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ABSTRAK 

Latar Belakang: Pengimejan PET/CT otak menggunakan ¹⁸F-FDG memainkan peranan 

penting dalam menilai metabolisme otak dan mengesan penyakit neurologi. Walau 

bagaimanapun, dalam pengimejan dinamik dengan bingkai jangka pendek, kualiti imej 

sering terjejas oleh hingar tinggi akibat statistik kiraan yang rendah. Algoritma pembinaan 

semula Q. Clear (BSREM) menawarkan potensi penambahbaikan melalui pengubahsuaian 

parameter penalti β, tetapi nilai optimum β bagi setiap tempoh bingkai masih belum jelas. 

Kaedah: Satu kajian dijalankan menggunakan fantom otak Hoffman 3D yang diisi dengan 

185 MBq ¹⁸F-FDG. Data diperoleh dalam mod senarai dan dibahagikan kepada lima tempoh 

bingkai: 10 s, 30 s, 2 min, 5 min dan 30 min. Gambar dibina semula menggunakan algoritma 

Q. Clear dengan 20 nilai β berbeza (50–1000). Petunjuk kualiti imej dinilai berdasarkan RC% 

(pekali pemulihan) dan SNR (nisbah isyarat kepada hingar). Pengoptimuman Bayesian 

digunakan untuk mengenal pasti β terbaik bagi setiap tempoh bingkai di bawah tiga strategi 

pemberat: keutamaan RC%, keutamaan SNR dan seimbang. 

Keputusan dan Kesimpulan: Nilai β yang tinggi (≥950) didapati sesuai untuk bingkai 10 s 

dan 30 s bagi menindas hingar yang kuat. Walau bagaimanapun, nilai pertengahan (sekitar 

β = 650) menunjukkan prestasi terbaik dari segi keseimbangan antara kejelasan anatomi 

dan kestabilan kuantitatif dalam bingkai 2 hingga 30 minit. Berdasarkan penilaian visual dan 

metrik kuantitatif, β = 650 disyorkan sebagai nilai sejagat untuk pembinaan semula Q. Clear 

dalam pengimejan PET otak yang dinamik, dengan potensi penggunaan dalam protokol 

adaptif masa hadapan. 

  



 
 

 

ABSTRACT 

Background: Brain ¹⁸F-FDG PET/CT is a crucial tool in assessing cerebral metabolism 

and diagnosing neurological conditions. However, dynamic acquisitions with short frame 

durations suffer from low count statistics and high noise levels, posing challenges for 

both image quality and quantification. The Q. Clear (BSREM) reconstruction algorithm 

introduces a β penalization parameter to improve image clarity, yet the optimal β setting 

for each frame duration remains unclear. 

Methods: A phantom study was conducted using a Hoffman 3D brain phantom filled 

with 185 MBq of ¹⁸F-FDG. List-mode PET data were acquired and divided into five 

frame durations: 10 s, 30 s, 2 min, 5 min, and 30 min. Images were reconstructed using 

Q. Clear with 20 β values (ranging from 50 to 1000). Image quality was assessed using 

recovery coefficient (RC%) and signal-to-noise ratio (SNR). A Bayesian optimization 

framework was applied to identify the optimal β under three prioritization strategies: 

RC%-priority, SNR-priority, and balanced. 

Results and Conclusion: High β values (≥950) were optimal for 10 s and 30 s frames 

to suppress severe noise, while mid-range values (β ≈ 650) achieved the best trade-off 

between anatomical clarity and quantitative stability for 2–30 min frames. Based on both 

visual interpretability and quantitative performance, β = 650 is recommended as a 

general-purpose reconstruction setting for Q. Clear in dynamic brain PET imaging, with 

potential for implementation in future adaptive protocols. 
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Chapter 1：INTRODUCTION 

1.1 Introduction 

Positron emission tomography (PET) has become a valuable tool for studying brain 

function, especially for diagnosing neurological diseases and studying metabolic 

abnormalities. Among the many radiotracers, 18F-fluorodeoxyglucose (18F-FDG) 

remains the most used because it can mimic glucose metabolism and accumulate in 

metabolically active brain tissues such as the cerebral cortex. This property allows 

clinicians and researchers to visualize and quantify brain glucose utilization, which is 

critical for evaluating neurodegenerative diseases, epilepsy, and other diseases. 

 

However, acquiring high-quality and quantitatively accurate PET images in brain 

research is particularly difficult due to the complex anatomy and significant metabolic 

heterogeneity of brain tissue. These challenges are further exacerbated in dynamic PET 

imaging because the acquisition process is divided into multiple short time frames to 

capture tracer dynamics. Short frames, especially in the early stage after injection (e.g., 

10-30 seconds), are characterized by low counting statistics and high noise levels, 

which reduce image interpretability and quantitative fidelity. Therefore, robust image 

reconstruction methods are essential to preserve spatial details and maintain 

quantitative accuracy. 

 

The Q. Clear algorithm (also known as BSREM - Block Sequential Regularized 
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Expectation Maximization) developed by GE Healthcare provides an advanced 

reconstruction framework that combines noise suppression with fully iterative 

convergence by applying a penalty factor β. By adjusting β, the user can tune the 

trade-off between image smoothness and detail preservation, enabling flexible 

optimization under a wide range of imaging conditions. However, the optimal β value 

remains case-dependent, especially in dynamic imaging, where statistics and temporal 

resolution vary widely between frames.  

 

1.2 Problem Statement 

In dynamic brain PET imaging, acquisition must start immediately after tracer injection 

to accurately capture early tracer kinetics. This requires segmenting the scan into 

multiple short frames, typically lasting only 30 to 60 seconds. These short frames result 

in extremely limited photon statistics, which induce elevated noise levels, blurred 

anatomical boundaries, and unreliable quantification. Traditional reconstruction 

methods such as OSEM fail under these conditions due to their incomplete 

convergence and poor noise control. While Q. Clear reconstruction offers a promising 

alternative by employing penalized likelihood regularization, the optimal β parameter 

setting for different frame durations remains unclear. While GE Healthcare generally 

recommends a β value between 350 and 600 for adult brain PET imaging, emerging 

research suggests that the optimal setting can vary significantly depending on frame 

duration, noise levels, and clinical scenarios such as pediatric or obese patient imaging. 
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Lower β values (e.g., 50–150) can enhance contrast recovery but amplify noise, which 

may be beneficial for short-frame dynamic acquisitions or low-dose protocols. Higher β 

values (e.g., 800–1000) provide excellent noise suppression but carry the risk of over 

smoothing, potentially reducing the detectability of lesions in fine anatomical structures. 

Existing literature lacks a comprehensive evaluation of how β affects quantification 

accuracy (e.g., RC%) and noise performance (e.g., SNR) under ultra-short dynamic 

frames. 
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1.3 Aim of Study 

General Objective: 

To optimize image reconstruction methods for brain PET imaging under low-count, 

short-frame conditions to improve diagnostic and quantitative accuracy. 

Specific Objectives: 

1. To evaluate the effect of varying β-penalized parameters on noise suppression and 

spatial resolution in dynamic brain PET imaging. 

2. To compare the quantitative performance of Q. Clear (in terms of RC% and SNR) 

across different β values and frame durations. 

3. To implement a Bayesian optimization strategy to identify the optimal β value for 

each frame duration based on multi-objective criteria. 

 

1.4 Significance of Study 

This study has important implications for both clinical practice and academic research. 

Clinically, optimizing PET reconstruction in dynamic imaging can enhance the detectability 

of early-phase metabolic changes, which is crucial for accurate lesion localization in 

epilepsy, Alzheimer’s disease, and other neuropsychiatric conditions. It also supports more 

reliable extraction of arterial input functions and time-activity curves for kinetic modeling. 

From a research standpoint, this study systematically investigates the influence of β 

regularization across a wide range of imaging conditions, providing new insights into the 

trade-offs between quantification accuracy and noise suppression. The proposed Bayesian 
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optimization framework can serve as a template for parameter selection in other PET 

reconstruction scenarios, including multi-center harmonization efforts. This work contributes 

to improving image quality, quantitative consistency, and clinical confidence in brain PET 

imaging. 
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Chapter 2：LITERATURE REVIEW 

2.1 Introduction to PET Imaging 

Positron emission tomography (PET) is a non-invasive functional imaging technique 

that uses the paired 511keV γ photon signals generated by the annihilation of positrons 

and electrons emitted by the tracer to perform three-dimensional reconstruction and 

quantitatively reflect the physiological processes in the body. The commonly used tracer 

in brain research is 18F-fluorodeoxyglucose (18F-FDG), which enters neurons through 

glucose transporters as a glucose analog. After phosphorylation, it undergoes metabolic 

trapping in the cell, thereby enriching in metabolically active tissues. PET scanners 

calculate the distribution of tracers in brain tissue by simultaneously detecting a pair of γ 

photons generated by positron annihilation, thereby achieving quantitative imaging. 

Since PET itself lacks anatomical resolution and is affected by photon attenuation, 

low-dose CT is often combined with PET in clinical practice today. The attenuation 

correction of PET signals is performed through CT images and precise anatomical 

registration is provided, thereby significantly improving the quantitative accuracy and 

positioning accuracy of PET images. 

 

In the fields of neurodegenerative diseases and epilepsy, brain PET imaging has 

important clinical value. 18F-FDG PET is regarded as the gold standard for assessing 

brain glucose metabolism. In dementias such as Alzheimer's disease, it is seen that the 

metabolism of specific brain regions (such as the temporal parietal cortex) is reduced, 
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while in the intermittent period of patients with refractory epilepsy, FDG-PET can reveal 

the low metabolic area corresponding to the attack focus. In dynamic PET scans of the 

brain, the early frame is usually only a few seconds, and the photon counts collected are 

very low, resulting image noise and a large quantitative fidelity. 

 

Low counts and high noise and high noise problems make the image reconstruction of 

dynamic PET extremely challenging, and an optimized reconstruction strategy is 

required to balance noise suppression and resolution. The researchers proposed to use 

Bayesian regularized iterative reconstruction algorithms (such as GE's) to improve the 

image quality of dynamic PET: an appropriate penalty factor β can significantly improve 

image contrast and signal-to-noise ratio, but too strong a penalty will sacrifice the 

discernibility of small structures. Tian et al. (2023) verified Q. Clear reconstruction on a 

PET/MR system and found that compared with traditional OSEM, can significantly 

improve the signal-to-noise ratio and accuracy, but its spatial resolution gradually 

decreases with the increase of β value. Lysvik et al. (2023) also emphasized that for 

dynamic PET, a specially designed reconstruction strategy must be used to control the 

high noise of early frames to maintain quantitative accuracy. In summary, optimizing 

dynamic PET reconstruction methods in the context of current brain PET research is 

one of the cutting-edge topics to improve the accuracy and reliability of imaging 

quantification. 

 

In PET quantitative verification and instrument calibration, the Hoffman 
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three-dimensional brain phantom plays a key role. The phantom is based on the MRI 

anatomy of a healthy human brain and is composed of 19 plastic plates with a thickness 

of about 7 mm. Each plate is engraved with grooves that simulate gray matter, white 

matter, and cerebrospinal fluid partitions. After filling with ^18F-FDG solution, the GM: 

WM activity ratio is set to 4:1 (typical healthy brain gray and white matter metabolic 

ratio), thereby providing a known "true value" as a benchmark for PET system 

performance evaluation. The anatomically accurate phantom can be used to evaluate 

partial volume effects and system spatial resolution: for example, by comparing the 

deviation of the gray and white matter activity concentration recovery coefficients in the 

reconstructed image from the known 4:1 input ratio, the quantization error of the 

algorithm can be quantitatively analyzed; and by measuring the size of resolvable 

structures at the high-contrast gray-white interface, the effective resolution of the 

imaging system can be evaluated. The Hoffman brain phantom has important 

application value in brain PET quantitative imaging verification, partial volume effect 

evaluation, spatial resolution verification, system calibration, etc. With its advantages of 

high repeatability, strong anatomical authenticity, and multi-center comparability, and 

provides a standardized benchmark for the optimization of reconstruction algorithms. 
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2.2 Reconstruction Algorithm 

The algorithm is an iterative reconstruction method based on Bayesian penalized 

likelihood (BPL) launched by GE. Its implementation adopts the Block Sequential 

Regularized Expectation-Maximization (BSREM) algorithm. The algorithm adds a 

relative difference penalty term to the traditional OSEM iterative formula and combines 

point spread function (PSF) modeling to suppress the noise generated as the number of 

iterations increases. With the introduction of the penalty term, it can continue to iterate 

to a convergent state, thereby achieving "full convergence" reconstruction. In the 

algorithm, the regularization factor β determines the strength of the penalty term: the 

larger the β value, the stronger the image smoothness and the smaller the noise, but the 

spatial resolution may decrease; the smaller the β value, the sharper the reconstructed 

image, but the noise increases. In summary, balances resolution and noise through the 

β parameter, achieving the unity of convergence iteration and noise suppression. 

Compared with the traditional OSEM algorithm, it has significant differences. Due to the 

rapid accumulation of noise, the OSEM algorithm usually needs to terminate the 

reconstruction when the number of iterations is very small, resulting in insufficient 

convergence of the results, thereby introducing quantitative errors such as positive bias 

in low-count regions, negative bias in high-count regions in high-count areas. The 

penalty term in can effectively control noise and will not generate excessive noise even 

when the number of iterations increases, so it can achieve more complete convergence. 

Tian et al. (2022) pointed out that compared with OSEM, can achieve full image 

convergence and provide more accurate quantitative results and higher signal-to-noise 
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ratio. Lantos et al. (2018) also found in phantoms and clinical trials that BSREM is 

superior to OSEM in contrast recovery and image uniformity and is particularly suitable 

for scanning under low-count conditions. However, a higher β value (≥350) is required 

to avoid noise and artifacts. These studies show that it can suppress noise while 

ensuring iterative convergence by adding regularization penalties to the objective 

function, thereby surpassing the performance bottleneck of traditional OSEM. 

In comparative studies on image quality, it also showed advantages. In general, 

reconstruction can obtain higher signal-to-noise ratio (SNR) and better image details. 

Ribeiro et al. (2021) found in a PET/MR brain study that not only improved contrast 

recovery but also outperformed OSEM in resolution and SNR; especially when a larger 

β value was used, could significantly improve the SNR of the image. Tian et al. (2022) 

also reported in PET/MR clinical data that compared with OSEM+TOF (Time-of-Flight) 

reconstruction, (β=400) increased the median lesion signal-to-noise ratio by 138%, the 

signal-to-background ratio (SBR) by 59%, and the noise level by 38%. In the field of 

dynamic imaging, the latest research further highlights the advantages of. Springer et al. 

(2025) pointed out in a study of dynamic whole-body PET/CT that Q. Clear 

reconstruction can reduce the noise level of all tissue types by 40%–55% compared 

with OSEM. For small volume regions of interest (VOI), showed higher accuracy in 

estimating the 18F-FDG uptake rate. In summary, it shows better signal-to-noise ratio, 

higher contrast recovery and better quantitative accuracy than OSEM in both static and 

dynamic reconstruction. 

The advantages of are particularly obvious in brain PET and dynamic PET imaging. 
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Brain PET studies often require high spatial resolution and linear response for dynamic 

quantitative modeling, but on current PET/MR systems, filtered back projection (FBP) 

reconstruction is often not supported, and only iterative methods such as OSEM can be 

used. However, OSEM will lead to low-count area bias due to early stopping, affecting 

the results of dynamic analysis. Ribeiro et al. (2021) pointed out that reconstruction with 

low β values can approximate FBP-like linearity equivalent to FBP, making it suitable for 

brain PET dynamic studies while still maintaining a higher signal-to-noise ratio than 

OSEM. This advantage is more important under low-count short-frame conditions. 

Emblem et al. (2023) found in their study on dynamic brain PET that for small structures 

(<10mm) and short-frame data, using lower β values will lead to increased variability 

and overestimation of activity, while increasing β values can reduce variability but with 

slight underestimation. They suggested that for dynamic quantification of small 

structures, β≈300–500 can be used to balance precision and accuracy between 

accuracy and precision. In addition, the dynamic whole-body study by Springer et al. 

(2025) also showed that can significantly reduce the noise of the time series curve in 

short-term high-noise data and improve the accuracy of metabolic rate estimation for 

small VOIs. In summary, can effectively suppress noise and improve the signal-to-noise 

ratio in brain PET (especially dynamic low-count short frames), and maintain high 

resolution and quantitative linearity by appropriately selecting the β value, providing a 

more reliable image basis for quantitative analysis of the brain. 
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2.3 Impact of Reconstruction Parameters 

Research has shown that in Q. Clear (BPL) reconstruction, there is a typical 

noise-resolution trade-off between the β value and image quality: a lower β value (β < 

200) provides higher contrast and richer spatial detail but also results in noticeable 

image noise. Conversely, a higher β value (β > 800) significantly suppresses noise and 

smooths the image, but at the same time significantly reduces image detail and contrast. 

Therefore, low β values are often used in scenarios where structural detail needs to be 

emphasized (such as high-resolution imaging), while high β values are suitable for 

quantitative analysis tasks that are more sensitive to image noise. Related literature 

indicates that the optimal value of β is not fixed but should be flexibly adjusted according 

to the specific imaging task. For example, Tian et al. (2022) reported in their 18F-FDG 

PET/MR study that optimal image quality is achieved when β is approximately 400; 

Lysvik et al. (2023) recommended using β ≈ 300–500 for imaging small structures, while 

higher β values are acceptable for larger structures; and Ribeiro et al. (2021) reported 

that the optimal β value for brain imaging is between 100 and 200 in a specific PET/MR 

system. These results suggest that the choice of β needs to be dynamically adjusted 

based on structure size, acquisition time, and imaging objectives. Furthermore, the 

interaction between frame length and β can significantly affect image quality: in the 

low-count state of short frames (e.g., 10 seconds), the number of photons is extremely 

low, and Poisson noise becomes the dominant factor. In this case, a higher β value is 

required to suppress image noise. However, in long frames, due to the reduced 

quantum noise, using a high β value (e.g., 400–500) may oversmoothed the true signal. 



 
 

15 
 

Therefore, shorter frame lengths generally require higher β values to stabilize 

reconstruction, while longer frame lengths can reduce β values to preserve image detail. 

Lysvik et al. (2019), through simulations of different frame lengths and spherical targets, 

found that using lower β values for short frame lengths resulted in higher image 

variability, while using higher β values effectively reduced noise variability and improved 

reconstruction stability. However, with sufficiently long frame lengths (e.g., 30 minutes), 

the image itself has sufficient counts and low noise, and the marginal impact of β on 

image quality is reduced. However, excessively high β values can still cause image 

detail blurring and over smoothing. For example, Ribeiro et al. found that in brain PET 

experiments, using β = 100 achieved optimal spatial resolution, while β = 1000 

significantly improved the signal-to-noise ratio (SNR) but also sacrificed significant 

image detail. Similarly, Yoshii et al. (2020) observed that as β values increased, image 

contrast decreased while noise gradually decreased. This suggests that even under 

high-count conditions, the upper limit of β must be carefully controlled to avoid 

compromising the diagnostic value of the images. Overall, the choice of β should 

comprehensively consider the scale of the imaged structure, frame length, noise 

tolerance, and research objectives: short-frame reconstruction requires a higher β to 

ensure stability and usability, while long-frame reconstruction can be appropriately 

reduced to better preserve image structure and detail. 

Furthermore, studies have shown that increasing the β value from 800 to 1000 leads to 

a consistent improvement in image SNR, a more uniform background, and no significant 

loss of image detail. Lindström et al. (2019) reported that in whole-body PET studies, 
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using a β = 900 reconstruction yielded an approximately 60% improvement in image 

SNR compared to conventional OSEM, clinically assessed as the upper limit of good 

image quality and diagnostic margins. Within the β = 900–1000 range, images exhibited 

stable signal-to-noise ratios and acceptable image clarity, with only a slight decrease in 

edge sharpness compared to β = 800. While metrics such as full width at half maximum 

(FWHM) remained within clinically acceptable limits, when β ≥ 1300, while noise 

continued to decrease and the background of small lesions became more organized, 

image contrast and structural margins significantly degraded, making them considered 

unsuitable for clinical diagnosis. Tian et al. (2022) similarly advised against using 

reconstruction values exceeding β = 1000, noting that when β > 1000, the contrast 

recovery coefficient (CR) significantly decreased, compromising quantitative accuracy 

and image resolution. As shown in Figures 2.3 (a) and 2.3 (b) (from the results 

published by Lindström et al. and Tian et al., respectively), while excessively high β 

values can improve SNR, they can also lead to excessive image smoothing, reduced 

contrast, and decreased spatial resolution, ultimately compromising diagnostic image 

quality. Therefore, during PET image reconstruction, the β value should strike a balance 

between optimizing noise suppression and preserving detail. Specifically, the parameter 

selection should be tailored to the frame length and the specific imaging task. 
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Figure 2.3 (a): Effect of β on SNR, noise background variability (BV), and signal-to-background 

ratio (SBR) based on phantom data reconstructed using BSREM algorithm. Data adapted from 

Lindström et al. (2019). 

 

Figure 2.3 (b): Radial full width at half maximum (FWHM) at 10 cm offset under different β values, 

showing spatial resolution degradation trend. Data adapted from Tian et al. (2022). 
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2.4 SUV and image quality  

2.4.1The SUV and algorithm 

The standardized uptake value (SUV) is a commonly used semi-quantitative indicator, 

but its accuracy is affected by multiple factors such as the imaging system and 

reconstruction algorithm. Limited spatial resolution will produce partial volume effect 

(PVE), and SUV, as a key semi-quantitative indicator of neurodegenerative diseases, is 

constrained by PVE and noise, which may lead to a low recovery coefficient for SUV 

measurement of small lesions. 

Under different reconstruction algorithms, the volatility of SUV is also different. In order 

to maintain the consistency of SUV quantification, it is necessary to rely on advanced 

reconstruction algorithms and parameter calibration strategies. The Bayesian penalized 

likelihood reconstruction (Q. Clear) developed by GE healthcare improves the 

consistency of SUV measurement while suppressing noise by introducing a 

regularization term. Lindström et al. 2019 found that under the same noise level, 

BSREM can significantly increase tumor SUV_max (by about 11%). More importantly, 

by optimizing the penalty coefficient β, BSREM can shorten the scanning time while 

maintaining image quality comparable to traditional OSEM iterations, thereby 

considering both SUV measurement reliability and image clarity. In general, the above 

standardization and calibration strategies can alleviate the contradiction between SUV 

quantitative accuracy and image quality to a certain extent. 
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2.4.2 Evaluation indicators: RC% and SNR   

 

Figure 2.4.1 Comparison of image quality indicators of Q. Clear (BSREM) and OSEM+TOF 

reconstruction under different β values. A, B, and C in the figure are normalized box plots of SNR, 

signal-to-noise ratio (SBR), and noise level, respectively. When β≈400, Q. Clear achieves the 

peak SNR and a signal-to-noise ratio significantly higher than OSEM. The image adapted from: 

Tian et al.2022, “The effect of Q. Clear reconstruction on quantification and spatial resolution of 

18F-FDG PET in simultaneous PET/MR,” EJNMMI Physics. 
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The recovery coefficient (RC%) is an indicator to measure the quantitative recovery 

ability of the reconstructed image, which is usually defined as the ratio of the measured 

concentration in the region of interest to the true concentration. The higher the RC%, 

the more sufficient the image is for quantitative recovery of small lesions.  

The signal-to-noise ratio (SNR) reflects the statistical stability of the image, which is 

defined as the ratio of the target signal intensity to the background noise. Together, they 

constitute the key indicators for image quality assessment. 

In image reconstruction, it is often difficult to achieve both high RC% and high SNR at 

the same time. The experimental results shown in Figure 1 show that with the increase 

of the penalty parameter β, the image contrast (CR) and noise level decrease 

significantly, while the SNR increases; when β≈400, the SNR of Q. Clear reaches a 

peak value and is significantly higher than that of traditional OSEM+TOF reconstruction. 

In other words, increasing β can improve SNR (smoother images and lower noise), but 

will reduce RC% (loss of image details and compression of contrast). This typical 

relationship between RC–SNR requires us to make a trade-off when selecting 

reconstruction parameters. 

To achieve a balance between RC% and SNR, a multi-objective optimization method 

can be used. For example, a Bayesian optimization framework can be constructed to 

set a weighted objective function for a given application task, jointly examine RC% and 

SNR, and automatically search for an excellent β value range to simultaneously meet 

the requirements of quantitative accuracy and image quality. Through this strategy, 
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reconstruction parameters can be flexibly adjusted according to actual diagnostic or 

quantitative analysis goals to achieve optimal image reconstruction performance. 

2.4.3 Quantification challenges under dynamic PET 

Dynamic PET imaging divides the acquisition time into multiple short time frames to 

capture the pharmacokinetic process, but the counts in the short frames are significantly 

reduced, resulting in a significant increase in noise. Currently, the partial volume effect 

still exists, the recognition rate of small structural lesions is low, and the statistical noise 

makes it difficult to estimate RC% stably. On the other hand, excessive pursuit of high 

RC will reduce the contrast between lesions and background and increase the risk of 

missed diagnosis of small lesions. "In general, it is difficult to ensure accurate SUV 

measurement by traditional iterative algorithms alone in extremely high noise 

environments. 

Using a higher penalty factor β in short frames can effectively reduce noise and improve 

SNR, but at the cost of reducing RC% (smoother images and reduced grayscale 

contrast). This means that a trade-off between high β and low β is required in dynamic 

reconstruction: the former helps stabilize the signal and improve the availability of 

time-resolved frames, while the latter maintains contrast and resolution. 

The optimization of dynamic imaging depends on the specific quantitative task and the 

size of the target structure. For dynamic parameter imaging or small lesion assessment 

that requires high temporal resolution, it may be necessary to sacrifice some SNR to 

obtain sufficient details, while for situations where only gross quantitative trends are 
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required, it is acceptable to use higher β values to improve SNR. In summary, in 

dynamic PET reconstruction, the balance between high RC% and high SNR needs to 

be comprehensively selected based on application requirements, target structure 

characteristics, and system noise level. 
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Chapter 3：MATERIALS AND METHODS 

3.1 Materials  

 

3.1.1 Hoffman 3D Brain Phantom 

 

Hoffman et al. (1991) developed a three-dimensional brain phantom to simulate 

clinically realistic radioactivity distributions in PET imaging. The design, based on a 

T1-weighted MRI of a healthy human brain, consists of 19 stacked slices (each 7 mm 

thick) milled from fluorite plates with alternating groove patterns. These grooves form 

interconnected compartments filled with ¹⁸F-fluorodeoxyglucose (FDG) solution to 

emulate gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) at a 

relative activity ratio of 4:1:0—reflecting typical ¹⁸F-FDG PET uptake contrasts. This 

anatomically accurate phantom allows for direct comparison between reconstructed 

images and a known ground-truth reference, facilitating robust quantitative evaluation of 

image quality and reconstruction algorithm performance. 

 

In this study, the Hoffman phantom was filled with 185 MBq of ¹⁸F-FDG to provide 

clinically relevant count statistics and activity distribution for assessing β-penalized 

reconstructions. Three key aspects were evaluated: (1) RC% error quantification by 

comparing GM/WM ratios against the known 4:1 ground-truth, thereby revealing 

regularization-induced bias; (2) analysis of the noise-resolution trade-off, where 
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high-contrast GM/WM boundaries reveal spatial resolution degradation at high β values, 

and uniform WM regions assess noise suppression efficiency; and (3) emulation of 

dynamic PET conditions by segmenting the 30-minute acquisition into multiple frame 

durations (10 s, 30 s, 2 min, 5 min, 30 min), enabling investigation of β’s influence 

across varying statistical conditions. 

 

 

Figure3.1.1: Trilevel fluorodeoxyglucose images illustrating the gray matter, white matter, 

and cerebrospinal fluid compartments used in the fabrication of the Hoffman 3D brain 

phantom. These images are adapted from Hoffman et al. (1991), where anatomical outlines 


