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FABRIKASI FANTOM KAWALAN KUALITI ANGIOGRAFI UNTUK 

PENILAIAN KUALITI IMEJ MENGGUNAKAN PEMBELAJARAN MESIN 

ABSTRAK 

Kawalan kualiti (QC) angiografi terjejas oleh penilaian subjektif dan 

kekurangan fantom khusus. Kajian ini membangunkan fantom angiografi dalaman yang 

berpatutan dan menilai kualiti imej menggunakan pembelajaran mesin (ML). Tujuan: 

1) Mereka bentuk dan cipta fantom dalaman untuk kontras tinggi dan resolusi ruang; 2) 

Menilai prestasi dan pengesahan model ML; 3) Menyesahkan ML terbaik untuk 

penilaian kualiti imej fantom. Kaedah: Fantom dalaman dicetak 3D (LW-PLA-HT) 

dengan manik tungsten karbida (kontras tinggi) dan pasangan garisan Huttner 18 

(resolusi ruang). 14 imej angiografi diperoleh dari HPUSM dan dianalisis dalam 

MATLAB R2024a. Analisis imej melibatkan pra-pemprosesan, segmentasi, 

pengekstrakan ciri, dan augmentasi. Pengelas SVM, KNN, dan RF dinilai menggunakan 

ketepatan, kepersisan, kepekaan, skor-F1, dan AUC, dengan validasi silang 10-lipatan 

dan pembahagian 80/20. Dapatan Kajian: Penilaian manusia menunjukkan variasi. 

Antara SVM, KNN, dan RF, Random Forest (RF) menunjukkan prestasi keseluruhan 

terbaik. Untuk klasifikasi kontras tinggi, RF mencapai ketepatan 100% (skor F1 1.0000), 

diikuti KNN (76.11% ketepatan, skor F1 0.7503), dan SVM (61.95% ketepatan, skor 

F1 0.6095). Klasifikasi resolusi ruang lebih mencabar; RF mendahului (90.32% 

ketepatan, skor F1 0.9050), diikuti KNN (64.52% ketepatan, skor F1 0.6650), dan SVM 

(32.26% ketepatan, skor F1 0.3180). Kesimpulan: Random Forest menunjukkan 

prestasi terbaik dalam penyelidikan ini, yang menyerlahkan daya maju penghasilan 

fantom angiografi yang kos-efektif dan penggunaan ML untuk penilaian kualiti imej. 
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FABRICATION OF ANGIOGRAPHY QUALITY CONTROL PHANTOM FOR 

IMAGE QUALITY EVALUATION USING MACHINE LEARNING 

ABSTRACT 

Angiography's QC suffers from subjective evaluations and a lack of specialised 

phantoms. This study addresses this by developing an affordable, in-house angiography 

phantom and evaluating the image quality using a machine learning (ML) approach. 

Purpose: 1) Design and fabricate an in-house phantom for high contrast and spatial 

resolution; 2) Assess ML model performance and validation; 3) Validate the best ML 

for evaluation of phantom image quality. Method: An in-house phantom was 3D-

printed using LW-PLA-HT, incorporating tungsten carbide beads for high contrast and 

a Huttner Type 18-line pair for spatial resolution. 14 angiographic images were acquired 

from HPUSM and analysed in MATLAB R2024a. Image analysis involved pre-

processing, segmentation, feature extraction and augmentation were applied. Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) 

classifiers were evaluated using accuracy, precision, recall, F1-score, and AUC, with 

10-fold cross-validation and an 80/20 training/testing. Results: Human evaluations 

showed variability. Among SVM, KNN, and RF, Random Forest demonstrated the best 

overall performance. For high-contrast image classification, RF achieved exceptional 

results (100% accuracy, 1.0000 F1 score), followed by KNN (76.11% accuracy, 0.7503 

F1 score), and SVM (61.95% accuracy, 0.6095 F1 score). Spatial resolution 

classification was more challenging, with RF again leading (90.32% accuracy, 0.9050 

F1 score), followed by KNN (64.52% accuracy, 0.6650 F1 score), and SVM (32.26% 

accuracy, 0.3180 F1 score). Conclusion: Random Forest demonstrated the best 

performance in this research, which highlights the viability of fabricating a cost-

effective angiography phantom and utilising ML for image quality assessment.
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CHAPTER 1 

INTRODUCTION 

1.1. Background of Study 

Angiography is used for the surgical or endovascular treatment of intracranial 

aneurysms (Benomar et al., 2021). It can visualise the anatomy and vascular structures 

system by detecting contrast medium injected into a blood vessel. This contrast 

highlights the inner vessel walls and flows through the lumen, which is then captured 

in a series of X-ray images. Originally developed as a diagnostic tool, angiography has 

transformed significantly over the years, evolving into a key foundation for 

interventional therapies. Initially a static two-dimensional (2D) method of recording 

vascular structures on screen film, angiography has advanced to real-time 2D 

visualisation on monitors and even three-dimensional (3D) reconstructions using 

computed tomography (CT) and magnetic resonance imaging (MRI). However, 

conventional angiography remained the gold standard, although it is invasive for 

diagnosing many intravascular conditions. Technological advancements have 

broadened the scope of angiography to include non-invasive methods, such as computed 

tomography angiography (CTA) and magnetic resonance angiography (MRA) (Omeh 

& Shlofmitz, 2024).  

Image quality of angiography is influenced by several factors, including temporal 

resolution, spatial resolution, contrast resolution and radiation dose. These factors may 

lead to inconsistent image quality, potentially affecting diagnostic accuracy (Ghekiere 

et al., 2017). To address this, medical imaging facilities often use “phantoms” as a 
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physical model that simulates human anatomy and tissue characteristics (Christie et al., 

2023). 

Phantoms serve three primary purposes in medical imaging and treatment. First 

and foremost, the purpose is quality assurance and calibration, which may be 

quantitative or qualitative, focusing on controlling and evaluating imaging or treatment 

systems. This includes phantom used to assess image quality metrics like spatial 

resolution and dosimetry, crucial for quality control in radiotherapy. Beyond quality 

assurance, phantoms support research and development by facilitating new instrument 

designs, procedural setups, or intervention methods, allowing for simulations of 

treatments or surgeries without the use of human or animal subjects. Finally, phantoms 

are essential for education and training, providing hands-on practice for procedures 

under image guidance, such as angiography, with the aid of personnel and radiologists 

(Wegner et al., 2023). 

Despite their benefits, commercially available phantoms can be expensive, limiting 

access for many hospitals and research institutions, especially in resource-constrained 

settings (Groenewald & Groenewald, 2016). Additionally, these commercially 

manufactured phantoms may not accurately replicate specific clinical scenarios or 

unique patient anatomies.  Consequently, there is a strong motivation to develop an in-

house angiography phantom that is affordable, customisable, and can provide 

simulations of vascular structures (Soloukey et al., 2024). 

Over the years, image quality assessment has relied heavily on subjective and non-

repeatability evaluation by personnel and radiologists, who visually inspect the images 

for clarity, contrast, and resolution. While these expert evaluations are the gold standard, 

they can introduce variability, as different evaluators may interpret image quality 
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differently (Ho et al., 2022). Machine learning offers a great solution by providing a 

standardised, objective method to assess image quality. Hence, training a machine 

learning model on testing images labelled for quality can automate the evaluation 

process, making it more consistent and sensitive to subtle quality changes or issues that 

human evaluators might overlook (Shurrab & Duwairi, 2022).  

1.2. Problem Statement 

Angiography plays a critical role in diagnosing and treating vascular diseases, 

requiring high-quality imaging to accurately visualise blood vessels and vascular 

structures (Lubis et al., 2021). However, current quality control (QC) practices for 

angiography are inadequate due to the lack of specialised phantoms tailored to this 

imaging modality. Existing QC techniques primarily rely on fluoroscopy-based 

phantoms, which do not accurately reflect clinical conditions encountered during 

angiographic procedures, leading to suboptimal image quality assessments and 

challenges in optimising radiation dose (Pancholy et al., 2022). Furthermore, image 

quality evaluation in clinical settings remains largely subjective, relying on radiologist 

interpretation, which introduces variability and potential bias that can affect diagnostic 

accuracy and consistency (Ho et al., 2022; Oh et al., 2022). Despite progress in phantom 

development for other imaging modalities such as mammography, angiography still 

lacks dedicated, modality-specific QC tools that reflect its unique technical and clinical 

demands. 
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1.3. Objective 

1.3.1. General Objective 

To design, fabricate and evaluate an in-house angiography phantom combined with a 

machine learning-based image quality assessment technique to enhance the reliability 

and accuracy of angiographic imaging for diagnostic purposes. 

1.3.2. Specific Objectives 

1. To design and fabricate an in-house phantom for high contrast and spatial 

resolution image quality assessment. 

2. To assess machine learning model performance and validation in evaluating the 

image quality of the fabricated angiographic phantom. 

3. To validate the best machine learning for the evaluation of phantom image 

quality in classifying high contrast and spatial resolution of the fabricated 

angiographic phantom. 

1.4. Hypothesis 

1.4.1. Null Hypothesis (𝑯𝒐) 

The fabricated in-house angiography phantom combined with a machine learning-based 

image quality assessment does not significantly improve the accuracy or consistency of 

angiographic image quality evaluation compared with each model's algorithms. 

1.4.2. Alternative Hypothesis (𝑯𝑨) 

The fabricated in-house angiography phantom combined with a machine learning-based 

image quality assessment significantly improves the accuracy and consistency of 

angiographic image quality evaluation compared with each model's algorithms. 
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1.5. Significant of Study 

This study addresses critical limitations in current angiography quality control 

(QC) practices, which rely on non-specialised phantoms and subjective evaluations that 

introduce variability and reduce diagnostic accuracy (Pancholy et al., 2022; Ho et al., 

2022; Oh et al., 2022). By fabricating a dedicated angiography phantom using 

affordable materials like PLA (Groenewald, 2017; Li, 2020) and incorporating machine 

learning for image quality assessment, the study aims to provide a cost-effective method 

in achieving the objectives in QC solution.  

Similar success in other modalities, such as mammography, demonstrates the 

potential of 3D-printed phantoms to improve standardisation and meet clinical 

standards (Celina et al., 2023). Machine learning offers accurate, reproducible 

evaluations, reducing reliance on subjective interpretation and improving workflow 

efficiency (Ho et al., 2022; Oh et al., 2022). The proposed approach is expected to 

enhance diagnostic consistency, optimise radiation dose management, and support more 

reliable QC processes in angiography. 
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1.6. Conceptual Framework 

 The conceptual framework of this study, illustrated in Figure 1.1, centered on 

the image quality evaluation of angiography imaging using a machine learning-based 

approach, supported by an in-house fabricated phantom. These custom-designed 

phantom images will undergo a structured pipeline comprising image pre-processing, 

region-based detection, and feature extraction stages. During pre-processing, operations 

such as cropping, contrast enhancement, and noise reduction will be applied. Feature 

extraction will include both geometric and region-based features, such as dot count, area, 

perimeter, and eccentricity. Extracted features will be converted into numerical 

representations (pixel values or structured feature vectors), which are then fed into 

machine learning classifiers, supporting automated and objective quality control in 

angiographic imaging. 

 

Figure 1.1: Conceptual framework 
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of each field sizes
Data pre-processing Data splitting

Classification of high 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Image Quality Control in Angiography 

Image quality control in angiography ensures accurate and reliable diagnostic 

imaging results. Various imaging modalities, such as computed tomography 

angiography (CTA) and three-dimensional rotational angiography (3DRA), require 

quality control measures to maintain image quality and diagnostic accuracy. The authors 

stated that fluoroscopy and digital subtraction angiography (DSA) were the benchmarks 

in intervention radiology for diagnosis and treatment. However, computed tomography 

angiography (CTA) is widely used for three-dimensional vascular imaging and plays a 

significant part in the delineation of vascular diseases (Lubis et al., 2021). 

This highlights the importance of utilising phantoms in evaluating image quality 

in specific medical imaging techniques. Phantom studies are significant in evaluating 

image quality in medical physics, particularly in techniques such as 3DRA and CTA. 

By assessing the effects of various parameters on image quality and 

implementing corrections for artefacts, researchers aim to enhance the accuracy and 

reliability of diagnostic imaging modalities (Svenson & Irvine, 2024). 

2.2. Limitations of Existing Quality Control Phantoms 

Due to the limited ability to archive image loops on photographic film and the 

initial digital platform, fluoroscopy has been used to guide real-time image setup and 

equipment navigator, while cineangiography has captured video angiograms. The image 

resolution for both modalities is essential for assessing the specifics of the vasculature 

and treatments (Pancholy et al., 2022). 
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A study conducted by Pancholy et al. (2022) involved a phantom-based total of 

40 experiments, half of which were done using fluoroscopy and the other half using 

cine angiography. They used a comparative evaluation of high-contrast and low-contrast 

resolution of images. 5 acquisitions were carried out, for posterior-anterior (PA) or left 

anterior oblique (LAO). The study found out there is no difference in high or low 

contrast resolution between PA and LAO projections using fluoroscopy. 

Cineangiography showed that PA projections had higher contrast resolution than LAO 

projections, but there was no significant difference in low contrast resolution. There was 

no significant difference in high-contrast or low-contrast resolution between low and 

high table positions with fluoroscopy or cineangiography (Pancholy et al., 2022). 

In short, the use of fluoroscopy-based QC phantoms in angiography may not 

accurately reflect the clinical scenario encountered during angiographic procedures, 

leading to potential drawbacks in image quality assessment and radiation dose 

optimisation. To achieve optimal results and enhance the overall performance of the 

imaging equipment, specialised phantoms designed for angiography must be used when 

performing quality control tests. 

2.3. Potential for an In-House Angiography Phantom 

The Mammography Quality Standards Act (MQSA) has approved image quality 

testing using the American College of Radiology (ACR) accreditation phantom, CIRS 

Model 015, which is made of Polymethyl Methacrylate (PMMA) material (Celina et al., 

2023).  

 The study was conducted by Celina et al. (2023) to fabricate a standard ACR 

phantom with various 3D printer filaments to imitate the fibres, specks and masses. In 

the study, they used Polylactic Acid (PLA) and Polyvinyl Alcohol (PVA) to fabricate 



9 

 

the in-house phantoms. CATIA v5R2016/2/2010 was the software that the authors used 

to model the breast ACR phantom fabrication using a 3D printer. The 3D designs were 

saved in Standard Tessellation Language (STL) format with a 95% fill density setting 

for the printing process. Fibres were nylon fibre, and specks were aluminium carbonate 

(𝐴𝑙2𝐶𝑂3). As a result, all fabricated phantoms met the ACR standard. PLA and PVA 3D 

printer filaments showed excellent texture at relatively affordable phantom prices 

(Celina et al., 2023).  

 Another study, Groenewald (2017) and Li (2020) suggested using PLA as the 

phantom housing material because the PLA attenuation coefficient is much closer to 

human soft tissue. In addition to Groenewald (2017), uses small metallic beads made 

from tungsten carbide with diameters (0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0) mm were used to 

evaluate spatial uniformity, noise, and sensitometry. Therefore, fabricating a phantom 

specific for angiography using listed and tested materials is valuable for image quality 

assessments. 

2.4. Challenges in Subjective Image Quality Assessment 

Subjective evaluation by radiologists and medical physicists plays a crucial role 

in the diagnostic accuracy and efficiency of quality control (QC) (Ho et al., 2022) (Oh 

et al., 2022). The research that has been done by (Ho et al., 2022) used two experienced 

radiologists who rely on their 13 and 15 years of experience and perception to assess 

image quality, which directly impacts the overall diagnostic accuracy of mammography 

images. This reliance on subjective assessment can influence the success rate of 

outcomes in image quality evaluation. While subjective evaluation is essential in 

assessing image quality, the integration of machine learning (ML) and deep learning 

(DL) has been shown to have a profound impact on diagnostic processes and clinical 

workflows (Ho et al., 2022) (Oh et al., 2022).  
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To sum up, subjective evaluation by radiologists is essential for assessing image 

quality and diagnostic accuracy in radiology. However, the integration of ML and DL 

and objective evaluation methods can enhance efficiency and accuracy in image quality 

control results. Hence, continuous learning algorithms implementation in angiography 

principles can further improve angiography image quality by providing radiologists or 

medical physicist with feedback loops for ongoing improvement.  

2.5. Emerging Solutions in Machine Learning for Image Quality 

Evaluation 

The use of machine learning (ML) in medical imaging has shown promising 

results in improving image quality and diagnostic accuracy across various modalities. 

Studies from Ho et al. (2022) and Oh et al. (2022) have demonstrated the potential of 

deep learning reconstruction algorithms to enhance image quality, particularly in 

mammogram images. 

The results of both studies of the mammography phantom with artificial 

intelligence (AI) showed high accuracy, reasonable object scoring, and less time-

consuming. Ho et al. (2022) stated that the obtained accuracies for fibers, specks, and 

masses were 90.2%, 98.2%, and 88.9%, respectively. 

Hence, the studies demonstrated values that are almost perfectly in agreement 

between manual evaluation and predicted labels. Thus, implementing machine learning 

to evaluate image quality in angiography is beneficial to increase accuracy. 

2.6. Image Pre-processing Techniques 

Image pre-processing techniques are important in visualising structures on the 

phantom images related to the quality of the image obtained, which helps with diagnosis 

and treatment planning in a clinical setup. Several research works have focused on 
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optimising algorithms and methods to improve the precision and effectiveness in 

phantom images. 

Ho et al. (2022) had obtained ACR phantom images from Digital Imaging and 

Communications in Medicine (DICOM) format files were processed using custom 

MATLAB scripts. These scripts automatically cropped the images and divided them 

into a 4 × 4 grid of sub-images. The authors converted the raw images to a grayscale 

level beforehand. Grayscale images contain only intensity values, reducing the 

complexity of computations compared to coloured images, which have multiple 

channels (RGB). In medical imaging, grayscale enhances the visibility of structures, 

making it easier to detect abnormalities. Many computer vision models, including 

convolutional neural networks (CNNs), perform better with grayscale images when 

colour is not a significant factor (Sundell et al., 2022). 

Doria et al. (2021) and Sato et al. (2023) explored deep learning-based denoising 

methods in CT imaging using phantom models, focusing on image pre-processing 

impacts. The first study from Sato et al. (2023) evaluated a commercial DL-based image 

processing software (DLIP, FCT PixelShine), applied as a post-processing tool to 

filtered back projection (FBP) images. The authors demonstrated effective noise 

suppression while preserving spatial resolution comparable to model-based iterative 

reconstruction (MBIR) and deep learning reconstruction (DLR), with slight noise 

texture smoothing indicated by a shift in noise power spectrum (NPS) peak frequency. 

The second study from Doria et al. (2021) investigated convolutional neural network 

(CNN)-based denoising using two architectures, an encoder-decoder and a UNet model 

that had been trained on a large dataset of phantom CT images. The UNet outperformed 

the encoder-decoder in noise reduction and spatial resolution preservation. However, 

radiomic analysis revealed that UNet-based denoising could unintentionally alter 
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texture features, raising concerns about its impact on quantitative imaging analysis. 

Both studies highlighted the effectiveness of DL-based denoising while emphasizing 

the need for careful evaluation of potential alterations in image characteristics, 

especially when quantitative metrics are used for diagnosis or treatment planning. 

Sundell et al. (2022) conducted an automated image pre-processing pipeline for 

phantom-based image analysis. Convolutional Neural Network (CNN) input 

normalisation was achieved by isolating the phantom's wax area using intensity-based 

segmentation and correcting its orientation based on target position. The phantom label 

and the corner area were replaced with noise to prevent model bias. The cleaned 

phantom image was divided first into sub-images corresponding to specific targets 

(fibres, masses, or specks). Background intensity non-uniformities were corrected using 

2D polynomial subtraction. Finally, all sub-images were resized to 128×128 pixels, 

normalised to a range of 0–1 intensity scale, and stored as 64-bit floating-point images. 

2.7. Feature Extraction and Data Labelling 

Feature extraction and data labelling are fundamental components in automated 

phantom image evaluation pipelines, particularly when integrated with machine 

learning or deep learning algorithms. These steps facilitates the translation of complex 

image information into quantifiable data for quality control and diagnostic accuracy 

(Torfeh et al., 2023). 

Ho et al. (2022) implemented a unique feature extraction technique in a phantom 

study, where a total of 159 features were derived from each pattern image using in-

house MATLAB algorithms. The extracted features encompassed multiple categories: 

position, global, local, edge, and texture information. Position features represented the 

specific location of the pattern within the phantom, encoded from 1 to 16. Global 
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features included statistical descriptors such as the mean and standard deviation of gray 

levels, matrix size, and overall image gradients. Local features were derived from the 

signal region of interest (ROI) and background, incorporating intensity metrics, edge 

characteristics, contrast values, and contrast-to-noise ratios. Notably, texture features 

and gradients were also computed, enhancing the sensitivity of pattern recognition. The 

signal ROIs were automatically detected, enabling consistency across image sets and 

reducing human bias (K. Bharodiya, 2022). 

In another study focusing on mammography phantom analysis by Oh et al. (2023) 

highlighted a structured data labelling approach to train a deep learning model for 

phantom quality assessment. The labelling process was conducted in two stages. First, 

the phantom area containing the 16 standard test objects (fibers, specks, and masses) 

was isolated from the raw mammogram using rectangular bounding boxes, effectively 

removing irrelevant background regions. Second, a detailed scoring system based on 

the American College of Radiology (ACR) digital mammography quality control 

guidelines was employed. Each object was scored as 1 (fully visible), 0.5 (partially 

visible), or 0 (not visible), depending on visibility criteria such as complete structure 

recognition or partial presence. This process resulted in the labelling of 2,208 phantom 

images, with classification outcomes of 1,878 images as “pass” and 330 as “fail.” The 

labelled dataset was a reference for developing supervised learning models capable of 

scoring objective image quality. 

Together, these studies emphasise the critical role of structured feature 

extraction and accurate data labelling in phantom-based quality control systems. 

Feature engineering tailored to phantom structure and consistent labelling criteria 

grounded in clinical guidelines significantly improves the reliability and reproducibility 

of automated evaluations. 
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2.8. Image Augmentation 

Torfeh et al. (2023) and Doria et al. (2021) employed data augmentation as a 

critical step to enhance the effectiveness and generalisability of deep learning models 

trained on phantom images for quality assurance and image denoising, respectively. 

Torfeh et al. (2023), incorporate augmentation techniques to the ACR MR phantom 

images to address the limited availability of training data and to simulate a broader 

range of possible acquisition variations. Their augmentation included spatial 

transformations such as rotations and translations, aiming to improve the neural 

network's ability to generalise across diverse image orientations and slight positioning 

inconsistencies typical in real-world scans.  

In contrast, Doria et al. (2021) designed their augmentation process specifically 

for CT phantom slices, where each 2D slice from a 3D volume was augmented in 90° 

rotations and flipping. This was performed across 24 axial slices reconstructed along 

the phantom’s depth, introducing spatial variability in the insert locations to prevent the 

network from overfitting to fixed object positions. This augmentation was carried out 

separately for FBP and IR reconstruction methods, resulting in two distinct datasets 

used for training and testing validation. Both studies underscore that augmentation not 

only combats overfitting but also simulates real-world variability, ultimately improving 

the reliability of deep learning models in automated quality assessment and denoising 

of medical images.  

2.9. Machine learning (ML) algorithms 

Phantom and machine learning evaluation in the clinical setting requires reliable 

image quality and automated evaluation methods. Machine learning algorithms have 

emerged as effective tools for improving the consistency and accuracy of quality 
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assurance (QA). A recent study applied deep learning models to assess MRI images 

acquired from ACR phantoms, which are standard test objects used to evaluate the MRI 

machine performance. By processing phantom images with convolutional neural 

networks (CNN), the system was able to automatically detect and evaluate key 

parameters such as spatial resolution and geometric distortion. This approach enables 

consistent and objective monitoring of MRI system performance, reducing reliance on 

manual inspection and supporting more efficient imaging workflows (Torfeh et al., 2023; 

Ramos et al., 2022). 

Support Vector Machines (SVM) have attracted significant attention due to their 

adaptability and effectiveness in classification tasks. In the context of image quality 

evaluation, SVM has been successfully applied to phantom images in mammography, 

offering a robust method for automating QA processes. A study by Ho et al. (2022) 

implemented a one-versus-one SVM classifier trained on segmented pattern images 

from ACR mammographic phantoms, using dimensionality reduction through Principal 

Component Analysis and Sequential Minimal Optimisation for efficient training. The 

model achieved high classification accuracies of 90.2% for fibers, 98.2% for specks, 

and 88.9% for masses. The authors demonstrated its reliability in identifying visibility 

levels of phantom features. These findings confirm the practical applicability of SVM 

in supporting consistent and objective quality assessments in mammographic imaging. 

K-Nearest Neighbors (KNN) classifiers have been employed for their simplicity 

and effectiveness in pattern recognition tasks, including phantom imaging analysis. In 

the study by Chow et al. (2020), the authors implemented a KNN classifier within a 

broader machine learning framework to support the correction of deterministic 

geometric errors in single-plane and dual-plane X-ray fluoroscopy using phantom 

images. The classifier was used to map error distributions by referencing labelled 
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instances based on spatial proximity in the feature space, which was derived from 

phantom-based fluoroscopic projections. Performance of the KNN classifier showed 

that the model contributed to robust and accurate self-supervised learning of projection 

errors, precision of 3D reconstruction in fluoroscopy was improved. While KNN is 

generally sensitive to noise and data scaling, in this controlled phantom-based setting, 

it proved to be a reliable tool for error detection and correction when supported by well-

prepared training data and consistent acquisition conditions. 

Random Forest (RF) classifiers are known for their ability to handle high-

dimensional data, making them well-suited for radiomics or phantom image 

applications. A recent study by Hertel et al. (2023) experimented with the stability of 

radiomics features extracted from phantom scans acquired using a photon-counting 

detector CT system and evaluated using RF classifier. The classifier was applied in the 

context of test-retest analysis, aiming to assess which radiomics features remained 

consistent across repeated scans under varying acquisition and reconstruction 

parameters. The RF model utilised an ensemble of decision trees to rank feature 

importance and identify those with high reproducibility. The RF classifier effectively 

distinguished between stable and unstable features, providing valuable insight into 

which radiomics metrics are reliable for quantitative imaging studies. Given its ability 

to manage feature variability and deliver consistent results, the RF model proved to be 

a reliable approach for analysing the true extracted feature in phantom-based radiomics 

research. 

2.10. ROC curve and AUC analysis 

The Receiver Operating Characteristic (ROC) curve is a graphical 

representation used to evaluate the performance of classification models across different 

thresholds. Originally developed during World War II for radar signal detection, ROC 
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analysis has since been adapted in various fields, including medical imaging, machine 

learning, and diagnostic testing. In a classification context, the ROC curve plots the 

True Positive Rate (TPR or sensitivity) against the False Positive Rate (FPR or 1-

specificity) at different discrimination thresholds. This visualisation allows researchers 

and clinicians to assess how well a model distinguishes between two classes, which 

typically have positive and negative outcomes (Nahm, 2022). 

To construct a ROC curve, multiple threshold values are applied to a classifier’s 

prediction probabilities, producing a series of (TPR, FPR) pairs. These points are then 

plotted in a 2D space, with the x-axis representing FPR and the y-axis representing TPR. 

A model that performs perfectly would achieve a point in the top-left corner of the ROC 

space (0, 1), indicating 100% sensitivity and 100% specificity. As the decision threshold 

varies, the ROC curve is formed, tracing the trade-off between sensitivity and specificity. 

The curve essentially visualises how many correct positive classifications the model 

makes at the cost of incorrect positive classifications (false positives) (Gupta, 2024). 

The ROC curve provides crucial insights into a model’s behaviour. A steep curve 

that hugs the top-left corner reflects a high-performing model, as it indicates a high TPR 

with a low FPR at most thresholds. On the other hand, a curve that lies close to the 

diagonal line from (0, 0) to (1, 1) represents a model with no discrimination capacity, 

performing no better than random guessing. Models that produce curves below the 

diagonal may be misclassifying classes or might be reversed in their predictions. This 

characteristic is useful for model validation and comparison, especially in binary 

classification settings where both false positives and false negatives carry different 

clinical or operational consequences (Chan et al., 2022). 
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Figure 1.1: A hypothetical ROC curve demonstrating the trade-off between sensitivity and 

specificity (S. Yang & Berdine, 2017) 

One of the key summary metrics derived from the ROC curve is the Area Under 

the Curve (AUC) or also known as the c-statistics. The AUC quantifies the overall 

ability of the model to discriminate between positive and negative classes. AUC values 

range between 0 and 1, where a score of 1.0 indicates perfect classification, and a score 

of 0.5 implies performance no better than chance. In practice, an AUC between 0.7–0.8 

is considered acceptable, 0.8–0.9 is excellent, and above 0.9 is outstanding. AUC is 

particularly advantageous because it provides a single scalar value that summarises the 

entire ROC curve, making it easier to compare model performance across different 

datasets or algorithms (Nahm, 2022). 

Table 2.1: Rule of thumb interpreting AUC (S. Yang & Berdine, 2017) 

AUC = 0.5 

No discrimination, e.g., randomly flip a 

coin 

0.6 ≥ AUC > 0.5 Poor discrimination 

0.7 ≥ AUC > 0.6 Acceptable discrimination 
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0.8 ≥ AUC > 0.7 Excellent discrimination 

AUC > 0.9 Outstanding discrimination 

 

Additionally, AUC helps in selecting optimal decision thresholds. While the 

ROC curve itself allows visual exploration of sensitivity and specificity trade-offs, the 

AUC score can be used in algorithmic tuning or threshold adjustment by identifying the 

point on the curve that offers the best balance between sensitivity and specificity for a 

given application. In image quality control tasks, such as those performed in computed 

tomography (CT), deep learning classifiers are evaluated using AUC to determine how 

reliably they can identify images that meet or fail diagnostic standards (Gupta, 2024). 

In more advanced applications, such as predictive analytics for audit selection 

(Chan et al., 2022), ROC analysis supports performance evaluation in contexts where 

skewed class distributions are common. The flexibility of ROC curves in being 

threshold-independent allows them to assess classifiers on unbalanced datasets, as the 

curve does not rely on specific class proportions. This property is useful in domains 

where positive cases such as tax fraud or rare diseases, are rare but critical to identify 

correctly, and precision-recall curves may complement ROC curves in those settings. 

In summary, the ROC curve is a vital diagnostic tool for evaluating binary 

classification models, providing a clear visualisation of the trade-offs between true 

positive and false positive rates. The AUC offers a concise metric for comparing model 

discriminative ability across datasets and threshold settings. As shown in diverse 

applications from the medical field, such as CT image quality control to financial 

auditing, the ROC and AUC metrics play a role in verifying and refining classification 

systems in both clinical and operational domains. 
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2.11. Performance evaluation metrics 

In the medical imaging field, particularly in automating diagnostic quality 

control (QC) processes such as in computed tomography (CT), evaluation metrics are 

indispensable for quantifying a model’s predictive performance. Gupta (2024) 

comprehensively applied a range of performance metrics including accuracy, recall, 

precision, F1 score, specificity, and cross-entropy loss to assess classification models 

that distinguish between images from calibrated and miscalibrated scanners. These 

metrics serve as diagnostic tools in determining where models succeed or fall short and 

enabling continuous and reliable results. 

Accuracy represents the ratio of correct predictions to the total predictions made 

and is commonly used due to its intuitive interpretation. However, its utility diminishes 

in imbalanced datasets, where a high accuracy might mask poor detection of the 

minority class (Gupta, 2024 & Litjens et al., 2017). Therefore, accuracy must be 

interpreted alongside other, more sensitive measures, especially in medical contexts 

where class imbalance is common. 

Accuracy =  
TP+TN

TP+TN+FP+FN
                                           (1) 

Recall also known as sensitivity, defined as the proportion of true positives 

correctly identified out of all actual positives, is crucial in medical diagnostics where 

failing to detect a condition could have serious consequences. For instance, a low recall 

in detecting poor-quality CT images may result in undetected miscalibrations, posing 

clinical risks (Gupta, 2024). Esteva et al. (2019) similarly emphasised the importance 

of high recall in clinical-grade AI systems to ensure that all relevant pathology or image 

quality failures are detected. 
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Recall(R) =
TP

TP+FN
                                                    (2) 

On the other hand, precision measures how many of the positively predicted 

instances are correct. In QC applications, a high precision implies the model does not 

raise unnecessary alarms by misclassifying good-quality images as defective. The F1 

score, as the harmonic mean of precision and recall, balances these two aspects, offering 

a single composite metric that is especially useful in scenarios where neither false 

positives nor false negatives can be tolerated (Gupta, 2024). 

Precision(P) =
TP

TP+FP
                                            (3) 

F1 score = 2 ×
P×R

P+R
                                              (4) 

Specificity also known as the true negative rate, complements recall by 

evaluating the proportion of correctly identified negative images that are truly 

miscalibrated and correctly classified as such. It is particularly important when false 

positives (incorrectly marking good images as bad) lead to costly re-acquisition or 

unnecessary concerns. Litjens et al. (2017) pointed out that in high-stakes environments 

such as radiology, both sensitivity and specificity must be optimised to reduce 

misdiagnoses and improve decision confidence. 

Specificity =
TN

TN+FP
                                            (5) 

Loss of function, specifically cross-entropy loss used by Gupta (2024), provides 

a continuous measure of how far the model’s predicted probabilities deviate from the 

true labels. This function is particularly suited to binary classification tasks and is 

widely used in neural networks and logistic regression models. A decreasing loss over 

training epochs indicates that the model is improving in aligning its predictions with the 
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ground truth. Binary Cross-Entropy (BCE) measures how well the model’s predicted 

probabilities match the actual binary labels. A smaller loss indicates better prediction 

performance. Loss is low when predicted probabilities are close to the true labels (as 

predicting 0.95 when the label = 1). Loss is high when predicted probabilities are far 

from the true labels (as predicting 0.1 when the label = 1) (Terven et al., 2023). 

𝐿𝑜𝑠𝑠 = −
1

𝑛
∑ [𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)]

𝑛

𝑖=1
                (6) 

where each components represents,  

Table 1.2: Explanation of each mathematical components Gupta, (2024) and Spindelböck et. 

al, (2021) 

Components Explanation 

𝐧 The total number of samples in the dataset (or 

mini batch) 

𝐲𝐢 The true label for the i-th sample 

𝒚𝒊̂ The predicted probability (by the model) that the 

i-th sample belongs to class 1. 

This value is in the range (0,1) typically 

produced by a sigmoid activation function. 

𝐥𝐨𝐠(𝒚𝒊̂) The natural logarithm of the predicted 

probability for the positive class (when yi=1) 

𝐥𝐨𝐠(𝟏 − 𝒚𝒊̂) The natural logarithm of the predicted 

probability for the negative class (when yi=0) 



23 

 

𝒚𝒊 𝐥𝐨𝐠(𝒚𝒊̂) + (𝟏

− 𝒚𝒊) 𝐥𝐨𝐠(𝟏

− 𝒚𝒊̂) 

This term selects the correct log-probability 

based on the actual label 

• If yi=1: the second term becomes 0, and 

the loss becomes −log(𝑦𝑖̂) 

• If yi=0: the second term becomes 1, and 

the loss becomes −log(1 − 𝑦𝑖̂) 

∑ 𝑜

𝑛

𝑖=1

 
Adds the loss from all samples in the dataset. 

 

Furthermore, comprehensive evaluations using these metrics are considered best 

practice in the development of trustworthy medical AI tools (Esteva et al., 2019). 

Together, these metrics provide a multidimensional assessment of model performance. 

When interpreted collectively, they offer valuable insight into the trade-offs between 

different types of errors and help developers make informed decisions in model 

selection and tuning for clinical applications. 

2.12. Ensemble learning 

Ensemble learning is a sophisticated machine learning technique that enhances 

predictive performance by combining the outputs from multiple models. These 

individual models, referred to as base learners, each contribute to the final output, 

resulting in more reliable and accurate predictions. The core idea behind ensemble 

learning is that the strengths of diverse models can be leveraged to compensate for 

individual weaknesses, thereby improving the generalisation ability of the system, 

especially when dealing with noisy or complex datasets. 
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Several ensemble techniques have been developed, each designed to harness 

different model advantages. Bagging (Bootstrap Aggregating) involves training 

multiple models on different random subsets of the training data and averaging their 

outputs to reduce variance. Boosting, on the other hand, builds models sequentially, 

with each new model attempting to correct the errors made by its predecessor. This 

approach effectively reduces both bias and variance. Stacking trains a meta-model that 

learns to combine the outputs of several base models, often yielding better results by 

capturing non-linear relationships among predictions (Ferrouhi & Bouabdallaoui, 2024). 

 

Figure 2.2: Bagging structure (Akbulut et al.,2022)  

Another simpler and widely used technique is the voting ensemble. In this 

approach, predictions from multiple base classifiers are combined through a majority 

voting rule for classification tasks (hard voting) or by averaging predicted probabilities 

(soft voting) (Akbulut et al.,2022). Voting ensembles are particularly effective when the 

base classifiers are diverse in nature such as mixing Decision Trees (DT), Support 

Vector Machines (SVM), Random Forest (RF) and k-Nearest Neighbors (KNN) 




