), photoacoustic imaging 

(PAI), and transcranial doppler (TCD), the techniques above have advanced our 

comprehension of the brain's vasculature, thereby increasing and improving our 

knowledge of the central nervous system's complexity (CNS) (Laviña, 2017). 

The cerebral network of the brain is intricately connected to different brain 

tissues, making it difficult to physically identify the tiny arteries, let alone detect Blood 

Brain Barrier (BBB) leakage. Noise is an inherent component of all magnetic 

resonance images that degrades the image's resolution and contrast, which are critical 

for segmenting tiny brain vasculature. Using noise reduction to retrieve the brain's 

vascular network from an MR image is crucial in medical imaging. Numerous 

strategies for segmenting the vascular network from MR images have evolved, 

indicating a good chance of overcoming the problem through recent research. 

However, such an application is still in its infancy in the clinical setting. As medical 

imaging modalities advance at a breakneck pace, new application-specific 

segmentation challenges emerge, and novel approaches are regularly investigated and 

proposed (Despotović et al., 2015). Choosing the most appropriate method for a 

particular application is a difficult task. 
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2.3 Image Processing For Medical Image Segmentation 

Image segmentation involves the nuanced task of partitioning images based on 

attributes like color, intensity, and texture. Embedded within a classification 

framework, this process entails categorizing N elements into K regions, resembling 

the intricate resolution of a combinatorial optimization problem (Pham et al., 2000). 

The efficacy of segmentation techniques hinges on the intrinsic characteristics inherent 

in processed images, which can be broadly classified into Thresholding, Region-based 

methods, Clustering, Edge detection, and Model-based methods. Fundamentally, 

image segmentation in image processing relies on two foundational aspects—

discontinuity and similarity. Discontinuity facilitates the separation of regions marked 

by abrupt intensity changes, while similarity enables the identification of pixels 

sharing comparable properties within a predefined range. This dual framework serves 

as the bedrock for various segmentation techniques, offering a nuanced and adaptable 

approach to image analysis. The subsequent sections will delve into traditional image 

processing approaches for the segmentation of medical images. 

2.3.1 Thresholding Method 

Thresholding is a crucial image segmentation method, converting greyscale 

images into binary representations using a chosen threshold value. Standard techniques 

include the maximum entropy method (Gonzalez & Woods, 2002), Otsu's method, and 

K-means clustering (Haralick & Shapiro, 1985). Efficacy is influenced by noise and 

indistinct boundaries, prompting strategies like Thresholding with Edge detection for 

improved performance. 

2.3.2 Region-Based Method 

Region-based techniques present diverse approaches to image segmentation, 

each method tailored to address specific challenges and offer application-specific 
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advantages. The region-growing algorithm, initiated by a seed pixel, expands regions 

based on connectivity and similarity criteria, such as greyscale intensity or color (J. 

Wu et al., 2009). Adaptive algorithms enhance segmentation by incorporating 

statistical information and prior knowledge (Thakur & Anand, 2007). The region Split 

and Merge method, utilizing quadtree information, involves splitting an image into 

quadrants and merging uniform neighboring segments, effectively eliminating high-

frequency artifacts. This approach proves valuable in the evaluation of breast and cyst 

masses (Thakur & Anand, 2007). The Watershed Approach treats the image as a 

topographic surface, interpreting low-intensity pixels as valleys and high-intensity 

pixels as hills or peaks (McElhaney, 1983). Using water sources (seeds), this algorithm 

floods valleys and constructs barriers to prevent merging. While standard watershed 

methods encounter challenges with noise, power watershed algorithms effectively 

address these issues, showcasing efficacy in tasks such as breast tumor (Huang & 

Chen, 2004), contour extraction from ultrasound images (López-Mir et al., 2014) and 

liver segmentation (Benson C. C. et al., 2015). 

2.3.3 Clustering Method 

Clustering, a process of grouping homogeneous data, is exemplified by the 

foundational "K-means clustering" algorithm assigning each dataset component to a 

single cluster. In contrast, soft clustering, as seen in Fuzzy C-Means (FCM), permits 

pixel membership in multiple groups. FCM, applicable to both grey and color images, 

employs fuzzy community function values for membership determination, guided by 

an objective function measuring squared Euclidean and fuzzy community distances 

(Ahmed et al., 2002). Addressing challenges like noise in MR images, enhancements 

such as Kernelized Fuzzy C-Means (KFCM) (D.-Q. Zhang & Chen, 2004) and Fast 

Generalized Fuzzy C-Means (FGFCM) (Cai et al., 2007) have been introduced. FCM 
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variations, including Type-II Fuzzy C-Means (T2FCM) and Intuitionist Fuzzy C-

Means (IFCM), demonstrate efficacy in noise removal and image segmentation. 

Innovations like Fuzzy-based Artificial Bee Colony (FABC) (Aneja & Rawat, 2013) 

integrate Artificial Bee Colony Optimization with FCM for efficient synthetic and 

medical image clustering. 

2.3.4 Edge Detection Method 

Edge detection, a conventional approach for identifying image irregularities, 

focuses on distinguishing boundaries between regions with distinct intensity or grey 

levels. Employing derivative operations through convolution functions, the Canny 

edge detector stands out for its efficiency, relying on gradient extent thresholds, non-

maximal suppression, and hysteresis thresholding (Mahmood et al., 2015). Critical 

pre-processing steps, including Gaussian smoothing, are essential to address noise 

impact. Thoughtful consideration of image pre-processing is imperative to prevent 

inaccurate edge detection, thereby facilitating the implementation of multi-resolution 

edge detection and tracing techniques (Lopez-Molina et al., 2013). 

2.3.5 Model-Based Method 

Model-based approaches in image analysis, characterized by integrating 

models encapsulating shape and structure information, demonstrate enhanced 

robustness against artifacts compared to conventional algorithms. Markov Random 

Field (MRF) models, drawing inspiration from the Ising model (Kindermann & Snell, 

1980), find widespread application in image segmentation, preserving edges through 

parameter approximation (Held et al., 1997). The Hidden Markov Random Field 

(HMRF) (Y. Zhang et al., 2001) introduces a stochastic process with unobservable 

states, enhancing segmentation precision through an Expectation Maximization (EM) 

framework. The combination of MRF and Self-Organizing Feature Map (SOFM) 
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contributes to improved smoothness in region partitioning (Li & Chi, 2005). Atlas-

based approaches leverage images with anatomical details for segmentation, 

employing image registration to ensure accurate partitioning (H. Park et al., 2003). 

Graph cut algorithms, rooted in graph theory, effectively partition images into 

foreground and background based on pixel similarities. This technique is demonstrated 

in photo, video editing, and medical image processing applications (Boykov & Jolly, 

2001). The Lattice Boltzmann Method (LBM), a simulation technique bridging 

microscopic and macroscopic scales, proves influential in image analysis, 

encompassing tasks such as image smoothing, inpainting, and segmentation (Grunau 

et al., 1993). Anisotropic diffusion models based on LBM exhibit efficacy in clinical 

image segmentation. 

2.4 Recent Growth Of Deep Learning In Medical Imaging 

Deep learning-based techniques for medical imaging have grown in popularity 

in recent years due to their robust feature extraction, accurate classification, and 

compatibility compared to the traditional image processing techniques. The 

Convolutional Neural Network (CNN) architecture is the most frequently used deep 

learning architecture for image processing and segmentation. The feature extracted 

using many layers (convolutional layer, pooling layer) is highly robust and impractical 

to produce manually. Depending on the input data, 2D, 2.5D, and 3D CNNs are 

utilized for medical imaging. In 2D CNN, the input picture is given in a two-

dimensional format to apply a two-dimensional filter for segmentation. With transfer 

learning, a similar architecture was used, in which pre-trained 2D models on ImageNet 

were used in conjunction with low-level filters (Bar et al., 2015). 2.5D architecture 

delivers much more spatial information than 2D design at a lower computational cost 
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than 3D architecture prompted its development. According to some studies, the 2.5D 

training technique with 2D labelled data is more compatible with present technology 

than the 3D training technique (Moeskops et al., 2016; Prasoon et al., 2013; Roth et 

al., 2018). They cannot employ 3D filters that require 3D CNN since 2D architecture 

is still limited to 2D kernels. The voxels from 3D patches are used in 3D architecture 

to predict the label, like 2D CNN but with more spatial information.  Most medical 

images are in 3D format, and researchers preferred the architecture because of the 

availability of processing capacity (Vaidhya et al., 2016). 

Fully convolutional network (FCN) is another network proposed by (Long et 

al., 2015). FCN substitutes the final fully connected layer with a fully convolutional 

layer, enabling the network to make pixel-by-pixel predictions. This layer enhances 

the dense pixel-wise prediction in a single forward pass from a full-sized image 

compared to a patch-wise prediction. High-resolution activation maps are linked with 

upsampled outputs and fed into the convolution layers to create a more precise result 

by enhancing localization performance. FCN is frequently utilized to segment organs 

(X. Zhou et al., 2016, 2017) using 2.5D and 3D images. There are more FCN versions, 

including Cascade FCN (Christ et al., 2016), Focal FCN (X. Y. Zhou et al., 2018), and 

Multi-stream FCN (Zeng & Zheng, 2018), that are widely used in medical imaging 

with high accuracy. One of the most commonly used architectures in medical imaging 

today is U-Net, which was proposed by (Ronneberger et al., 2015). This model 

employs deconvolution and FCN to create a U-shaped architecture comprising 19 

layers. Two steps are included in the model: encoding and decoding. The encoding 

step makes use of a CNN structure with layers for downsampling. The decoding is 

accomplished by a series of upsampling layers followed by a deconvolution layer. 

Though the first structure was designed for 2D pictures, it lacked localization 
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capability. Later, (Çiçek et al., 2016) created the 3D U-Net to provide additional spatial 

information to the network, employed in vascular border identification (Kleesiek et al., 

2016). 3D U-Net is a memory-intensive algorithm. V-net is the most well-known 

adaptation of U-Net, presented by (Milletari et al., 2016). Other potential deep learning 

models are being applied in medical imaging, including Convolutional Residual 

Networks (CRNs) (He et al., 2016), Recurrent Neural Networks (RNNs) and their 

variations, long short-term memory (LSTM), Contextual LSTM (J. Chen et al., 2016), 

Gated recurrent unit (GRU), and clockwork RNN (CW-RNN). More details on the 

models and their application were discussed in (Hesamian et al., 2019). Figure 2.1 

illustrates the FCN network which is briefly explained above.  

 

Figure 2.1 FCN architecture proposed by (Long et al., 2015) 

2.4.1 Emergence Of Deep Learning For CVD 

Numerous studies on segmentation have been conducted, including atlas-based 

algorithms (Cuadra et al., 2004; Kirisli et al., 2010; H. Wang et al., 2013) , active 

contour models (Mishra, 2010; Tian et al., 2013), machine learning techniques 

(Othman & Tizhoosh, 2011; H. Wang et al., 2013), and statistical models (Chung et 

al., 2004; Gao et al., 2011). A previous review on blood vessel segmentation discussed 

in detail the mentioned methods (Zhao et al., 2017). Some proposed models can be 

classified as manual, semi-automated, or automated. However, of all the models, the 
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Active contour model (ACM) is the most extensively used clinically, where images 

can be identified based on their edges, regions, or higher knowledge (Shang et al., 

2011) – until recently. When it comes to microscopic features, the ACM has 

limitations, and time complexity increases as data volume grows. Since the problem is 

well-known, researchers are looking for a more robust solution, and deep learning is 

becoming more popular as an alternative. The First deep learning-based segmentation 

was performed very recently by (Phellan et al., 2017) in 2017. 

2.4.2 Computer-Aided Diagnostic (CAD) And Deep Learning 

Since 2017, a lot of deep learning-based research has been done on brain blood 

vessel segmentation (BVS), leading to the focus on developing Computer-Aided 

Diagnostic (CAD). Radiologists employ CAD tools to recognize and evaluate medical 

images automatically. It provides a crucial second opinion and reduces Intra and 

Interobserver variability, allowing for faster, more accurate, and consistent diagnosis. 

Conventional CAD systems can automatically diagnose various CVD disorders, 

including intracranial aneurysms (IA). Due to low sensitivity and high false positive 

(FP) rates, such methods are not commonly used in medical practice. However, thanks 

to the advancement of deep learning models and computer vision in medical imaging, 

CAD systems have recently evolved.  MRA has been regularly used in CAD-based 

systems for IA incorporating various deep learning architectures in recent years. 2D 

CNN model to detect IA on maximum intensity MRA (Nakao et al., 2018), DeepMedic 

CNN on TOF-MRA (Faron et al., 2019) and CTA (Shahzad et al., 2020), 18-layers 

CNN Residual network on MRI (Ueda et al., 2019), 3D Resnet on TOF-MRA (Sohn 

et al., 2021), 3D U-Net on TOF-MRA (G. Chen et al., 2020), HeadXNet model on 

CTA (A. Park et al., 2019) all are the current methods used in the CAD system to 

diagnose IA with sensitivity ranging from 70% to 94%. Recent advancements in CAD 
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systems suggest an increase in medical research. More on the development of CAD 

based system for IA can be found in this article (Mensah et al., 2022). Assume that a 

CAD-based system can be enhanced to the point where the system's sensitivity and 

accuracy are therapeutically beneficial. In that situation, it will improve radiologists' 

capacity to diagnose brain imaging. 

2.5 Deep Learning For Brain Vessel Segmentation (BVS) 

Recent advances in deep learning are transforming medical imaging, 

particularly cerebrovascular vessels' segmentation. A substantial amount of research 

is being conducted on this topic utilizing deep learning. Generally, a deep learning 

model for vessel segmentation follows a generalized pipeline which is shown in Figure 

2.2. The pipeline is developed based on the multiple works done on the topic as a 

summary. 

2.5.1 Dataset Used In BVS 

The study of brain vascular segmentation (BVS) needs Magnetic Resonance 

Imaging (MRI), and MRA is a particular type of MRI. Because of its short echo time 

and utilization of flow correction, TOF-MRA is the most widely used technology for 

non-contrast bright-blood imaging of the human vasculature. Concerned with privacy 

and ethics, most BVS research uses TOF-MRA data acquired by the research team. As 

a result, the majority of the datasets utilized in earlier studies were private. Table 2.1 

is an overview of the dataset widely utilized by academics, including the resolution 

and quantity of the data. 
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Table 2.1 Summary of MRA datasets used in brain blood vessel segmentation 

 

Figure 2.2 Summarized pipeline of the cerebrovascular segmentation using deep 

learning model 

2.5.2 Evaluation Metrics  

In medical imaging, image voxels are categorized as vessel voxel (Positive) or 

non-vessel voxel (Negative). To determine the identity of each voxel, ground truth 

labels are compared with voxel identification. True positive (TP), true negative (TN), 

false positive (FP), and false-negative (FN) are the four fundamental measurements. 

The metrics are presented in Table 2.2 below. 

 

Dataset Modality Source 
Resolution 

(mm3) 

Total 

subject 

Swedish 

CardioPulmonsary 

bioImage Study (SCAPIS) 

(Bergström et al., 2015) 

CE-MRA Private 
0.48×0.48×0

.50 
194 

PEGASUS (Martin et al., 

2015) 
TOF-MRA Private 

0.50x0.50x0.

70 
74 

7UP (Madai et al., 2012) TOF-MRA Private 
0.60x0.60x0.

60 
9 

1000PLUS (Hotter et al., 

2009) 

Multimodal 

(Including 

TOF-MRA) 

Private 
0.52x0.52x0.

65 
1200 

MIDAS (Bullitt et al., 

2005) 
TOF-MRA Public 

0.51x0.51x0.

80 
109 
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Table 2.2 Pixel measure in vessel segmentation 

 Ground truth 

Vessel Non-vessel 

Segmentation 

result 

Vessel TP FP 

Non-

vessel 

FN TN 

 

In BVS using deep learning, data annotation is a significant component of the 

process. As most of the study follows a supervised technique, the ground truth of the 

data is mandatory. Even though some research tries to adopt an unsupervised method, 

ground truth is still essential to qualitatively examine the unsupervised output to 

measure the model's performance. In most situations, the annotation is done manually 

by experienced observers with several years of expertise in Radiology. The observer 

utilizes software to segment each voxel manually. Some software is used frequently 

for ground truth segmentation, i.e., ITK-SNAP (Yushkevich et al., 2006), MevisLab 

(Ritter et al., 2011), etc. 

Usually, the annotation process is determined by the data collection technique. 

Before segmenting the actual mask, image processing, active contour techniques, or 

statistical models are employed to identify the Region of Interest (ROI). For example, 

in the paper (Liu et al., 2022), the observer used ITK SNAP software to generate a pre-

segmentation mask using the active contour segmentation pipeline. Later, domain 

experts utilized the pre-segmentation mask for post-manual enhancement. In the study 

(Cheng et al., 2021), the grey transformation was utilized as a method of image 

processing to help distribute grey image values for improved annotation. In a different 

study (de Vos et al., 2021), histogram-based thresholding on maximum image intensity 

was employed to select the ROI, which was then manually annotated by an observer. 

Manual segmentation may require post-processing to guarantee that the mask has no 

discontinuous regions or holes (Ziegler et al., 2021). 
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Table 2.3 Evaluation metrics regularly used in BVS 

 

Some of the principal assessment matrices typically utilized in the BVS study 

are listed in Table 2.3 a few matrices may have distinct names but equivalent 

expressions; for instance, DSC and F1 scores are equivalent, and the true positive rate 

(TPR) is equivalent to Recall and Sensitivity. The average Hausdorff distance from 

point set X to Y is the sum of all minimum distances between all points in X and Y, 

divided by the number of points in X where X is the ground truth, and Y is the 

segmentation. 

2.5.3 Preprocessing Used In BVS 

Deep learning algorithms typically extract features from unprocessed data, 

with researchers mainly focusing on model optimization rather than data 

preprocessing. However, some standard preparation is required for the medical image 

because it contains noise. Following is a discussion of some standard approaches 

utilized to solve this issue. 

Metrics Expression 

Sensitivity 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

Specificity 
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Dice Similarity Coefficient 
2 ∗ 𝑇𝑃

(𝐹𝑃 + 𝐹𝑁 + 2 ∗ 𝑇𝑃)
 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

False Positive Rate 
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

Average Hausdorff Distance 

(
1

𝑋
∑ min 𝑑(𝑥, 𝑦)

𝑥 ∈𝑋,𝑦∈𝑌

+  
1

𝑌
∑ min 𝑑(𝑥, 𝑦)

𝑥∈𝑋,𝑦∈𝑌

) 


