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FABRIKASI FANTOM KAWALAN KUALITI ANGIOGRAFI UNTUK
PENILAIAN KUALITI IMEJ MENGGUNAKAN PEMBELAJARAN MESIN

ABSTRAK

Kawalan kualiti (QC) angiografi terjejas oleh penilaian subjektif dan
kekurangan fantom khusus. Kajian ini membangunkan fantom angiografi dalaman yang
berpatutan dan menilai kualiti imej menggunakan pembelajaran mesin (ML). Tujuan:
1) Mereka bentuk dan cipta fantom dalaman untuk kontras tinggi dan resolusi ruang; 2)
Menilai prestasi dan pengesahan model ML; 3) Menyesahkan ML terbaik untuk
penilaian kualiti imej fantom. Kaedah: Fantom dalaman dicetak 3D (LW-PLA-HT)
dengan manik tungsten karbida (kontras tinggi) dan pasangan garisan Huttner 18
(resolusi ruang). 14 imej angiografi diperoleh dari HPUSM dan dianalisis dalam
MATLAB R2024a. Analisis 1imej melibatkan pra-pemprosesan, segmentasi,
pengekstrakan ciri, dan augmentasi. Pengelas SVM, KNN, dan RF dinilai menggunakan
ketepatan, kepersisan, kepekaan, skor-F1, dan AUC, dengan validasi silang 10-lipatan
dan pembahagian 80/20. Dapatan Kajian: Penilaian manusia menunjukkan variasi.
Antara SVM, KNN, dan RF, Random Forest (RF) menunjukkan prestasi keseluruhan
terbaik. Untuk klasifikasi kontras tinggi, RF mencapai ketepatan 100% (skor F1 1.0000),
diikuti KNN (76.11% ketepatan, skor F1 0.7503), dan SVM (61.95% ketepatan, skor
F1 0.6095). Klasifikasi resolusi ruang lebih mencabar; RF mendahului (90.32%
ketepatan, skor F1 0.9050), ditkuti KNN (64.52% ketepatan, skor F1 0.6650), dan SVM
(32.26% ketepatan, skor F1 0.3180). Kesimpulan: Random Forest menunjukkan
prestasi terbaik dalam penyelidikan ini, yang menyerlahkan daya maju penghasilan

fantom angiografi yang kos-efektif dan penggunaan ML untuk penilaian kualiti ime;j.
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FABRICATION OF ANGIOGRAPHY QUALITY CONTROL PHANTOM FOR
IMAGE QUALITY EVALUATION USING MACHINE LEARNING

ABSTRACT

Angiography's QC suffers from subjective evaluations and a lack of specialised
phantoms. This study addresses this by developing an affordable, in-house angiography
phantom and evaluating the image quality using a machine learning (ML) approach.
Purpose: 1) Design and fabricate an in-house phantom for high contrast and spatial
resolution; 2) Assess ML model performance and validation; 3) Validate the best ML
for evaluation of phantom image quality. Method: An in-house phantom was 3D-
printed using LW-PLA-HT, incorporating tungsten carbide beads for high contrast and
a Huttner Type 18-line pair for spatial resolution. 14 angiographic images were acquired
from HPUSM and analysed in MATLAB R2024a. Image analysis involved pre-
processing, segmentation, feature extraction and augmentation were applied. Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF)
classifiers were evaluated using accuracy, precision, recall, F1-score, and AUC, with
10-fold cross-validation and an 80/20 training/testing. Results: Human evaluations
showed variability. Among SVM, KNN, and RF, Random Forest demonstrated the best
overall performance. For high-contrast image classification, RF achieved exceptional
results (100% accuracy, 1.0000 F1 score), followed by KNN (76.11% accuracy, 0.7503
F1 score), and SVM (61.95% accuracy, 0.6095 F1 score). Spatial resolution
classification was more challenging, with RF again leading (90.32% accuracy, 0.9050
F1 score), followed by KNN (64.52% accuracy, 0.6650 F1 score), and SVM (32.26%
accuracy, 0.3180 F1 score). Conclusion: Random Forest demonstrated the best
performance in this research, which highlights the viability of fabricating a cost-

effective angiography phantom and utilising ML for image quality assessment.
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CHAPTER 1

INTRODUCTION

1.1. Background of Study

Angiography is used for the surgical or endovascular treatment of intracranial
aneurysms (Benomar et al., 2021). It can visualise the anatomy and vascular structures
system by detecting contrast medium injected into a blood vessel. This contrast
highlights the inner vessel walls and flows through the lumen, which is then captured
in a series of X-ray images. Originally developed as a diagnostic tool, angiography has
transformed significantly over the years, evolving into a key foundation for
interventional therapies. Initially a static two-dimensional (2D) method of recording
vascular structures on screen film, angiography has advanced to real-time 2D
visualisation on monitors and even three-dimensional (3D) reconstructions using
computed tomography (CT) and magnetic resonance imaging (MRI). However,
conventional angiography remained the gold standard, although it is invasive for
diagnosing many intravascular conditions. Technological advancements have
broadened the scope of angiography to include non-invasive methods, such as computed
tomography angiography (CTA) and magnetic resonance angiography (MRA) (Omeh

& Shlofmitz, 2024).

Image quality of angiography is influenced by several factors, including temporal
resolution, spatial resolution, contrast resolution and radiation dose. These factors may
lead to inconsistent image quality, potentially affecting diagnostic accuracy (Ghekiere

et al., 2017). To address this, medical imaging facilities often use “phantoms” as a



physical model that simulates human anatomy and tissue characteristics (Christie et al.,

2023).

Phantoms serve three primary purposes in medical imaging and treatment. First
and foremost, the purpose is quality assurance and calibration, which may be
quantitative or qualitative, focusing on controlling and evaluating imaging or treatment
systems. This includes phantom used to assess image quality metrics like spatial
resolution and dosimetry, crucial for quality control in radiotherapy. Beyond quality
assurance, phantoms support research and development by facilitating new instrument
designs, procedural setups, or intervention methods, allowing for simulations of
treatments or surgeries without the use of human or animal subjects. Finally, phantoms
are essential for education and training, providing hands-on practice for procedures
under image guidance, such as angiography, with the aid of personnel and radiologists

(Wegner et al., 2023).

Despite their benefits, commercially available phantoms can be expensive, limiting
access for many hospitals and research institutions, especially in resource-constrained
settings (Groenewald & Groenewald, 2016). Additionally, these commercially
manufactured phantoms may not accurately replicate specific clinical scenarios or
unique patient anatomies. Consequently, there is a strong motivation to develop an in-
house angiography phantom that is affordable, customisable, and can provide

simulations of vascular structures (Soloukey et al., 2024).

Over the years, image quality assessment has relied heavily on subjective and non-
repeatability evaluation by personnel and radiologists, who visually inspect the images
for clarity, contrast, and resolution. While these expert evaluations are the gold standard,

they can introduce variability, as different evaluators may interpret image quality



differently (Ho et al., 2022). Machine learning offers a great solution by providing a
standardised, objective method to assess image quality. Hence, training a machine
learning model on testing images labelled for quality can automate the evaluation
process, making it more consistent and sensitive to subtle quality changes or issues that

human evaluators might overlook (Shurrab & Duwairi, 2022).

1.2. Problem Statement

Angiography plays a critical role in diagnosing and treating vascular diseases,
requiring high-quality imaging to accurately visualise blood vessels and vascular
structures (Lubis et al., 2021). However, current quality control (QC) practices for
angiography are inadequate due to the lack of specialised phantoms tailored to this
imaging modality. Existing QC techniques primarily rely on fluoroscopy-based
phantoms, which do not accurately reflect clinical conditions encountered during
angiographic procedures, leading to suboptimal image quality assessments and
challenges in optimising radiation dose (Pancholy et al., 2022). Furthermore, image
quality evaluation in clinical settings remains largely subjective, relying on radiologist
interpretation, which introduces variability and potential bias that can affect diagnostic
accuracy and consistency (Ho et al., 2022; Oh et al., 2022). Despite progress in phantom
development for other imaging modalities such as mammography, angiography still
lacks dedicated, modality-specific QC tools that reflect its unique technical and clinical

demands.



1.3. Objective

1.3.1. General Objective

To design, fabricate and evaluate an in-house angiography phantom combined with a
machine learning-based image quality assessment technique to enhance the reliability

and accuracy of angiographic imaging for diagnostic purposes.

1.3.2.Specific Objectives

1. To design and fabricate an in-house phantom for high contrast and spatial
resolution image quality assessment.

2. To assess machine learning model performance and validation in evaluating the
image quality of the fabricated angiographic phantom.

3. To validate the best machine learning for the evaluation of phantom image
quality in classifying high contrast and spatial resolution of the fabricated

angiographic phantom.

1.4. Hypothesis

1.4.1. Null Hypothesis (H,)

The fabricated in-house angiography phantom combined with a machine learning-based
image quality assessment does not significantly improve the accuracy or consistency of

angiographic image quality evaluation compared with each model's algorithms.

1.4.2. Alternative Hypothesis (H,)

The fabricated in-house angiography phantom combined with a machine learning-based
image quality assessment significantly improves the accuracy and consistency of

angiographic image quality evaluation compared with each model's algorithms.



1.5. Significant of Study

This study addresses critical limitations in current angiography quality control
(QC) practices, which rely on non-specialised phantoms and subjective evaluations that
introduce variability and reduce diagnostic accuracy (Pancholy et al., 2022; Ho et al.,
2022; Oh et al., 2022). By fabricating a dedicated angiography phantom using
affordable materials like PLA (Groenewald, 2017; Li, 2020) and incorporating machine
learning for image quality assessment, the study aims to provide a cost-effective method

in achieving the objectives in QC solution.

Similar success in other modalities, such as mammography, demonstrates the
potential of 3D-printed phantoms to improve standardisation and meet clinical
standards (Celina et al., 2023). Machine learning offers accurate, reproducible
evaluations, reducing reliance on subjective interpretation and improving workflow
efficiency (Ho et al., 2022; Oh et al., 2022). The proposed approach is expected to
enhance diagnostic consistency, optimise radiation dose management, and support more

reliable QC processes in angiography.



1.6. Conceptual Framework

The conceptual framework of this study, illustrated in Figure 1.1, centered on

the image quality evaluation of angiography imaging using a machine learning-based

approach, supported by an in-house fabricated phantom. These custom-designed

phantom images will undergo a structured pipeline comprising image pre-processing,

region-based detection, and feature extraction stages. During pre-processing, operations

such as cropping, contrast enhancement, and noise reduction will be applied. Feature

extraction will include both geometric and region-based features, such as dot count, area,

perimeter, and eccentricity. Extracted features will be converted into numerical

representations (pixel values or structured feature vectors), which are then fed into

machine learning classifiers, supporting automated and objective quality control in

angiographic imaging.
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CHAPTER 2

LITERATURE REVIEW

2.1.Image Quality Control in Angiography

Image quality control in angiography ensures accurate and reliable diagnostic
imaging results. Various imaging modalities, such as computed tomography
angiography (CTA) and three-dimensional rotational angiography (3DRA), require
quality control measures to maintain image quality and diagnostic accuracy. The authors
stated that fluoroscopy and digital subtraction angiography (DSA) were the benchmarks
in intervention radiology for diagnosis and treatment. However, computed tomography
angiography (CTA) is widely used for three-dimensional vascular imaging and plays a

significant part in the delineation of vascular diseases (Lubis et al., 2021).

This highlights the importance of utilising phantoms in evaluating image quality
in specific medical imaging techniques. Phantom studies are significant in evaluating
image quality in medical physics, particularly in techniques such as 3DRA and CTA.
By assessing the effects of various parameters on image quality and
implementing corrections for artefacts, researchers aim to enhance the accuracy and

reliability of diagnostic imaging modalities (Svenson & Irvine, 2024).

2.2. Limitations of Existing Quality Control Phantoms

Due to the limited ability to archive image loops on photographic film and the
initial digital platform, fluoroscopy has been used to guide real-time image setup and
equipment navigator, while cineangiography has captured video angiograms. The image
resolution for both modalities is essential for assessing the specifics of the vasculature

and treatments (Pancholy et al., 2022).



A study conducted by Pancholy et al. (2022) involved a phantom-based total of
40 experiments, half of which were done using fluoroscopy and the other half using
cine angiography. They used a comparative evaluation of high-contrast and low-contrast
resolution of images. 5 acquisitions were carried out, for posterior-anterior (PA) or left
anterior oblique (LAO). The study found out there is no difference in high or low
contrast resolution between PA and LAO projections using fluoroscopy.
Cineangiography showed that PA projections had higher contrast resolution than LAO
projections, but there was no significant difference in low contrast resolution. There was
no significant difference in high-contrast or low-contrast resolution between low and

high table positions with fluoroscopy or cineangiography (Pancholy et al., 2022).

In short, the use of fluoroscopy-based QC phantoms in angiography may not
accurately reflect the clinical scenario encountered during angiographic procedures,
leading to potential drawbacks in image quality assessment and radiation dose
optimisation. To achieve optimal results and enhance the overall performance of the
imaging equipment, specialised phantoms designed for angiography must be used when

performing quality control tests.

2.3. Potential for an In-House Angiography Phantom

The Mammography Quality Standards Act (MQSA) has approved image quality
testing using the American College of Radiology (ACR) accreditation phantom, CIRS
Model 015, which is made of Polymethyl Methacrylate (PMMA) material (Celina et al.,

2023).

The study was conducted by Celina et al. (2023) to fabricate a standard ACR
phantom with various 3D printer filaments to imitate the fibres, specks and masses. In

the study, they used Polylactic Acid (PLA) and Polyvinyl Alcohol (PVA) to fabricate



the in-house phantoms. CATIA v5R2016/2/2010 was the software that the authors used
to model the breast ACR phantom fabrication using a 3D printer. The 3D designs were
saved in Standard Tessellation Language (STL) format with a 95% fill density setting
for the printing process. Fibres were nylon fibre, and specks were aluminium carbonate
(Al,C03). As aresult, all fabricated phantoms met the ACR standard. PLA and PVA 3D
printer filaments showed excellent texture at relatively affordable phantom prices

(Celina et al., 2023).

Another study, Groenewald (2017) and Li (2020) suggested using PLA as the
phantom housing material because the PLA attenuation coefficient is much closer to
human soft tissue. In addition to Groenewald (2017), uses small metallic beads made
from tungsten carbide with diameters (0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0) mm were used to
evaluate spatial uniformity, noise, and sensitometry. Therefore, fabricating a phantom
specific for angiography using listed and tested materials is valuable for image quality

assessments.

2.4. Challenges in Subjective Image Quality Assessment

Subjective evaluation by radiologists and medical physicists plays a crucial role
in the diagnostic accuracy and efficiency of quality control (QC) (Ho et al., 2022) (Oh
et al., 2022). The research that has been done by (Ho et al., 2022) used two experienced
radiologists who rely on their 13 and 15 years of experience and perception to assess
image quality, which directly impacts the overall diagnostic accuracy of mammography
images. This reliance on subjective assessment can influence the success rate of
outcomes in image quality evaluation. While subjective evaluation is essential in
assessing image quality, the integration of machine learning (ML) and deep learning
(DL) has been shown to have a profound impact on diagnostic processes and clinical

workflows (Ho et al., 2022) (Oh et al., 2022).
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To sum up, subjective evaluation by radiologists is essential for assessing image
quality and diagnostic accuracy in radiology. However, the integration of ML and DL
and objective evaluation methods can enhance efficiency and accuracy in image quality
control results. Hence, continuous learning algorithms implementation in angiography
principles can further improve angiography image quality by providing radiologists or

medical physicist with feedback loops for ongoing improvement.

2.5. Emerging Solutions in Machine Learning for Image Quality

Evaluation

The use of machine learning (ML) in medical imaging has shown promising
results in improving image quality and diagnostic accuracy across various modalities.
Studies from Ho et al. (2022) and Oh et al. (2022) have demonstrated the potential of
deep learning reconstruction algorithms to enhance image quality, particularly in

mammogram images.

The results of both studies of the mammography phantom with artificial
intelligence (AI) showed high accuracy, reasonable object scoring, and less time-
consuming. Ho et al. (2022) stated that the obtained accuracies for fibers, specks, and

masses were 90.2%, 98.2%, and 88.9%, respectively.

Hence, the studies demonstrated values that are almost perfectly in agreement
between manual evaluation and predicted labels. Thus, implementing machine learning

to evaluate image quality in angiography is beneficial to increase accuracy.

2.6.Image Pre-processing Techniques

Image pre-processing techniques are important in visualising structures on the
phantom images related to the quality of the image obtained, which helps with diagnosis

and treatment planning in a clinical setup. Several research works have focused on

10



optimising algorithms and methods to improve the precision and effectiveness in

phantom images.

Ho et al. (2022) had obtained ACR phantom images from Digital Imaging and
Communications in Medicine (DICOM) format files were processed using custom
MATLAB scripts. These scripts automatically cropped the images and divided them
into a 4 x 4 grid of sub-images. The authors converted the raw images to a grayscale
level beforehand. Grayscale images contain only intensity values, reducing the
complexity of computations compared to coloured images, which have multiple
channels (RGB). In medical imaging, grayscale enhances the visibility of structures,
making it easier to detect abnormalities. Many computer vision models, including
convolutional neural networks (CNNs), perform better with grayscale images when

colour is not a significant factor (Sundell et al., 2022).

Doria et al. (2021) and Sato et al. (2023) explored deep learning-based denoising
methods in CT imaging using phantom models, focusing on image pre-processing
impacts. The first study from Sato et al. (2023) evaluated a commercial DL-based image
processing software (DLIP, FCT PixelShine), applied as a post-processing tool to
filtered back projection (FBP) images. The authors demonstrated effective noise
suppression while preserving spatial resolution comparable to model-based iterative
reconstruction (MBIR) and deep learning reconstruction (DLR), with slight noise
texture smoothing indicated by a shift in noise power spectrum (NPS) peak frequency.
The second study from Doria et al. (2021) investigated convolutional neural network
(CNN)-based denoising using two architectures, an encoder-decoder and a UNet model
that had been trained on a large dataset of phantom CT images. The UNet outperformed
the encoder-decoder in noise reduction and spatial resolution preservation. However,

radiomic analysis revealed that UNet-based denoising could unintentionally alter
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texture features, raising concerns about its impact on quantitative imaging analysis.
Both studies highlighted the effectiveness of DL-based denoising while emphasizing
the need for careful evaluation of potential alterations in image characteristics,

especially when quantitative metrics are used for diagnosis or treatment planning.

Sundell et al. (2022) conducted an automated image pre-processing pipeline for
phantom-based image analysis. Convolutional Neural Network (CNN) input
normalisation was achieved by isolating the phantom's wax area using intensity-based
segmentation and correcting its orientation based on target position. The phantom label
and the corner area were replaced with noise to prevent model bias. The cleaned
phantom image was divided first into sub-images corresponding to specific targets
(fibres, masses, or specks). Background intensity non-uniformities were corrected using
2D polynomial subtraction. Finally, all sub-images were resized to 128x128 pixels,

normalised to a range of 0—1 intensity scale, and stored as 64-bit floating-point images.

2.7. Feature Extraction and Data Labelling

Feature extraction and data labelling are fundamental components in automated
phantom image evaluation pipelines, particularly when integrated with machine
learning or deep learning algorithms. These steps facilitates the translation of complex
image information into quantifiable data for quality control and diagnostic accuracy

(Torfeh et al., 2023).

Ho et al. (2022) implemented a unique feature extraction technique in a phantom
study, where a total of 159 features were derived from each pattern image using in-
house MATLAB algorithms. The extracted features encompassed multiple categories:
position, global, local, edge, and texture information. Position features represented the

specific location of the pattern within the phantom, encoded from 1 to 16. Global
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features included statistical descriptors such as the mean and standard deviation of gray
levels, matrix size, and overall image gradients. Local features were derived from the
signal region of interest (ROI) and background, incorporating intensity metrics, edge
characteristics, contrast values, and contrast-to-noise ratios. Notably, texture features
and gradients were also computed, enhancing the sensitivity of pattern recognition. The
signal ROIs were automatically detected, enabling consistency across image sets and

reducing human bias (K. Bharodiya, 2022).

In another study focusing on mammography phantom analysis by Oh et al. (2023)
highlighted a structured data labelling approach to train a deep learning model for
phantom quality assessment. The labelling process was conducted in two stages. First,
the phantom area containing the 16 standard test objects (fibers, specks, and masses)
was isolated from the raw mammogram using rectangular bounding boxes, effectively
removing irrelevant background regions. Second, a detailed scoring system based on
the American College of Radiology (ACR) digital mammography quality control
guidelines was employed. Each object was scored as 1 (fully visible), 0.5 (partially
visible), or 0 (not visible), depending on visibility criteria such as complete structure
recognition or partial presence. This process resulted in the labelling of 2,208 phantom
images, with classification outcomes of 1,878 images as “pass” and 330 as “fail.” The
labelled dataset was a reference for developing supervised learning models capable of

scoring objective image quality.

Together, these studies emphasise the critical role of structured feature
extraction and accurate data labelling in phantom-based quality control systems.
Feature engineering tailored to phantom structure and consistent labelling criteria
grounded in clinical guidelines significantly improves the reliability and reproducibility

of automated evaluations.
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2.8.Image Augmentation

Torfeh et al. (2023) and Doria et al. (2021) employed data augmentation as a
critical step to enhance the effectiveness and generalisability of deep learning models
trained on phantom images for quality assurance and image denoising, respectively.
Torfeh et al. (2023), incorporate augmentation techniques to the ACR MR phantom
images to address the limited availability of training data and to simulate a broader
range of possible acquisition variations. Their augmentation included spatial
transformations such as rotations and translations, aiming to improve the neural
network's ability to generalise across diverse image orientations and slight positioning

inconsistencies typical in real-world scans.

In contrast, Doria et al. (2021) designed their augmentation process specifically
for CT phantom slices, where each 2D slice from a 3D volume was augmented in 90°
rotations and flipping. This was performed across 24 axial slices reconstructed along
the phantom’s depth, introducing spatial variability in the insert locations to prevent the
network from overfitting to fixed object positions. This augmentation was carried out
separately for FBP and IR reconstruction methods, resulting in two distinct datasets
used for training and testing validation. Both studies underscore that augmentation not
only combats overfitting but also simulates real-world variability, ultimately improving
the reliability of deep learning models in automated quality assessment and denoising

of medical images.

2.9. Machine learning (ML) algorithms

Phantom and machine learning evaluation in the clinical setting requires reliable
image quality and automated evaluation methods. Machine learning algorithms have

emerged as effective tools for improving the consistency and accuracy of quality
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assurance (QA). A recent study applied deep learning models to assess MRI images
acquired from ACR phantoms, which are standard test objects used to evaluate the MRI
machine performance. By processing phantom images with convolutional neural
networks (CNN), the system was able to automatically detect and evaluate key
parameters such as spatial resolution and geometric distortion. This approach enables
consistent and objective monitoring of MRI system performance, reducing reliance on
manual inspection and supporting more efficient imaging workflows (Torfeh et al., 2023;

Ramos et al., 2022).

Support Vector Machines (SVM) have attracted significant attention due to their
adaptability and effectiveness in classification tasks. In the context of image quality
evaluation, SVM has been successfully applied to phantom images in mammography,
offering a robust method for automating QA processes. A study by Ho et al. (2022)
implemented a one-versus-one SVM classifier trained on segmented pattern images
from ACR mammographic phantoms, using dimensionality reduction through Principal
Component Analysis and Sequential Minimal Optimisation for efficient training. The
model achieved high classification accuracies of 90.2% for fibers, 98.2% for specks,
and 88.9% for masses. The authors demonstrated its reliability in identifying visibility
levels of phantom features. These findings confirm the practical applicability of SVM

in supporting consistent and objective quality assessments in mammographic imaging.

K-Nearest Neighbors (KNN) classifiers have been employed for their simplicity
and effectiveness in pattern recognition tasks, including phantom imaging analysis. In
the study by Chow et al. (2020), the authors implemented a KNN classifier within a
broader machine learning framework to support the correction of deterministic
geometric errors in single-plane and dual-plane X-ray fluoroscopy using phantom

images. The classifier was used to map error distributions by referencing labelled
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instances based on spatial proximity in the feature space, which was derived from
phantom-based fluoroscopic projections. Performance of the KNN classifier showed
that the model contributed to robust and accurate self-supervised learning of projection
errors, precision of 3D reconstruction in fluoroscopy was improved. While KNN is
generally sensitive to noise and data scaling, in this controlled phantom-based setting,
it proved to be a reliable tool for error detection and correction when supported by well-

prepared training data and consistent acquisition conditions.

Random Forest (RF) classifiers are known for their ability to handle high-
dimensional data, making them well-suited for radiomics or phantom image
applications. A recent study by Hertel et al. (2023) experimented with the stability of
radiomics features extracted from phantom scans acquired using a photon-counting
detector CT system and evaluated using RF classifier. The classifier was applied in the
context of test-retest analysis, aiming to assess which radiomics features remained
consistent across repeated scans under varying acquisition and reconstruction
parameters. The RF model utilised an ensemble of decision trees to rank feature
importance and identify those with high reproducibility. The RF classifier effectively
distinguished between stable and unstable features, providing valuable insight into
which radiomics metrics are reliable for quantitative imaging studies. Given its ability
to manage feature variability and deliver consistent results, the RF model proved to be
a reliable approach for analysing the true extracted feature in phantom-based radiomics

research.

2.10. ROC curve and AUC analysis

The Receiver Operating Characteristic (ROC) curve is a graphical
representation used to evaluate the performance of classification models across different

thresholds. Originally developed during World War II for radar signal detection, ROC
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analysis has since been adapted in various fields, including medical imaging, machine
learning, and diagnostic testing. In a classification context, the ROC curve plots the
True Positive Rate (TPR or sensitivity) against the False Positive Rate (FPR or 1-
specificity) at different discrimination thresholds. This visualisation allows researchers
and clinicians to assess how well a model distinguishes between two classes, which

typically have positive and negative outcomes (Nahm, 2022).

To construct a ROC curve, multiple threshold values are applied to a classifier’s
prediction probabilities, producing a series of (TPR, FPR) pairs. These points are then
plotted in a 2D space, with the x-axis representing FPR and the y-axis representing TPR.
A model that performs perfectly would achieve a point in the top-left corner of the ROC
space (0, 1), indicating 100% sensitivity and 100% specificity. As the decision threshold
varies, the ROC curve is formed, tracing the trade-off between sensitivity and specificity.
The curve essentially visualises how many correct positive classifications the model

makes at the cost of incorrect positive classifications (false positives) (Gupta, 2024).

The ROC curve provides crucial insights into a model’s behaviour. A steep curve
that hugs the top-left corner reflects a high-performing model, as it indicates a high TPR
with a low FPR at most thresholds. On the other hand, a curve that lies close to the
diagonal line from (0, 0) to (1, 1) represents a model with no discrimination capacity,
performing no better than random guessing. Models that produce curves below the
diagonal may be misclassifying classes or might be reversed in their predictions. This
characteristic is useful for model validation and comparison, especially in binary
classification settings where both false positives and false negatives carry different

clinical or operational consequences (Chan et al., 2022).
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Figure 1.1: A hypothetical ROC curve demonstrating the trade-off between sensitivity and

specificity (S. Yang & Berdine, 2017)

One of the key summary metrics derived from the ROC curve is the Area Under
the Curve (AUC) or also known as the c-statistics. The AUC quantifies the overall
ability of the model to discriminate between positive and negative classes. AUC values
range between 0 and 1, where a score of 1.0 indicates perfect classification, and a score
of 0.5 implies performance no better than chance. In practice, an AUC between 0.7-0.8
is considered acceptable, 0.8—0.9 is excellent, and above 0.9 is outstanding. AUC is
particularly advantageous because it provides a single scalar value that summarises the
entire ROC curve, making it easier to compare model performance across different

datasets or algorithms (Nahm, 2022).

Table 2.1: Rule of thumb interpreting AUC (S. Yang & Berdine, 2017)

No discrimination, e.g., randomly flip a
AUC=0.5
coin
0.6 >AUC> 0.5 Poor discrimination
0.7>AUC>0.6 Acceptable discrimination

18



0.8>AUC > 0.7 Excellent discrimination

AUC>0.9 Outstanding discrimination

Additionally, AUC helps in selecting optimal decision thresholds. While the
ROC curve itself allows visual exploration of sensitivity and specificity trade-offs, the
AUC score can be used in algorithmic tuning or threshold adjustment by identifying the
point on the curve that offers the best balance between sensitivity and specificity for a
given application. In image quality control tasks, such as those performed in computed
tomography (CT), deep learning classifiers are evaluated using AUC to determine how

reliably they can identify images that meet or fail diagnostic standards (Gupta, 2024).

In more advanced applications, such as predictive analytics for audit selection
(Chan et al., 2022), ROC analysis supports performance evaluation in contexts where
skewed class distributions are common. The flexibility of ROC curves in being
threshold-independent allows them to assess classifiers on unbalanced datasets, as the
curve does not rely on specific class proportions. This property is useful in domains
where positive cases such as tax fraud or rare diseases, are rare but critical to identify

correctly, and precision-recall curves may complement ROC curves in those settings.

In summary, the ROC curve is a vital diagnostic tool for evaluating binary
classification models, providing a clear visualisation of the trade-offs between true
positive and false positive rates. The AUC offers a concise metric for comparing model
discriminative ability across datasets and threshold settings. As shown in diverse
applications from the medical field, such as CT image quality control to financial
auditing, the ROC and AUC metrics play a role in verifying and refining classification

systems in both clinical and operational domains.
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2.11. Performance evaluation metrics

In the medical imaging field, particularly in automating diagnostic quality
control (QC) processes such as in computed tomography (CT), evaluation metrics are
indispensable for quantifying a model’s predictive performance. Gupta (2024)
comprehensively applied a range of performance metrics including accuracy, recall,
precision, F1 score, specificity, and cross-entropy loss to assess classification models
that distinguish between images from calibrated and miscalibrated scanners. These
metrics serve as diagnostic tools in determining where models succeed or fall short and

enabling continuous and reliable results.

Accuracy represents the ratio of correct predictions to the total predictions made
and is commonly used due to its intuitive interpretation. However, its utility diminishes
in imbalanced datasets, where a high accuracy might mask poor detection of the
minority class (Gupta, 2024 & Litjens et al., 2017). Therefore, accuracy must be
interpreted alongside other, more sensitive measures, especially in medical contexts

where class imbalance is common.

TP+TN
TP+TN+FP+FN

Accuracy =

(1)

Recall also known as sensitivity, defined as the proportion of true positives
correctly identified out of all actual positives, is crucial in medical diagnostics where
failing to detect a condition could have serious consequences. For instance, a low recall
in detecting poor-quality CT images may result in undetected miscalibrations, posing
clinical risks (Gupta, 2024). Esteva et al. (2019) similarly emphasised the importance
of high recall in clinical-grade Al systems to ensure that all relevant pathology or image

quality failures are detected.
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TP
TP+FN

Recall(R) = (2)

On the other hand, precision measures how many of the positively predicted
instances are correct. In QC applications, a high precision implies the model does not
raise unnecessary alarms by misclassifying good-quality images as defective. The F1
score, as the harmonic mean of precision and recall, balances these two aspects, offering
a single composite metric that is especially useful in scenarios where neither false

positives nor false negatives can be tolerated (Gupta, 2024).

. TP

Precision(P) = . 3)

F1 score = 2 X =~ (4)
P+R

Specificity also known as the true negative rate, complements recall by
evaluating the proportion of correctly identified negative images that are truly
miscalibrated and correctly classified as such. It is particularly important when false
positives (incorrectly marking good images as bad) lead to costly re-acquisition or
unnecessary concerns. Litjens et al. (2017) pointed out that in high-stakes environments
such as radiology, both sensitivity and specificity must be optimised to reduce

misdiagnoses and improve decision confidence.

TN
TN+FP (5)

Specificity =

Loss of function, specifically cross-entropy loss used by Gupta (2024), provides
a continuous measure of how far the model’s predicted probabilities deviate from the
true labels. This function is particularly suited to binary classification tasks and is
widely used in neural networks and logistic regression models. A decreasing loss over
training epochs indicates that the model is improving in aligning its predictions with the
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ground truth. Binary Cross-Entropy (BCE) measures how well the model’s predicted
probabilities match the actual binary labels. A smaller loss indicates better prediction
performance. Loss is low when predicted probabilities are close to the true labels (as
predicting 0.95 when the label = 1). Loss is high when predicted probabilities are far

from the true labels (as predicting 0.1 when the label = 1) (Terven et al., 2023).
1 ~ ~
Loss = —= Y7 [y;log(®) + (1 — y;) log(1 — )] (6)

where each components represents,

Table 1.2: Explanation of each mathematical components Gupta, (2024) and Spindelbock et.

al, (2021)

Components Explanation

n The total number of samples in the dataset (or

mini batch)

Vi The true label for the i-th sample

¥y, The predicted probability (by the model) that the
i-th sample belongs to class 1.
This value is in the range (0,1) typically

produced by a sigmoid activation function.

log(y,) The natural logarithm of the predicted

probability for the positive class (when y;=1)

log(1 -y, The natural logarithm of the predicted

probability for the negative class (when y;=0)
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yilog(y,) + (1 This term selects the correct log-probability
-y log(1 based on the actual label
—-y.) e Ify;=1: the second term becomes 0, and
the loss becomes —log(y,)
e [fy;=0: the second term becomes 1, and

the loss becomes —log(1 — %))

Adds the loss from all samples in the dataset.

-

Furthermore, comprehensive evaluations using these metrics are considered best
practice in the development of trustworthy medical Al tools (Esteva et al., 2019).
Together, these metrics provide a multidimensional assessment of model performance.
When interpreted collectively, they offer valuable insight into the trade-offs between
different types of errors and help developers make informed decisions in model

selection and tuning for clinical applications.

2.12. Ensemble learning

Ensemble learning is a sophisticated machine learning technique that enhances
predictive performance by combining the outputs from multiple models. These
individual models, referred to as base learners, each contribute to the final output,
resulting in more reliable and accurate predictions. The core idea behind ensemble
learning is that the strengths of diverse models can be leveraged to compensate for
individual weaknesses, thereby improving the generalisation ability of the system,

especially when dealing with noisy or complex datasets.
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Several ensemble techniques have been developed, each designed to harness
different model advantages. Bagging (Bootstrap Aggregating) involves training
multiple models on different random subsets of the training data and averaging their
outputs to reduce variance. Boosting, on the other hand, builds models sequentially,
with each new model attempting to correct the errors made by its predecessor. This
approach effectively reduces both bias and variance. Stacking trains a meta-model that
learns to combine the outputs of several base models, often yielding better results by

capturing non-linear relationships among predictions (Ferrouhi & Bouabdallaoui, 2024).

data + labels
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Figure 2.2: Bagging structure (Akbulut et al.,2022)

Another simpler and widely used technique is the voting ensemble. In this
approach, predictions from multiple base classifiers are combined through a majority
voting rule for classification tasks (hard voting) or by averaging predicted probabilities
(soft voting) (Akbulut et al.,2022). Voting ensembles are particularly effective when the
base classifiers are diverse in nature such as mixing Decision Trees (DT), Support

Vector Machines (SVM), Random Forest (RF) and k-Nearest Neighbors (KNN)
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