ISOLATION, HEMISYNTHESIS AND CHARACTERISATION OF PENTACYCLIC TRITERPENOIDS FROM Diospyros foxworthyi BAKH. (EBENACEAE) AND THEIR BIOLOGICAL ACTIVITIES

MUHAMMAD SOLEHIN BIN ABD GHANI

UNIVERSITI SAINS MALAYSIA

ISOLATION, HEMISYNTHESIS AND CHARACTERISATION OF PENTACYCLIC TRITERPENOIDS FROM Diospyros foxworthyi BAKH. (EBENACEAE) AND THEIR BIOLOGICAL ACTIVITIES

by

MUHAMMAD SOLEHIN BIN ABD GHANI

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

February 2024

ACKNOWLEDGEMENT

All praise, glory and thanks give to Allah S.W.T. for His amazing grace and generosity that helped me throughout the whole process of completing this Master of Science (MSc.) research work. I would like to convey my utmost, sincere gratitude and heartfelt thanks to my supervisor, Dr Mohamad Nurul Azmi bin Mohamad Taib, for providing me with valuable guidance, time, support, coaching and inspiration throughout the duration of this project. His extensive knowledge and care gave me the motivation to keep going even in difficult situations. I would like to express my sincere appreciation and gratitude to my co-supervisor, Dr Ezatul Ezleen binti Kamarulzaman, for her support, guidance, advice and equipment, especially in the anti-dengue bioassay studies. I am very grateful to her for the valuable time and space, even during the tough trials.

Furthermore, I would like to acknowledge the Universiti Sains Malaysia (USM) Research Grant with codes of FRGS/1/2021/SKK0/USM/02/40 and 1001/PKIMIA/8011072 for funding this research. I would like to thank the Majlis Amanah Rakyat (MARA) for the financial support under the Graduate Excellence Programme (GrEP), which covered my study and living expenses. I would also like to thank the Institute of Postgraduate Studies (IPS), USM, School of Chemical Sciences (SCS) and Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm) of NIBM for all the facilities and support during my studies. I would also like to thank the science officers and assistants in the SCS, especially Ms. Arlita, Ms. Alia, Ms. Ainina, Mr. Nazeef, Mr. Fahmy, Ms. Wan Zulilawati, Ms. Asma, Mr. Megat, Mr. Azhar and Mak Cik Fatimah for their help and guidance, especially with the spectroscopies, lab management, cleanliness and glass-blowing facility.

It is my pleasure to thank Prof. Dr. Unang Supratman from Universitas Padjadjaran, Indonesia for HRMS analysis, Dr. Iffah Izzati Zakaria, Dr. Hanim Salin and Ms. Sarah Dyana Khalili from NIBM and IPharm for anti-dengue assessment, Dr. Arba Pramundita Ramadani from Universitas Islam Indonesia for the anti-malarial studies, Dr. Norhafiza binti Mohd Arshad and Mr. Nurhisyam bin Zakaria from Universiti Malaya, Malaysia for cytotoxicity assessment as well as Dr. Mohammad Tasyriq bin Che Omar from School of Distance Education, USM for molecular docking knowledge sharing. Special thanks to Ms. Roziana of SCS for the postgraduate administrative support, help and guidance that led to graduation process. I would also like to thank Fahmy Fared and Ain Latifhaa who assisted me with the chemistry part of this research as part of their final year project (FYP).

Furthermore, my greatest gratitude and love my mother, Madam Nor Askiah binti Mohd Yusof, and my siblings: Fadli, Fadzilah, Husna, Hidayah, Faiez and Amalina for their countless prayers, inspiration, motivation and blessings to keep me going on my journey. Thanks to your unfailing support and encouragement, the spirit, dedication and memories of Arwah Abah remain alive, even though he is no longer here. I don't want to forget to thank my dear beloved friends, especially Norhadi Mohamad, Zulhelmi Nazri, Amirah Saad, Wan Nur Huda, Nurin Asyiqin, Siti Nurshahira, Ain Syazwani, Lacksany Phongphane, Sarah Dyana, Syifa Amir, Axzel Tan and Akrimi Najihah, who supported and motivated me throughout the project, listened to problems, gave solutions, and created unforgettable moments on the master's journey. Special thanks also go to the other members of the NPSO family: Idris, Ibrahim, Tahir, Mahdi, Mahmoud, Adnan, Tan Cheong Siong, Jun Ming and Selvakumar for their invaluable help, kind words, continuous support and precious shared memories. Thank you everyone!

TABLE OF CONTENTS

ACK	NOWLE	DGEMENT	ii
TABI	LE OF CO	ONTENTS	iv
LIST	OF TAB	LES	ix
LIST	OF FIGU	URES	xi
LIST	OF SCH	EMES	xvii
LIST	OF SYM	BOLS	xviii
LIST	OF ABB	REVIATIONS	XX
LIST	OF APP	ENDICES	XXV
ABST	Γ RAK		xxvii
ABST	TRACT		xxix
CHA	PTER 1	INTRODUCTION	1
1.1	General	introduction	1
1.2	Problem	statement	10
1.3	Research	n objectives	11
1.4	Significa	ance of study	11
CHA	PTER 2	LITERATURE REVIEW	12
2.1	Overvie	w	12
2.2	Ebenace	ae family	12
	2.2.1	Distribution and habitat	12
	2.2.2	General appearance and morphology	13
	2.2.3	Classification of tribes	14
	2.2.4	Biological properties and medicinal uses of Ebenaceae	14
2.3	The gen	us <i>Diospyros</i>	18
	2.3.1	Botany, morphology and distribution	18
	2.3.2	Diospyros foxworthyi Bakh	20

2.4	Terpeno	ids	22
	2.4.1	General	22
	2.4.2	Triterpenoids	23
	2.4.3	Biosynthesis of triterpenoids	26
2.5	Previous	s chemical compounds reported from the genus Diospyros	32
2.6	Biologic	cal activities from <i>Diospyros</i> species	50
2.7	Dengue		56
2.8	Malaria		62
2.9	Colorect	tal cancer	72
2.10	Molecul	ar docking	82
СНА	PTER 3	METHODOLOGY	84
3.1	Overvie	w	84
3.2	Plant ma	aterial	86
3.3	Chemica	als and materials	86
3.4	Chroma	tography	87
	3.4.1	Thin Layer Chromatography (TLC)	87
	3.4.2	Column Chromatography (CC)	87
	3.4.3	Detector reagents	88
3.5	Instrume	entation	88
	3.5.1	Nuclear Magnetic Resonance (NMR) spectroscopy	88
	3.5.2	Fourier Transform Infrared (FT-IR) spectroscopy	88
	3.5.3	High Resolution Mass Spectrometry (HRMS)	89
	3.5.4	Melting point	89
3.6	Sample	extraction of D. foxworthyi Bakh	89
3.7	Isolation	and purification of chemical compounds	90
3.8	Structur	al elucidation data of the isolated compounds	93
	3.8.1	Betulin (93)	93

	3.8.2	Lupeol (58)	94
	3.8.3	Lupenone (108)	95
3.9	Hemisyı	nthesis of betulin derivatives	96
	3.9.1	Preparation of betulin derivatives via acylation	96
		3.9.1(a) 3,28-di- <i>O</i> -benzoyl betulin (188a)	97
		3.9.1(b) 3,28-di- <i>O</i> -2-furoyl betulin (188b)	98
		3.9.1(c) 3,28-di- <i>O</i> -butyryl betulin (188c)	99
		3.9.1(d) 3,28-di- <i>O</i> -isobutyryl betulin (188d)	100
		3.9.1(e) 3,28-di-O-cyclohexanecarbonyl betulin (188e)	101
	3.9.2	Preparation of betulin derivatives via acetylation	102
		3.9.2(a) 3,28-di- <i>O</i> -acetyl betulin (188f)	103
3.10	Hemisyı	nthesis of lupeol derivatives	105
	3.10.1	Preparation of lupeol derivatives via acylation	105
		3.10.1(a) 3- <i>O</i> -benzoyl lupeol (189a)	106
		3.10.1(b) 3- <i>O</i> -2-furoyl lupeol (189b)	107
		3.10.1(c) 3- <i>O</i> -butyryl lupeol (189c)	108
		3.10.1(d) 3- <i>O</i> -isobutyryl lupeol (189d)	109
		3.10.1(e) 3- <i>O</i> -cyclohexanecarbonyl lupeol (189e)	110
	3.10.2	Preparation of lupeol derivatives via acetylation	111
		3.10.2(a) 3-O-acetyl lupeol (189f)	112
3.11	In vitro	biological activity studies	113
	3.11.1	DENV-2 NS2B/NS3 protease inhibition activity	113
		3.11.1(a) Preparation of chemicals for DENV-2 NS2B/NS protease inhibition assay	
		3.11.1(b) Quantification of DENV-2 NS2B/NS3 protease	114
		3.11.1(c) Determination of DENV-2 NS2B/NS3 proteatinhibition activities of positive controlled inhibitor	

		3.11.1(d) Determination of DENV-2 NS2B/NS3 protease inhibition activities of compounds	117
	3.11.2	Anti-malarial activity	119
		3.11.2(a) Haem polymerisation inhibition activity assay (HPIA)	119
	3.11.3	Cytotoxic activity	120
		3.11.3(a) Treatment of cell	120
		3.11.3(b) MTT assay	121
		3.11.3(c) Statistical analysis	121
3.12	In silico	molecular docking studies	122
	3.12.1	Software and hardware	122
	3.12.2	Ligand preparation	123
	3.12.3	Receptor preparation	124
	3.12.4	Ligand-receptor docking	125
	3.12.5	Molecular docking analysis and data interpretation	125
	3.12.6	Validation of docking parameter	126
СНА	PTER 4	RESULTS AND DISCUSSIONS	127
4.1	Overvie	w	127
4.2	Chemist	ry	127
	4.2.1	Chemical constituents from the bark of <i>D. foxworthyi</i>	127
	4.2.2	Structural elucidation of the isolated compounds from <i>D. foxworthyi</i>	128
		4.2.2(a) Compound A: Betulin (93)	128
		4.2.2(b) Compound B: Lupeol (58)	138
		4.2.2(c) Compound C: Lupenone (108)	146
	4.2.3	Hemisynthesis of pentacyclic triterpenoids derivatives	153
	4.2.4	Structural elucidation of betulin derivatives	156
	425	Structural elucidation of lupeol derivatives	164

4.3	Anti-der	ngue studies	171
	4.3.1	In vitro DENV-2 NS2B/NS3 protease inhibition evaluation	171
	4.3.2	In silico molecular docking studies towards DENV-2 NS2B/NS3 protease inhibition activities	
		4.3.2(a) Preparation of ligand, protein and docking parameters	176
		4.3.2(b) Ligand-protein molecular docking analysis	178
	4.3.3	Structure-activity relationship (SAR)	193
4.4	Anti-ma	larial studies	195
	4.4.1	In vitro haem polymerisation inhibition activity (HPIA) assay.	195
	4.4.2	In silico molecular docking studies towards haem polymerisation inhibition activities	
	4.4.3	Structure-activity relationship (SAR)	207
4.5	Cytotox	ic activity	209
	4.5.1	In vitro cytotoxic activity on HT-29 human colorectal adenocarcinoma cell lines	
	4.5.2	Structure-activity relationship (SAR)	212
СНА	PTER 5	CONCLUSION AND FUTURE RECOMMENDATIONS	214
5.1	Conclus	ion	214
5.2	Recomn	nendations for future research	215
REFI	ERENCE	S	217
APPI	ENDICES	S	
LIST	OF PUB	LICATIONS	
I ICT	OF CON	FERENCES	

LIST OF TABLES

	Page
Table 2.1	Biological properties and medicinal uses of plants in the Ebenaceae family.
Table 2.2	Some of the <i>Diospyros sp.</i> and their distribution
Table 2.3	Terpenoids and its classifications
Table 2.4	Chemical compounds isolated from <i>Diospyros</i> species
Table 2.5	Biological activities reported from <i>Diospyros</i> species
Table 3.1	The specifications and the operating systems used in the <i>in silico</i> molecular docking studies
Table 4.1	The isolated compounds from <i>D. foxworthyi</i>
Table 4.2	¹ H-NMR (in CDCl ₃ , 500 MHz) and ¹³ C-NMR (in CDCl ₃ , 125 MHz) of compound A and betulin
Table 4.3	¹ H-NMR (in CDCl ₃ , 500 MHz) and ¹³ C-NMR (in CDCl ₃ , 125 MHz) of compound B and lupeol
Table 4.4	¹ H-NMR (in CDCl ₃ , 500 MHz) and ¹³ C-NMR (in CDCl ₃ , 125 MHz) of compound C and lupenone
Table 4.5	The physical data of betulin derivatives 188a-188f
Table 4.6	FT-IR spectral data of betulin derivatives 188a-188f
Table 4.7	¹ H-NMR spectral data of betulin and its derivatives
Table 4.8	¹³ C-NMR spectral data of betulin and its derivatives
Table 4.9	The physical data of lupeol derivatives 189a-189f
Table 4.10	FT-IR spectral data of lupeol derivatives 189a-189f
Table 4.11	¹ H and ¹³ C-NMR spectral data of lupeol and its derivatives 170
Table 4.12	DENV-2 NS2B/NS3 protease inhibition screening assay data for compounds and positive controls.

Table 4.13	The IC ₅₀ values of selected potent compounds and positive controls against DENV-2 NS2B/NS3 protease
Table 4.14	The <i>in silico</i> FEB for the selected potent ligands and the positive controls
Table 4.15	Binding interactions between selected promising ligands at the catalytic binding site of DENV-2 NS2B/NS3 protease
Table 4.16	The IC ₅₀ values of tested compounds and positive control based on HPIA assay
Table 4.17	The <i>in silico</i> FEB for the selected potent ligands and the positive control for HPIA assay
Table 4.18	Binding interactions between selected promising ligands with the haemozoin crystal
Table 4.19	The IC ₅₀ values of isolated triterpenoids and standard reference against HT-29 human colorectal adenocarcinoma cell lines

LIST OF FIGURES

	Page
Figure 1.1	Chart showing the distribution of all small molecules approved drugs from 1 st January 1981 to 30 th September 2019 (Newman & Cragg, 2020)
Figure 1.2	The structure of chemical compounds with their distinguish structural diversity and complexity
Figure 1.3	The trend comparison for the weekly dengue fever cases in Malaysia for the years of 2023, 2022 and the median of 2018-2022 (Kementerian Kesihatan Malaysia, 2023)
Figure 1.4	Countries with indigenous cases in 2000 and their status by 2021. In 2021, The Islamic Republic of Iran and Malaysia reported zero indigenous cases for the fourth consecutive year (WHO, 2022b) 7
Figure 1.5	Top ten most common cancer in Malaysia from 2012-2016 (Azizah et al., 2019)
Figure 2.1	D. foxworthyi stem (A) and fruit (B). (Herbarium of the Department of Chemistry, University of Malaya, Kuala Lumpur) 21
Figure 2.2	D. foxworthyi herbarium catalogue specimens (A) (POWO, 2023) and the illustrations of its fruit (B) (Soepadmo et al., 2002)
Figure 2.3	Example of important triterpenoids derived from plants24
Figure 2.4	Example of tetracyclic triterpenes
Figure 2.5	Example of pentacyclic triterpenes
Figure 2.6	The synthesis of isoprenoids following MVA and MEP/DXP pathways
Figure 2.7	Biosynthetic pathway for the formation of squalene and oxidosqualene
Figure 2.8	The formation of sterols and other triterpenoids through different cyclisation types.

Figure 2.9	Biogenesis of selected type of triterpenoids
Figure 2.10	Structures of chemical compounds reported from the genus
	Diospyros
Figure 2.11	DENV structure (Nature Education, 2011)
Figure 2.12	DENV genome (Guzman et al., 2010)
Figure 2.13	Life stages of Aedes aegypti and Aedes albopictus (CDC, 2022) 58
Figure 2.14	Map of areas with dengue risk (CDC, 2023a)
Figure 2.15	The chemical structures of potent DENV-2 NS2B/NS3 protease enzyme inhibitor from NPs
Figure 2.16	The life cycle of <i>P. falciparum</i> (Maier et al., 2019) 64
Figure 2.17	Global distribution of dominant or potentially important malaria vectors (Kiszewski <i>et al.</i> , 2004)
Figure 2.18	The chemical structures of quinine and its derivatives71
Figure 2.19	The chemical structures of artemisinin and its derivatives71
Figure 2.20	The number of new cases of cancer in Malaysia for 2020 (GLOBOCAN, 2020b)
Figure 2.21	The anatomy of colon and rectum (OpenStax, 2022)
Figure 2.22	The layers of the colon wall (ACS, 2020b)74
Figure 2.23	The TNM staging system for CRC classification by AJCC (Byrd et al., 2017)
Figure 2.24	The chemical compounds being used and studied for CRC treatments
Figure 3.1	The research workflow summarising the chemistry and biological parts of this studies
Figure 3.2	The illustration example of a 96-well microplates with pipetted volume of chemicals for the positive controlled inhibitory activities towards DENV-2 NS2B/NS3 protease

Figure 3.3	The illustration example of a 96-well microplates with pipetted volume of chemicals for the determination of screened
	compounds activities towards DENV-2 NS2B/NS3 protease inhibition
Figure 4.1	HRMS spectrum of compound A
Figure 4.2	FT-IR spectrum of compound A
Figure 4.3	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound A 134
Figure 4.4	¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectrum of compound A
Figure 4.5	¹ H– ¹ H COSY spectrum of compound A
Figure 4.6	¹ H– ¹³ C HMBC spectrum of compound A
Figure 4.7	¹ H– ¹³ C HMBC spectrum of compound A (continued)
Figure 4.8	Key COSY (bold) and HMBC ($^{1}H \rightarrow {}^{13}C$) correlations of compound A
Figure 4.9	¹ H– ¹ H NOESY spectrum of compound A
Figure 4.10	Selected ¹ H– ¹ H NOESY correlations of compound A
Figure 4.11	HRMS spectrum of compound B
Figure 4.12	FT-IR spectrum of compound B
Figure 4.13	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound B 143
Figure 4.14	¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectrum of compound B
Figure 4.15	¹ H– ¹ H COSY spectrum of compound B
Figure 4.16	¹ H– ¹³ C HMBC spectrum of compound B
Figure 4.17	¹ H– ¹³ C HMBC spectrum of compound B (continued) 145
Figure 4.18	Key COSY (bold) and HMBC ($^{1}H \rightarrow {}^{13}C$) correlations of compound B
Figure 4.19	HRMS spectrum of compound C
Figure 4 20	FT-IR spectrum of compound C. 149

Figure 4.21	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound C	0
Figure 4.22	¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectrum of compound C	60
Figure 4.23	¹ H– ¹ H COSY spectrum of compound C	51
Figure 4.24	¹ H– ¹³ C HMBC spectrum of compound C	1
Figure 4.25	¹ H– ¹³ C HMBC spectrum of compound C (continued)	2
Figure 4.26	Key COSY (bold) and HMBC ($^{1}H \rightarrow {}^{13}C$) correlations of compound C	52
Figure 4.27	Acylation reaction mechanism of lupeol (31)	4
Figure 4.28	Acetylation reaction mechanism of lupeol (58)	5
Figure 4.29	The chemical structure of 3,28-di- <i>O</i> -benzoyl betulin (188a) 15	6
Figure 4.30	HRMS spectrum of compound 188a	8
Figure 4.31	FT-IR spectrum of compound 188a	9
Figure 4.32	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 188a. 15	9
Figure 4.33	¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectrum of compound 188a .	60
Figure 4.34	¹ H- ¹³ C HMBC spectrum of compound 188a	0
Figure 4.35	The chemical structure of 3- <i>O</i> -acetyl lupeol (189f)	<u>i</u> 4
Figure 4.36	HRMS spectrum of compound 189f	6
Figure 4.37	FT-IR spectrum of compound 189f	i7
Figure 4.38	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189f 16	i7
Figure 4.39	¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectrum of compound 189f	58
Figure 4.40	¹ H– ¹³ C HMBC spectrum of compound 189f	i8
Figure 4.41	DENV-2 NS2B/NS3 protease inhibition screening assay data of the compounds and positive controls at 400 µM	13

Figure 4.42	Plot of % DENV-2 NS2B/NS3 protease inhibition <i>vs</i> log concentration of the isolated compounds 93 and 108 with the positive controls.
Figure 4.43	Plot of % DENV-2 NS2B/NS3 protease inhibition <i>vs</i> log concentration of the derivatised compounds 188a , 188b and 189b with the positive controls.
Figure 4.44	The DENV-2 NS2B/NS3 protease homology model with the peptidic inhibitor (Bz-Nle-Lys-Arg-Arg-H) developed by Wichapong and co-workers (2010)
Figure 4.45	2D representation of 188a showing their binding interaction modes present at the catalytic site of DENV-2 NS2B/NS3 protease
Figure 4.46	2D representation of 108 showing their binding interaction modes present at the catalytic site of DENV-2 NS2B/NS3 protease 187
Figure 4.47	2D representation of 188b showing their binding interaction modes present at the catalytic site of DENV-2 NS2B/NS3 protease
Figure 4.48	2D representation of 93 showing their binding interaction modes present at the catalytic site of DENV-2 NS2B/NS3 protease 189
Figure 4.49	2D representation of peptidic inhibitor showing their binding interaction modes present at the catalytic site of DENV-2 NS2B/NS3 protease
Figure 4.50	2D representation of panduratin A (175) showing their binding interaction modes present at the catalytic site of DENV-2 NS2B/NS3 protease
Figure 4.51	2D representation of quercetin (130) showing their binding interaction modes present at the catalytic site of DENV-2 NS2B/NS3 protease
Figure 4.52	The lupane-type triterpenoid parent structure with preferable substituent groups towards DENV-2 NS2B NS3 protease inhibition activity

Figure 4.53	The summary of haem polymerisation and inhibition reactions 196
Figure 4.54	The structures of β -hematin (haemozoin); A: in 2D form, B: in 3D form. 199
Figure 4.55	The structures of β -hematin (haemozoin); C: in crystal supercell structure with the labelled faces
Figure 4.56	The structure of 188a and 178 for with ring labelling for ligand interactions reference
Figure 4.57	Docked conformation of haemozoin crystal with 188d
Figure 4.58	Docked conformation of haemozoin crystal with 189f
Figure 4.59	Docked conformation of haemozoin crystal with positive control chloroquine (178)
Figure 4.60	The lupane-type triterpenoid parent structure with the preferable substituent groups towards haem polymerisation inhibition activity
Figure 4.61	The graph of percentage of viable cells against the concentration of tested compounds of MTT assay
Figure 4.62	The lupane-type triterpenoid parent structure with the preferable substituent groups at C-3 and C-28 towards cytotoxic activity 213

LIST OF SCHEMES

	Page
Scheme 3.1	Flow chart of extraction of <i>D. foxworthyi</i> barks90
Scheme 3.2	Separation and fractionation scheme for the isolation of compounds from <i>D. foxworthyi</i> barks extract
Scheme 3.3	The hemisynthesis of betulin derivatives 188a–188e <i>via</i> acylation
Scheme 3.4	The acetylation reaction of betulin (93)
Scheme 3.5	The hemisynthesis of lupeol derivatives 189a–189e <i>via</i> acylation 105
Scheme 3.6	The acetylation of lupeol (31)

LIST OF SYMBOLS

% Percentage

 π Pi

μg Microgram

 $\mu g \ mL^{\text{-}1} \hspace{1cm} \text{Microgram per milliliter}$

± Plus-minus

°C Degree Celsius

 $\begin{array}{ccc} \mu L & & Microliter \\ \mu M & & Micromolar \\ \mu mol & & Micromole \\ \mathring{A} & & Angstrom \\ cm & & Centimeter \end{array}$

cm⁻¹ Per centimeter

d Doublet

dd Doublet of doublet

g Gram h Hour

J Coupling constant

kcal mol⁻¹ Kilocalorie per mol

kg Kilogram L Liter

m Multiplet

m/z Mass-to-charge ratio

mg Milligram

mg mL⁻¹ Milligram per milliliter

MHz Mega Hertz
mL Milliliter
mm Millimeter
mM Millimole
nm Nanometer

ppm Parts per million

rpm Rotation per minute

s Singlet

 $v_{\rm max}$ Absorption maxima

 δ Chemical shift

 $\delta_{\rm C}$ Carbon chemical shift $\delta_{\rm H}$ Proton chemical shift

 $\lambda \hspace{1cm} Wavelength$

 $\lambda_{em} \hspace{1.5cm} Emission \ wavelength$

 λ_{ex} Excitation wavelength

 λ_{max} Wavelength maxima

LIST OF ABBREVIATIONS

¹³C-NMR 13 Carbon Nuclear Magnetic Resonance

1D-NMR One Dimensional Nuclear Magnetic Resonance

¹H-NMR Proton Nuclear Magnetic Resonance

2D Two dimensions

2D-NMR Two Dimensional Nuclear Magnetic Resonance

3D Three dimensions

ACS American Cancer Society

ACT Artemisinin-based combination therapy
AIDS Acquired immunodeficiency syndrome
AJCC American Joint Committee on Cancer

AL Artemether-lumefantrine
AMC 7-amino-4-methylcoumarin

ANOVA Analysis of variance
AR Analytical reagents

AS+AQ Artesunate-amodiaquine ASMQ Artesunate-mefloquine

ATR Attenuated Total Reflection

BAX Bcl-2-associated X

BE Barium enema

BOC-Gly-Arg-Arg- *tert*-Butyloxycarbonylglycyl-L-arginyl-L-arginine-

MCA 4-methylcoumaryl-7-amide

Bz-Nle-Lys-Arg-Arg-H Peptidic inhibitor

C=O Carbonyl

CADD Computational-aided drug design

CBC Chair-boat-chair

CC Column chromatography

CCC Chair-chair-chair

CCCCB Chair-chair-chair-boat

CCDC Cambridge Crystallographic Data Centre

CCSB The Center for Computational Biology

Centers for Disease Control and Prevention **CDC**

CDC₁₃ Deuterated chloroform **CDs** Communicable diseases **CEA** Carcinoembryonic antigen

CH Carbon-hydrogen bond

 CH_2 Methylene CH_3 Methyl

CNS Central nervous system

COSY Homonuclear correlation spectroscopy

COVID Coronavirus disease

CPU Central processing unit

CRC Colorectal cancer

CTComputed tomographic

D. **Diospyros**

D. foxworthyi Diospyros foxworthyi

Dichloromethane **DCM**

DENV Dengue virus

DEPT Distortionless Enhancement by Polarization Transfer

DF Dengue fever

DHF Dengue haemorrhagic fever

Diospyros species Diospyros sp.

DMAP 4-dimethylaminopyridine DMAPP Dimethylallyl diphosphate

DMSO Dimethyl sulphoxide

DNA Deoxyribonucleic acid

DPPH

DRE

2,2-Diphenyl-1-picrylhydrazyl

DXP 1-deoxy-D-xylulose 5-phosphate

Digital rectal exam

EAC Electrostatic: Attractive charge

EDG Electron donating group

ELISA Enzyme-linked immunosorbent assay

EPC Electrostatic: Pi-cation **ERUS** Endorectal ultrasound

et al. And others

Et₃N Triethylamine

EtOAc Ethyl acetate

EWG Electron withdrawing group

FDG PET-CT ¹⁸F-fluorodeoxyglucose positron emission tomography-

computed tomographic

FEB Free energy of binding

FIT Faecal immunochemical test

FPP Farnesyl pyrophosphate

FPS Farnesyl pyrophosphate synthase

FT-IR Fourier Transform Infrared

G3P Glyceraldehyde-3-phosphate

gFOBT Guaiac-based faecal occult blood test

GLOBOCAN Global Cancer Observatory

GRIN The Germplasm Resources Information Network

H₂O Water

H₂SO₄ Sulphuric acid

HA Hydrophobic: Alkyl

HIV Human immunodeficiency virus

HMBC Heteronuclear Multiple Bond Correlation

HPA Hydrophobic: Pi-alkyl

HPIA Haem polymerisation inhibition activity

HPPS Hydrophobic: Pi-pi stacked

HPPTS Hydrophobic: Pi-pi T-shaped

HPS Hydrophobic: Pi-sigma

HRMS High Resolution Mass Spectroscopy

HSQC Heteronuclear Single Quantum Correlation

IC₅₀ Half-maximal inhibitory concentration

IF Immunofluorescence test

IPharm Malaysian Institute of Pharmaceuticals and Nutraceuticals

IPP Isopentenyl pyrophosphate

IR Infrared

IV Intravenous

JEV Japanese encephalitis virus

K_i Inhibitor constant

KKM Kementerian Kesihatan Malaysia

Lit. data Literature data

LDH Lactate dehydrogenase

MeOH Methanol

MEP Methylerythritol phosphate

MIC Minimal inhibitory concentration

MIZ Minimal inhibitory zone

MRI Magnetic resonance imaging

MS Mass spectroscopy

MTT 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium

bromide

MVA Mevalonic acid / Mevalonate

NAA Nucleic acid amplification

NaOH Sodium hydroxide

NCDs Non-communicable diseases

NH₄Cl Ammonium chloride

NMR Nuclear Magnetic Resonance

NOESY Nuclear Overhauser Effect Spectroscopy

NPs Natural products

NS Non-structural

OH Hydroxyl

OSC Oxidosqualene cyclase

P. Plasmodium

P. falciparum Plasmodium falciparum

PAH Polycyclic aromatic hydrocarbons

PCR Polymerase chain reaction

PDB Protein Data Bank

POWO Plants of the World Online

RdRp RNA-dependent RNA polymerase

RDT Rapid diagnostic test

*R*_F Retention factor

RFU Relative Fluorescence Unit
RMSD Root mean square deviation

RNA Ribonucleic acid

RT Radiotherapy

SAR Structure-activity relationship

SCFAs Short-chain fatty acids

SD Standard deviation

SI Selectivity index

sp. Species

sp², sp³ Hybrid orbitals

SQE Squalene epoxidase

SQS Squalene synthase
Sy.x Standard error of estimate

Sy.x Standard error of estimate
TLC Thin layer chromatography

TMS Tetramethylsilane

TNM Tumour, nodes, metastasis

Tris-HCl Trisaminomethane hydrochloride

UCSF The University of California, San Francisco

USDA United States Department of Agriculture

UTR Untranslated regions

UV Ultraviolet

VDW van der Waals

WFO World Flora Online

WHO World Health Organisation

WNV West Nile virus

YFV Yellow fever virus

ZIKV Zika virus

LIST OF APPENDICES

Appendix A2 FT-IR spectrum of compound 188b Appendix A3	of
Appendix A4 ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra	of
	of
compound 188b	OI
Appendix A5 HRMS spectrum of compound 188c	
Appendix A6 FT-IR spectrum of compound 188c	
Appendix A7 ¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 188c	
Appendix A8 ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra	of
compound 188c	
Appendix A9 HRMS spectrum of compound 188d	
Appendix A10 FT-IR spectrum of compound 188d	
Appendix A11 ¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 188d	
Appendix A12 ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra	of
compound 188d	
Appendix A13 HRMS spectrum of compound 188e	
Appendix A14 FT-IR spectrum of compound 188e	
Appendix A15 ¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 188e	
Appendix A16 ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra	of
compound 188e	
Appendix A17 HRMS spectrum of compound 188f	
Appendix A18 FT-IR spectrum of compound 188f	
Appendix A19 ¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 188f	
Appendix A20 ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra	of
compound 188f	
Appendix A21 HRMS spectrum of compound 189a	
Appendix A22 FT-IR spectrum of compound 189a	
Appendix A23 ¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189a	
Appendix A24 ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra	of
compound 189a	

Appendix A25	HRMS spectrum of compound 189b
Appendix A26	FT-IR spectrum of compound 189b
Appendix A27	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189b
Appendix A28	¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra of
	compound 189b
Appendix A29	HRMS spectrum of compound 189c
Appendix A30	FT-IR spectrum of compound 189c
Appendix A31	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189c
Appendix A32	¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra of
	compound 189c
Appendix A33	HRMS spectrum of compound 189d
Appendix A34	FT-IR spectrum of compound 189d
Appendix A34 Appendix A35	FT-IR spectrum of compound 189d ¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189d
Appendix A35	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189d
Appendix A35	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189d ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra of
Appendix A35 Appendix A36	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189d ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra of compound 189d
Appendix A35 Appendix A36 Appendix A37	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189d ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra of compound 189d HRMS spectrum of compound 189e
Appendix A35 Appendix A36 Appendix A37 Appendix A38	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189d ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra of compound 189d HRMS spectrum of compound 189e FT-IR spectrum of compound 189e
Appendix A35 Appendix A36 Appendix A37 Appendix A38 Appendix A39	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189d ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra of compound 189d HRMS spectrum of compound 189e FT-IR spectrum of compound 189e ¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189e
Appendix A35 Appendix A36 Appendix A37 Appendix A38 Appendix A39	¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189d ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra of compound 189d HRMS spectrum of compound 189e FT-IR spectrum of compound 189e ¹ H-NMR (500 MHz, CDCl ₃) spectrum of compound 189e ¹³ C-NMR (125 MHz, CDCl ₃) and DEPT-135 spectra of

PEMENCILAN, HEMISINTESIS DAN PENCIRIAN TRITERPENOID

PENTASIKLIK DARIPADA Diospyros foxworthyi BAKH. (EBENACEAE)

DAN AKTIVITI BIOLOGINYA

ABSTRAK

Diospyros foxworthyi ialah sejenis spesies tumbuhan tropika daripada famili Ebenaceae yang berasal dari Malaysia. Genus ini didapati kaya dengan triterpenoid pentasiklik dalam bentuk kerangka berasaskan lupana. Kajian awal ke atas genus ini menunjukkan perencatan protease denggi yang baik, seterusnya mencetuskan lanjutan kajian fitokimia terhadapnya. Kajian ini bertujuan untuk menyiasat komposisi kimia daripada D. foxworthyi, mensintensis sebatian terbitan triterpenoid dan menilai aktiviti biologinya. Ekstrak etil asetat (EtOAc) daripada kulit tumbuhan ini dikaji melalui proses pemencilan, penulenan dan penentuan struktur menghasilkan penemuan tiga sebatian diketahui dan menarik iaitu betulina (93), lupeol (58) dan lupenon (108). Seterusnya, betulina dan lupeol yang telah dipencilkan ini melalui hemisintesis lanjut secara pengasilan atau pengasetilan yang membawa kepada sintesis dua belas sebatian terbitan betulina 188a-188f dan sebatian terbitan lupeol 189a-189f yang menarik. Struktur kimia bagi kesemua sebatian ini dijelas dan dicirikan melalui kaedah spektroskopi terdiri daripada resonans magnet nuklear (RMN)-1D dan 2D bersama dengan analisis spektroskopi inframerah-penjelmaan Fourier (IM-PF) dan spektrometri jisim resolusi tinggi (SJRT), seterusnya dibanding dan disahkan dengan literatur. Triterpenoid 93, 58 dan 108 yang dipencilkan beserta dengan sebatian hemisintesis 188a-188f dan 189a-189f telah dikaji secara in vitro dan in siliko untuk aktiviti rencatan protease DENV-2 NS2B/NS3 dalam penilaian anti-denggi manakala aktiviti rencatan pempolimeran

haem pula untuk kajian anti-malaria. Selain itu, triterpenoid 93, 58 dan 108 yang dipencilkan ini juga diuji sitotoksitinya menggunakan asai 3-(4,5-dimetil-2bromida (MTT) thiazolil)-2,5-difenil-2H-tetrazolium melawan garis adenokarsinoma kolorektal manusia HT-29. Antara sebatian yang diuji, 188a, 108 dan 188b menunjukkan keberkesanan yang sederhana untuk aktiviti perencatan protease DENV-2 NS2B/NS3 secara in vitro dengan nilai IC50 masing-masing 155.4 ± 5.16 , 169.0 ± 4.61 dan 169.9 ± 5.89 µM. Tambahan pula, tenaga pengikat bebas (TPB) untuk pengedokan molekul in siliko dalam kajian anti-denggi bagi **188a**, **108** dan **188b** adalah berjulat antara -7.9 hingga -8.7 kcal mol⁻¹. Dalam aktiviti rencatan pempolimeran haem, sebatian **188d** mempamerkan keberkesanan yang baik dengan nilai IC₅₀ sebanyak 6.66 \pm 1.36 μ M serta TPB bernilai -8.4 kcal mol⁻¹. Bagi kajian sitotoksiti, hasil pemerhatian menunjukkan sebatian 93 dan 85 telah mencetuskan kesan sitotoksik terhadap sel kanser HT-29 dalam cara bersandarkan dos dengan nilai IC₅₀ masing-masing iaitu 13.49 ± 0.53 dan 37.57 ± 4.11 µM. Ini ialah laporan pertama yang menerangkan dapatan fitokimia daripada kulit D. foxworthyi bersama dengan sebatian terbitan serta aktiviti-aktiviti biologinya yang menunjukkan potensi sebatian-sebatian ini sebagai sumber agen terapeutik dalam menguruskan penyakit denggi, malaria dan kanser.

ISOLATION, HEMISYNTHESIS AND CHARACTERISATION OF PENTACYCLIC TRITERPENOIDS FROM *Diospyros foxworthyi* BAKH. (EBENACEAE) AND THEIR BIOLOGICAL ACTIVITIES

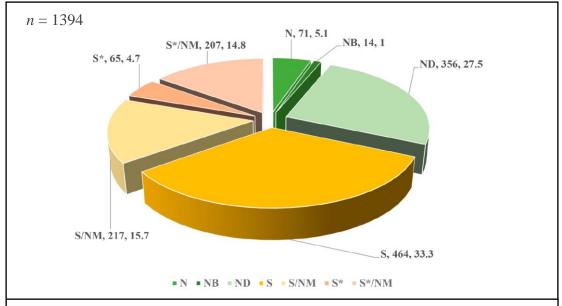
ABSTRACT

Diospyros foxworthyi is a tropical plant species of Ebenaceae family that is native to Malaysia. This genus is rich with pentacyclic triterpenoids in the form of lupane-based skeleton. The preliminary study of this genus showed good inhibition of dengue protease, which subsequently intrigue to further its phytochemical findings. The present study aimed to investigate the chemical composition of D. foxworthyi, synthesis of the triterpenoids derivatives and evaluate their biological activities. The ethyl acetate (EtOAc) extract from the bark of the plant was studied through the isolation, purification and structural elucidation processes resulting in the discovery of three known yet interesting compounds, namely betulin (93), lupeol (58) and lupenone (108). Subsequently, these isolated betulin and lupeol were further undergone hemisynthesis by acylation or acetylation which led to the synthesis of twelve interesting betulin derivatives 188a-188f and lupeol derivatives 189a-189f. The chemical structures of these compounds were elucidated and characterised by using spectroscopic methods consisting of 1D and 2D-nuclear magnetic resonance (NMR) in combination with Fourier transform-infrared (FT-IR) and high resolution mass spectrometry (HRMS) analysis, which later being compared and confirmed with the literature. The isolated triterpenoids 93, 58 and 108 together with hemisynthesised derivatives 188a-188f and 189a-189f were examined for in vitro and in silico DENV-2 NS2B/NS3 protease inhibitory activities for anti-dengue evaluation and haem polymerisation inhibition activities for anti-malarial studies.

Moreover, the isolated triterpenoids 93, 58 and 108 were also tested for their cytotoxicity using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay against HT-29 human colorectal adenocarcinoma cell line. Among the tested compounds, 188a, 108 and 188b showed moderate potency for in vitro DENV-2 NS2B/NS3 protease inhibitory activities with IC₅₀ values of 155.4 \pm 5.16, 169.0 ± 4.61 and 169.9 ± 5.89 µM, respectively. In addition, the free energy of binding (FEB) of the *in silico* molecular dockings for the anti-dengue study of **188a**, **108** and **188b** were ranged between -7.9 to -8.7 kcal mol⁻¹. In haem polymerisation inhibitory activity, compound 188d exhibited good potency with IC₅₀ value of 6.66 ± 1.36 µM and the FEB of -8.4 kcal mol⁻¹. For cytotoxicity study, the observed result showed that compounds 93 and 85 did induce cytotoxic effect to the HT-29 cancerous cells in a dose-dependent manner with IC₅₀ of 13.49 \pm 0.53 and 37.57 \pm 4.11 µM, respectively. This is the first report describing the phytochemicals finding from the bark of D. foxworthyi together with their derivatives and biological activities, suggesting their potential as sources of therapeutic agents for managing dengue, malaria and cancer diseases.

CHAPTER 1

INTRODUCTION


1.1 General introduction

"I consider nature a vast chemical laboratory in which all kinds of composition and decompositions are formed."

Antoine Lavoisier

Nature is an ecosystem with a biotic and an abiotic factor that are symphonically interdependent and form one life (Mader & Andrew, 2010). Nature is the ultimate source of our life and is the greatest contributor to the chemicals of life, namely natural products (NPs). NPs are defined as chemical compounds or substances produced by a living organism. They are synthesised by various biosynthetic pathways and their structures can be relatively simple or highly complex. NPs are required by living organisms in order to survive, develop and reproduce (Rollinger *et al.*, 2006; Sorokina *et al.*, 2020; Amy, 2022).

NPs have been used primarily to treat human diseases for thousands of years and are becoming increasingly important in drug discovery and research (Harvey *et al.*, 2015). NPs or NPs-derived compounds are one of the most important bases for lead candidates in drug development. According to Newman and Cragg (2020), from 1981 to 2019, about 441 of the total 1394 small molecules approved as drugs (32%) were NPs or directly derived from NPs, citing the vitals of NPs as sources of new drugs, as charted in Figure 1.1 (Newman & Cragg, 2020). NPs may derive from both terrestrial and marine organisms, from sources such as plants, fungi, bacteria, protozoa, insects and other animals, as well as from humans (Rollinger *et al.*, 2006).

Indicator:

N — natural product; NB — natural product botanical; ND — natural products derivatives; S — totally synthetic drug; NM — natural product mimic; S* — made by total synthesis but pharmacophore from natural product

Figure 1.1 Chart showing the distribution of all small molecules approved drugs from 1st January 1981 to 30th September 2019 (Newman & Cragg, 2020).

There are two major classifications of NPs, specifically primary metabolites and secondary metabolites (Elshafie *et al.*, 2023). Primary metabolites are the molecules that are required for the survival of the organism, while secondary metabolites are not required for the normal growth and development of organisms (Elshafie *et al.*, 2023). Secondary metabolites comprise of three main classes that were grouped on the basis of structural similarity and biosynthetic pathways, namely terpenoids, alkaloids and phenolics. These classes of compounds form the backbone of the chemistry of NPs (Teoh, 2015; Hussein & El-Anssary, 2019).

In addition, NPs are distinguished by their structural diversity and complexity, more sp³ carbon atoms with fewer nitrogen or halogen elements and also the existence of chiral centres and stereochemistry (Guo, 2017). For example, the anti-malarial drug artemisinin (1) consists of a diverse and complex fused

trioxene system with peroxy, lactone, cyclic acetal and ketal moieties. Moreover, the immunological regulator tacrolimus (2) contains many saturated sp³ carbons compared to sp² carbons, which make connections between the tetrahedral carbons to create flexible chains or cyclic structures. The modification or simplification of stereochemistry and chirality led to the derivatisation of the old, highly chiral analgesic morphine (3) into simpler, non-chiral synthetic analgesics called fentanyl (4).

Figure 1.2 The structure of chemical compounds with their distinguish structural diversity and complexity.

Numerous pharmaceutical products currently rely on the blueprint of NPs by performing partial or total synthesis in such to produce effective and potent drugs for the targeted diseases (Atanasov *et al.*, 2015). Indeed, most anticancer and anti-infective agents are derived from nature (Salah & Bakibaev, 2017). Therefore,

the analysis and study of chemical constituents in plant extracts is crucial as the demand for the development and modification of natural products has skyrocketed. As a result of the need for the exploration and derivatisation of NPs, the study of phytochemicals from diverse plant species is required.

Malaysia is one of the world's megadiverse countries. According to the National Biodiversity Index, which is based on estimates of richness and endemicity in four classes of terrestrial vertebrates and plants, Malaysia ranks 12th in the world (Mamat, 2015). Moreover, Malaysia is home to about 15,000 species of vascular plants (Mohamad, 1994), which have always been an attractive geographical target for NPs studies. This diversity of ecosystem offers great opportunities for the discovery of remarkable and potential chemical components from NPs, which is beneficial to pharmaceutical and nutraceutical research for the benefit of human beings. A few studies have shown that many plant species found in Malaysia are suitable for the development of useful drugs, including antiviral and anticancer properties (Jantan, 2004). As Malaysia's forests and lands offer biologically and chemically diverse resources, this phenomenon has led to scientific interest and advances in the study of NPs and medicinal plants. In July 2023, the Ministry of Health Malaysia (MOH) has approved the first registration of NPs with therapeutic claims, namely Fespixon cream. This cream contains *Plectranthus amboinicus* and Centella asiatica herbal extracts as the active ingredients for the treatment of diabetic foot ulcers (Ibrahim, 2023), citing the latest developments in NPs from medicinal plants.

In response to the interest on medicinal plants in Malaysia, genus *Diospyros* has been studied for its bioactivity. *Diospyros* has been taxonomically placed in the Ebenaceae family and to date, more than 700 *Diospyros* species have been

discovered, making it the largest genus within the Ebenaceae family (Wijedasa *et al.*, 2012; POWO, 2023). *Diospyros* is widespread and common in countries with temperate and tropical climates, such as Malaysia. Many recent studies reported the importance of *Diospyros* in pharmacology and chemotaxonomy as researchers have found many potential biochemical compositions from this genus that being used in traditional medicine and showed interesting pharmacological activities (Mallayadhani *et al.*, 1998).

According to the Cambridge Dictionary, disease means an illness of living organisms caused by an infection or a failure of health and not by an accident. Diseases are often described as communicable or non-communicable (Ackland *et al.*, 2003). Communicable diseases (CDs) are contagious diseases that are transmitted from one person to another through various contacts, carrying agents or vector and through the air. Tuberculosis, measles, dengue, hepatitis, malaria and coronavirus infections are some examples of CDs (Ackland *et al.*, 2003; Wong *et al.*, 2022). Non-communicable diseases (NCDs), also known as chronic diseases, tend to be of long duration and the result of a combination of genetic, physiological, environmental and behavioural factors. They include cardiovascular diseases, cancers, diabetes and chronic lung disease (Ackland *et al.*, 2003; WHO, 2022a). Diseases, whether CDs or NCDs, affect the world through loss of life, impairment of economic and human capital development and reduction in quality of life (Bloom *et al.*, 2018; Fan *et al.*, 2018).

Among the CDs, dengue and malaria attract the interest in this research. Both of these diseases are arthropod-borne, which the mosquito vector of dengue is *Aedes sp.* while malaria is *Anopheles sp.*, causing high morbidity and mortality for many patients around the world (Wiwanitkit, 2011). In general, dengue is a viral

infection with dengue virus (DENV) as the causative pathogen (Weiskopf & Sette, 2014) whereas malaria is a protozoan infection with the parasites of *Plasmodium sp*. as the pathogen (Cowell & Winzeler, 2019). There is no doubt that a suitable climate like in a tropical country led to the high prevalence of dengue and malaria infections globally (Wiwanitkit, 2011).

Furthermore, the World Health Organisation (WHO) database shows an 800% increase in reported dengue cases between 2000 and 2019, with a significant jump from 505,430 cases in 2000 to over 2.4 million cases in 2010 and to over 5.2 million cases in 2019. The number of dengue deaths also quadrupled between 2000 and 2015, from 960 to 4032 cases and later increased to 36,055 of deaths in 2019. (Yang *et al.*, 2021; WHO, 2023b). In Malaysia, 66,224 cases of dengue fever have been reported cumulatively up to 22 July 2023 (Epidemiological Weeks 29), compared to 29,603 cases in the same period in 2022, representing a huge increase of 123.7%. Unfortunately, 47 casualties due to the complications of dengue fever were reported up to the said period (Kementerian Kesihatan Malaysia, 2023).

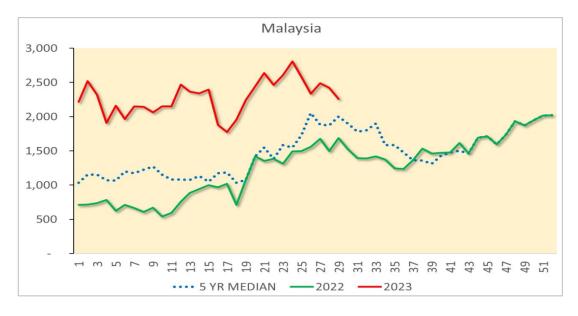
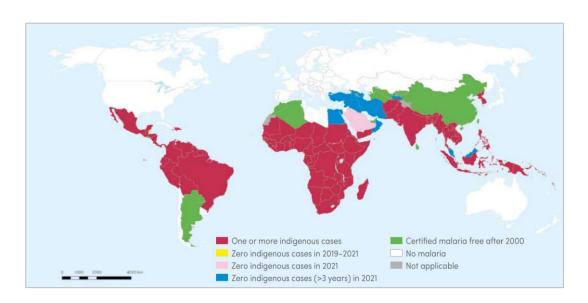



Figure 1.3 The trend comparison for the weekly dengue fever cases in Malaysia for the years of 2023, 2022 and the median of 2018-2022 (Kementerian Kesihatan Malaysia, 2023).

As stated by the latest World Malaria Report, there were 247 million malaria cases in 2021, up from 245 million cases in 2020. The estimated number of malaria deaths was 619,000 in 2021, declined from 625,000 in 2020 (WHO, 2022b). In the two peak years of the pandemic (2020–2021), COVID-related disruptions led to about 13 million more malaria cases and 63,000 more malaria deaths. The WHO African region continues to bear a disproportionate share of the global malaria burden. In 2021, the region accounted for about 95% of all malaria cases and 96% of deaths. Children under five years of age account for about 80% of all malaria deaths in that region. Malaysia had no cases of non-zoonotic malaria (human malaria parasites) for four consecutive years, but for the past five years there has been an increase in the number of zoonotic *Plasmodium knowlesi* malaria cases with a total of 17,125 cases and 48 deaths have been reported (WHO, 2022b).

Figure 1.4 Countries with indigenous cases in 2000 and their status by 2021. In 2021, The Islamic Republic of Iran and Malaysia reported zero indigenous cases for the fourth consecutive year (WHO, 2022b).

As mentioned earlier, NCDs also play a major role in the leading causes of death worldwide. NCDs, for example, cancer is the second leading cause of death after heart disease in the US for the period 2015-2020, with 598,932 fatalities in

2020 (Ahmad & Anderson, 2021). The incidence of cancer has increased over time, and efforts to reduce the burden of the disease have been ongoing for decades. According to a 2019 estimate by the WHO, cancer is the second leading cause of death before the age of 70 in 112 countries, including Malaysia (Sung *et al.*, 2021). The National Cancer Registry in Malaysia reported that from 2012-2016, colorectal cancer (CRC) was the second most common cancer in the country as shown in the chart in Figure 1.5. CRC is the most common cancer in men (16.3%) and the second most common in women (10.7%) after breast cancer in Malaysia, and these cases are often detected late (Azizah *et al.*, 2019).

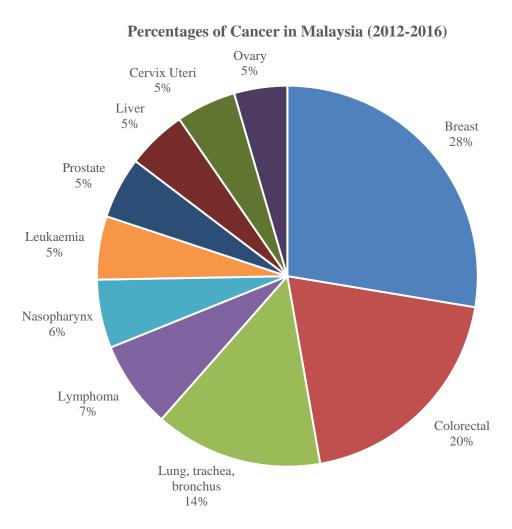


Figure 1.5 Top ten most common cancer in Malaysia from 2012-2016 (Azizah *et al.*, 2019).

Although a genetic inheritance carries a significant risk for CRC, various studies have shown that environmental factors such as smoking, alcohol consumption, sunlight and ionising radiation, harmful chemicals, pathogens, diet and obesity, hormonal therapy, as well as air and water pollution play an important role in the occurrence of CRC (Jeon *et al.*, 2018; Witold *et al.*, 2018). Current chemotherapies for cancer are non-specific and target not only cancer cells but also healthy cells. Therefore, there is a need to develop chemotherapeutic agents that are more effective, selective and less damaging to healthy cells. Research on cancer drugs from natural resources has shown a positive result in reducing the risk of colon cancer and slowing its progression (Pandey *et al.*, 2011). More recently, the use of cancer drugs based on natural products has been highlighted and is currently being developed (Cai *et al.*, 2014; Han *et al.*, 2017).

To conclude this section, this research focuses on *Diospyros foxworthyi*, a plant native to Malaysia, which is being studied in depth for the first time. Its phytochemical information is collected and analysed for its bioactive components. In addition, using the isolated chemical compounds as starting material, a series of modifications are carried out by hemisynthesis *via* acylation or acetylation. The modifications of these phytochemicals are the key to the potency compared to the precursor compounds in terms of bioactive properties. These isolated and derivatised compounds were assayed for their anti-dengue, anti-malarial and cytotoxic activities against HT-29 human colon cancer cell lines.

1.2 Problem statement

The genus *Diospyros* from family Ebenaceae have been reported to exhibit numerous interesting biological and pharmacological activities. Although many studies highlight different species in genus *Diospyros*, there is one species, *D. foxworthyi* that native to Malaysia, which receives the least attention in terms of research and phytochemical studies. The little-known chemical composition of *D. foxworthyi* remains unexplored as there are very few focused studies on the total active compounds that could be found in this valuable species. The unknown compounds could be used for various purposes and to treat diseases such as dengue, malaria and cancer.

So far, only one study has been conducted on *D. foxworthyi* investigating the antiviral activity of this plant extract against DENV (Peyrat *et al.*, 2016). Five Malaysian *Diospyros* plants extracts have shown interesting DENV inhibition ranging from 21–48% at 5 μg/mL dengue replicon. Among them, *D. foxworthyi* showed the highest inhibition of 48%. A preliminary bioassay study by our research group using seven *Diospyros sp.* plants for inhibition of DENV-2 NS2B/NS3 protease indicated the EtOAc crude extract of *D. foxworthyi* bark as a possible protease inhibitor with 68% of inhibition at 0.5 μM of protease concentration. These significant inhibition percentages stimulate further investigation of *D. foxworthyi* for its active chemical diversity.

Moreover, new analogues are generated by modifying the isolated chemical constituents. The effect of these modification strategies is still unknown and will somehow change the characteristics and bioactive properties compared to the original constituents, which needs to be evaluated in this research. These phytochemical findings and structural modifications aim to enhance bioactivities and

represents an alternative as new lead compounds for anti-dengue, anti-malarial and cytotoxic chemotherapies.

1.3 Research objectives

The objectives of this research are as follows:

- To isolate and purify the chemical constituents from the bark extracts of
 D. foxworthyi using various chromatographic techniques.
- 2. To hemisynthesise the derivatives of the isolated betulin and lupeol using acylation or acetylation.
- To elucidate and characterise the isolated and synthesised compounds using various spectroscopic methods such as nuclear magnetic resonance (NMR), Fourier transform-infrared (FT-IR) and high resolution mass spectrometry (HRMS).
- 4. To evaluate the *in vitro* and *in silico* biological activities of isolated and synthesised compounds as anti-dengue, anti-malarial and cytotoxic agents.

1.4 Significance of study

Through this study, the indigenous *D. foxworthyi*, which is now considered of least concern in terms of species approach, will be adequately highlighted. Likewise, the skeleton or backbone of the interesting components could be utilised in research and development. Hence, this research will explore the hemisynthesis of isolated chemical constituents to produce a new analogue. This derivatisation will be the critical component as the effect of substituting a new functional group will further influence the physical properties and efficacy in terms of biological activities. The mentioned bioactive constituents can be utilised for medicinal benefits such as anti-dengue, anti-malaria and cytotoxic therapeutic agents.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter gives an overview of the Ebenaceae family, the genus *Diopyros*, the terpenoids and a brief overview of dengue, malaria and CRC. First, the distribution, habitat, morphology, classification of tribes and medicinal uses of the Ebenaceae family are described. Then, the botany, morphology and distribution of the genus *Diospyros*, including the studied plant *D. foxworthyi* Bakh. are elaborated for better understanding. The compounds of interest, namely the terpenoid, are also discussed in combination with their biosynthetic pathways. Moreover, the previous studies on chemical compounds and biological activities of the genus *Diospyros* are discussed, summarised and tabulated. Finally, the diseases of dengue, malaria and CRC are presented, including the latest statistics, symptoms and treatments. Overall, this chapter provides a foundation for understanding the botany, chemistry and biology of diseases related to this research topic.

2.2 Ebenaceae family

2.2.1 Distribution and habitat

The Ebenaceae or commonly knowns as the persimmon or ebony family, is classified under the plant order of Ericales (Steven & Luteyn, 2021). Ebenaceae is native in tropics and subtropics which consists of over 800 accepted species of three accepted genera, namely *Diospyros*, *Euclea* and *Lissocarpa* (POWO, 2023). *Diospyros* is pantropical while *Euclea* is restricted to Africa and Arabia whereas *Lissocarpa* is native to South America (World Flora Online, 2023; POWO, 2023). This plant genera are normally discovered in the forest understory as small to

medium-sized trees with low population density. Besides, some of these plant species grow along river, swamps, and beach communities while others occur in deciduous forests, dryer vegetation or fire-prone savannahs (Wallnöfer, 2001). The genus *Diospyros* of the tribe is the most significant in the Ebenaceae family, with the highest diversity numerically and economically.

2.2.2 General appearance and morphology

According to the review by Wallnöfer (Wallnöfer, 2001) and GRIN Taxonomy (USDA, 2021), Ebenaceae are distinguished as evergreen dioecious, rarely monoecious, or polygamous trees or shrubs or rarely subshrubs with the bark, roots and heartwood often black. The leaves of Ebenaceae have two-ranked, with flat, darkcoloured glands on the lower surface but no teeth. It is simple, typically alternating, spirally or distichously arranged with most of them petiolate with the stipules absent. The leaf margins are usually whole and extrafloral nectaries are usually present on the abaxial leaf surface. Besides, the flowers of Ebenaceae are commonly unisexual but generally with remnants of the sex present and then articulated at the base with merosity of 3-5(-8). The calyx of the flower is primarily gamosepalous, entire, truncate and deeply lobed. It is spreading or reflexed which is persistent and often accrescent in a fruiting state. Ebenaceae have tricolpate and prolate-spheroidal to prolate pollen grain structure. The pollen is very consistent throughout the family, with the primary differences being in the size and shape of the grains, as well as the apertures. The flowers are reported to be visited by bees, beetles, wasps, and flies as primary pollinators. The bark of tropical species of Ebenaceae is black on the outside while the wood usually is heavy, hard, and fine-textured with pale or dark-coloured. The fruit of *Diospyros* is a multilocular, commonly a berry which not exposed during maturity with 3-8 lobed calyx, which differs from Euclea. The seeds of Euclea are usually solitary and 3-10 mm in diameter when ripe whereas *Diospyros* contains 1-16 seeds with 8-40 mm long.

2.2.3 Classification of tribes

The family of Ebenaceae can be classified to the botanical taxonomic rank (POWO, 2023; Soepadmo *et al.*, 2002) as listed below.

Kingdom : Plantae

Division : Magnoliophyta

Class : Magnoliopsida

Order : Ericales

Family : Ebenaceae

Genus : Diospyros, Euclea & Lissocarpa

2.2.4 Biological properties and medicinal uses of Ebenaceae

Commonly, the utilisation of Ebenaceae plants is heavily focused on as a food source (persimmon) and the needs of timber to a certain socioeconomic region. *Diospyros* plants also have been used in medicine to become a remedy to several ailments such as haemorrhage, incontinence, insomnia, hiccough and diarrhoea (Rauf *et al.*, 2017). Some studies reported that important phytochemicals which have medicinal benefits, could be separated and isolated from the *Diospyros* plants, signifying the immense contribution of this genus towards the medicinal progression of society (Rauf *et al.*, 2017). Traditionally, ancient Chinese civilisations have opted for the *Diospyros kaki* to produce a cure for ischemia, high blood pressure, atherosclerosis and some infectious diseases (Xie *et al.*, 2015). There is also a report claiming the *Diospyros lycioides* is one of the plants used for HIV/AIDS management

in Botswana (Thomford *et al.*, 2015). In Nigeria, the potent anti-malarial agent that is used frequently is derived from *Diospyros mespiliformis* (Luka *et al.*, 2014).

Furthermore, the roots of *Euclea crispa* is used to relieve constipation among Batswana children while its bark and leaves were used for diabetes and rheumatism prevention (Chinsamy *et al.*, 2016). In South Africa, the indigenous plant roots of *Euclea natalensis* is applied to the skin lesions of leprosy and also consumed for hookworm infection. Additionally, the crushed and powdered roots of this plant is applied for the treatment of toothache and headache relief (Lall, 2019). For Kenyan people, the chewed fruits of *Euclea divinorum* is believed to detoxicate the bloods and reduced the abdominal upsets (Kigen *et al.*, 2017). Table 2.1 have summarised some of the biological properties and medicinal uses of the plants in the Ebenaceae family.

Table 2.1 Biological properties and medicinal uses of plants in the Ebenaceae family.

Plant name	Biological property	Medicinal use	References
D. blancoi	Anti-microbial	Used in the treatment of	Akter <i>et al.</i> , 2015
		diarrhoea, dysentery, fever,	
		itchy skin, cough and	
		wounds.	
D. celebica	Anti-microbial,	Used in wound healing and	Chen et al., 2018
	anti-inflammatory	reduce the endothelial	
	and anti-thrombosis	progression.	
D. fleuryana	Anti-cancer	Used as inflammation	Ha et al., 2020
		medication and cancer	
		treatment.	
D. kaki	Anti-oxidant, anti-	Ischemia, high blood	Xie et al., 2015;
	inflammatory and	pressure and	Butt et al., 2015;
	anti-hypertensive	atherosclerosis.	Kim et al., 2016

Table 2.1Continued.

Plant name	Biological	ogical Medicinal use Refere		
I lant name	property	Medicinal use	References	
D. lotus	Anti-microbial,	Used in the treatment of	Rauf et al., 2014;	
	anti-pyretic,	diarrhoea, dry cough and	Loizzo et al.,	
	antinociceptive,	hypertension.	2009	
	anti-oxidant and			
	anti-proliferative			
D. lycioides	Anti-viral, anti-	Used in the management of	Thomford et al.,	
	inflammatory and	HIV/AIDS diseases.	2015; Maroyi,	
	anti-microbial	Used as herbal medicine for	2018	
		abdominal pains and wound		
		treatment.		
D.	Anti-microbial and	Used in the microbial	Moniruzzaman e	
malabarica	anti-oxidant	infection treatment, wound	al., 2019	
		and ulcer as well as		
		diarrhoea medication.		
	Anti-diabetic and	Used in the treatment of	Kavatagimath	
	anti-oxidant	diabetes.	& Jalalpure,	
			2016	
D.	Anti-diabetic and	Used traditionally as anti-	Rathore et al.,	
melanoxylon	anti-adipogenic	diabetic medication.	2014	
D.	Anti-bacteria, anti-	Bactericidal, anti-malarial	Luka <i>et al.</i> , 2014	
mespiliformis	malaria and anti-	agent and wound healing	Dangoggo et al.,	
	inflammatory	treatment.	2012; Ebbo et	
			al., 2022	
D. montana	Anti-cancer	Used traditionally to treat	Ravishankara et	
		tumours.	al., 2000	
D.	Anti-mycobacteria,	Used for treatments of	Theerachayanan	
rhodocalyx	anti-malaria and	diarrhoea, bleeding,	et al., 2007	
	anti-inflammatory	parasitic infestation abscess		
		and renal disease.		

Table 2.1Continued.

Plant name	Biological	References		
I lant name	property	Medicinal use	References	
D. villosa	Anti-bacterial,	Used traditionally to treat	Adu et al., 2023	
	analgesic and anti-	gastrointestinal complaints,		
	cancer	worms and flatulence.		
		Used in the treatment of		
		dysmenorrhea and pain		
		management.		
D. virginiana	Anti-fungal and	Used to treat thrush, sore	Wang et al.,	
	anti-pyretic	throats and bloody stools.	2011; Priya &	
		Used to reduce fever	Nethaji, 2015	
		symptoms.		
Euclea	Anti-diabetic	Used as traditional medicine	Keter & Muttiso,	
racemosa		to treat diabetes.	2012	
Euclea	Laxatives, anti-	Used to treat constipation,	Chinsamy et al.,	
crispa	diabetic and anti-	stomachache and diabetes	2016	
	inflammatory	as well as to prevent		
		rheumatism.		
Euclea	Anti-oxidant, anti-	Used traditionally as blood	Kigen et al.,	
divinorum	inflammatory and	cleanser.	2017	
	anti-fungal	Used to treat abdominal		
		upsets and skin disorders.		
	Anti-bacterial and	Treatment for gonorrhoea,	Chinsembu, 2016	
	anti-viral	genital herpes and		
		HIV/AIDS management.		
Euclea	Anti-mycobacterial,	Used in the treatment of	Oosthuizen et al.	
natalensis	anti-parasite, anti-	skin lesion in Hansen's	2020	
	inflammatory and	disease, hookworm		
	analgesic	infection, toothache and		
		headache.		
Euclea	Anti-inflammatory	Toothache relief treatment.	Maroyi, 2017	
undulata	and analgesic			

2.3 The genus *Diospyros*

2.3.1 Botany, morphology and distribution

The general name of *Diospyros* is founded on the Greek words, *dios* which means "god or divine" and *puros* meaning "pear, fruit or wheat", alluding to the good flavour of edible persimmon fruit and their resemblance to a pear. *Diospyros* is the largest genus of the Ebenaceae family with the reported yet accepted number of 779 species. It is documented to be native to the tropical climate region while some of the species even extended to the temperate climate region (POWO, 2023; USDA, 2021). The main physical characteristics of the plants within this genus would be recognised for its hard and solid-dark timber that has a multitude of uses that are important to the socioeconomic of that particular region (USDA, 2021). Another distinct trait that is possessed by the *Diospyros* which it could be identified as the gynodioecious type, where the sexuality of the plants could be differentiated into male and female according to the flower they produce. In general, only the plant with the female flowers would bear the fruits (Akagi *et al.*, 2014).

Another main characteristic of *Diospyros* plants are the evergreen leaves and the dark-coloured stem (Britannica, 2019). The main fruit producing within the *Diospyros* genus would be the persimmon fruits which can be further identified into two different species. They are *Diospyros virginiana*, a plant that originated from North America, and the *Diospyros kaki*, which is widely known as the Chinese or Japanese persimmon plant (Britannica, 2019). The fruit is well rounded and voluptuous, between 1-16 seeds per fruit (Turner *et al.*, 2013). The *Diospyros* plants could grow in the low-altitude forest, mixed forest, deciduous forest and lowland dry forest (Turner *et al.*, 2013). In Table 2.2, the species and distribution of some *Diospyros* species have been listed.

Table 2.2 Some of the *Diospyros sp.* and their distribution.

Species	Distribution	References
D. abyssinica	Native to Africa	Nafiu et al., 2013
D. blancoi	Endemic to Philippines	Ragasa et al., 2009
D. celebica	Endemic to Sulawesi, Indonesia	Alfaizin, 2020
D. decandra	Commonly found in Thailand and	Kubola et al., 2011
	Vietnam	
D. digyna	Originated from Mexico	Jiménez-González et
		al., 2021
D. fasciculosa	Commonly found in Australia, Fiji and	Floyd, 2008
	Southeast Asia	
D. ferox	Native to Borneo	Soepadmo et al., 2002
D. ferruginescens	Endemic to Borneo	Soepadmo et al., 2002
D. foxworthyi	Found in Peninsular Malaysia and	Soepadmo et al., 2002
	Borneo	
D. kaki	Native to China and Japan	Mallavadhani et al.,
		1998
D. lotus	Native to China and Asia	Rauf et al., 2016
D. lycioides	Originated from Africa	Maroyi, 2018
D. malabarica	Found in Indian subcontinent	Moniruzzaman et al.,
		2019
D. melanoxylon	Native to India and Sri Lanka	Sahu <i>et al.</i> , 2020
D. mespiliformis	Native to Africa	Mashile et al., 2019
D. mollis	Commonly found in Thailand	Suwama et al., 2018
D. sandwicensis	Endemic to Hawaii	Little, 1989
D. sericea	Found in Brazil and Colombia	Ramaldes et al., 2022
D. singaporensis	Found in Peninsular Malaysia and	Soepadmo et al., 2002
	Borneo	
D. virginiana	Native to certain part of North America	Little, 1989

2.3.2 Diospyros foxworthyi Bakh.

Diospyros foxworthyi Bakh., a plant native to Malaysia (Figures 2.1 & 2.2) is named after the American botanist Frederick William Foxworthy, a forest research officer at Forest Department of Malay Peninsula, Kepong, Malaya (now, Malaysia). This plant is classified as a 'least concern' species (Loc, 1998), which prevailed further research of it. This plant botanical classification and description are further explained below (Soepadmo *et al.*, 2002; Kodoh *et al.*, 2021).

Kingdom : Plantae

Division : Magnoliophyta

Class : Magnoliopsida

Order : Ericales

Family : Ebenaceae

Genus : Diospyros L.

Species : foxworthyi

Botanical name : *Diospyros foxworthyi* Bakh.

Common name : Kayu arang, kayu malam, sungkang seribu

D. foxworthyi is a medium-sized tree up to 20 m tall and 35 cm in diameter. The bark is generally black and hard, while the inner bark is white to cream-coloured. The leaves are alternate, simple, smooth, elongated-elliptical and of chartaceous to coriaceous texture. They are long-pointed to pointed at the tip and wedge-shaped to rounded at the base and $10 - 35 \times 3.5 - 12$ cm in size. The veins are recessed or flush on the upper side, while they are prominent on the underside of the leaves. The petiole

is 0.8 - 1.5 cm long. The male flowers have a calyx that is divided in half into 4 triangular lobes, with a 0.6 cm long salver-shaped corolla. In addition, the male inflorescences are slender, about 1 - 4.5 cm long and bear 3 - 15 flowers each. The female flowers have a calyx divided into 4 triangular lobes with a 0.5×0.6 cm corolla. The female inflorescences are 1 - 3.5 cm long and bear single to several flowers each. This plant bears fruits in clusters of 1 - 5, hanging from 1 - 3.5 cm long stems. The fruits are velvety and spherical when young, while they are glabrous and elongated when ripe. When ripe and drying, they tend to shrivel into as many longitudinal furrows as there are seeds. The fruit calyx is slightly enlarged and then forms a flat, woody, 4-pronged plate of 1.5 - 3 cm in diameter. The calyx also has lobes with erect tips, recurved sides and is slightly expanded. This species occurs in mixed dipterocarpic lowland forests in Peninsular Malaysia (Perak, Kelantan and Terengganu) and Borneo (Sabah, Sarawak and Kalimantan) (Soepadmo *et al.*, 2002).

Figure 2.1 *D. foxworthyi* stem (A) and fruit (B). (Herbarium of the Department of Chemistry, University of Malaya, Kuala Lumpur).

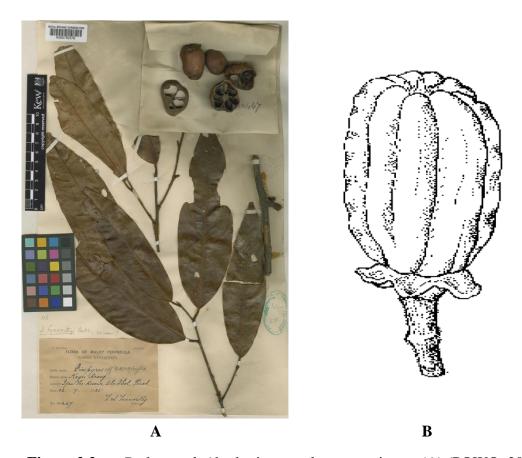


Figure 2.2 D. foxworthyi herbarium catalogue specimens (A) (POWO, 2023) and the illustrations of its fruit (B) (Soepadmo et al., 2002).

2.4 Terpenoids

2.4.1 General

Terpenoids or known as isoprenoids are a substantial and diverse class of natural compounds made up from five carbon isoprene units (C₅H₈) as the building block. Up till now, about 80,000 naturally occurring terpenoid compounds, which serve various functional and structural roles as secondary metabolites (Pemberton *et al.*, 2017). Terpenoids are categorised according to the number and structural organisation of carbons formed by the linear arrangement of isoprene units followed by cyclisation and rearrangements of the carbon backbone with an empirical feature

named isoprene rule (Ludwiczuk *et al.*, 2017). The classification of terpenoids are tabulated below in Table 2.3.

Table 2.3 Terpenoids and its classifications.

Classification	Number of isoprene unit(s)	Number of carbon atoms
Hemiterpenoids	1	5
Monoterpenoids	2	10
Sesquiterpenoids	3	15
Diterpenoids	4	20
Sesterterpenoids	5	25
Triterpenoids	6	30
Tetraterpenoids	8	40

2.4.2 Triterpenoids

Triterpenoids are classified under the family of secondary metabolites that typically contain 30 carbon atoms consisting of 6 isoprene units. In fact, about 20,000 different triterpenoids have been identified, making it one of the largest classes of plant natural products (Happi *et al.*, 2022). These metabolites are synthesised from isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP) through the 30-carbon intermediate squalene. Next, 2,3-oxidosqualene is folded into chair-chair-chair conformation (CCC) before cyclisation into multiple assortments of diverse skeletal types of triterpenoids (Thimmappa *et al.*, 2014).

Moreover, triterpenoids have relatively complicated cyclic structures consisting of alcohols, aldehydes and carboxylic acids making them complex and physiologically distinct (Ludwiczuk *et al.*, 2017). There are several important triterpenoids including squalene (5), β -amyrin (6), ursolic acid (7), oleanolic acid (8), betulinic acid (9), stigmasterol (10) and campesterol (11) which are derived from plants (Figure 2.3). In addition, triterpenoids contain many active sites for

glycosylation, leading to the synthesis of steroidal glycoalkaloids name saponins (Mugford & Osbourn, 2012).

Figure 2.3 Example of important triterpenoids derived from plants.

Triterpenes and triterpenoids are subdivided into acyclic, monocyclic, bicyclic, tricyclic, tetracyclic or pentacyclic compounds based on their structural properties (Nguyen *et al.*, 2015). The main groups of triterpenes are the tetracyclic derivatives (Figure 2.4) including dammarane (12), lanostane (13), euphane (14), cucurbitane (15) and cycloartane (16), whereas for the pentacyclic derivatives (Figure 2.5) of baccharenyl cation-type compounds incorporating lupane (17), ursane (18), oleanane (19), friedelane (20) and taraxerane (21) (Noushahi *et al.*, 2022).