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PENAMBAHBAIKAN DALAM PEMBINAAN LENGKUK MENGGUNAKAN

LENGKUK BI-QT BÉZIER DAN PENGHAMPIRAN KEPADA DUA JENIS

LENGKUK BÉZIER

ABSTRAK

Pendekatan baharu, iaitu lengkung dwi-QT-Bézier yang dioptimumkan, untuk

menyuaikan lengkung pada 2D, telah dicadangkan. Pendekatan konvensional mem-

punyai kekangan tambahan bagi menentukan dwi-lengkuk yang unik. Kaedah yang

dicadangkan menyepadukan rumus dwi-lengkuk tunggal yang berasaskan lengkung

Trigonometri Kuadratik (QT)-Bézier dengan Pengoptimuman Kawanan Zarah (PSO).

Dwi-QT-Bézier yang dicadangkan adalah bermanfaat dalam penyuaian lengkung ke-

rana ia mempunyai nilai α yang optimum daripada kaedah PSO. Selain itu, skim yang

dicadangkan juga menyediakan kelonggaran untuk membina lengkung yang dikehen-

daki iaitu dengan menghasilkan lengkung yang lebih dekat dengan poligon kawalannya

berbanding kaedah-kaedah sebelum ini. Keputusan eksperimen disediakan bagi me-

nunjukkan kegunaan dan kecekapan kaedah yang dicadangkan. Dwi-QT-Bézier yang

dioptimumkan digunakan untuk menyuai bulatan dan bentuk komposit, dan hasilnya

turut dianalisa. Keputusan menunjukkan bahawa kaedah yang dicadangkan merupak-

an alat yang sangat baik dalam penyuaian lengkung. Kerja ini juga memperkenalkan

Penganggaran Lelaran Progresif (PIA) yang telah diubahsuai iaitu PIA Jenis 1 dan Je-

nis 2, yang masing-masing bertujuan untuk menukarkan pembinaan lengkung kepada

Bézier dan QT-Bézier. PIA Jenis 1 meningkatkan darjah lengkung, manakala PIA Je-

nis 2 menyesuaikan parameter bentuk m. Keputusan berangka bagi beberapa contoh

untuk kedua-dua kaedah ini turut dibincangkan.

xiv



IMPROVEMENT OF CURVE CONSTRUCTION USING BI-QT BÉZIER

CURVES AND APPROXIMATION TO TWO TYPES OF BÉZIER CURVES

ABSTRACT

A new approach, namely an optimized bi-QT-Bézier, for fitting curves to given

2D, is proposed. The conventional approach includes additional constraints to uniquely

determine the biarc. The proposed method integrates the formulation of a single biarc

based on the Quadratic Trigonometric (QT)-Bézier curve with Particle Swarm Opti-

mization (PSO). The proposed bi-QT-Bézier curve is advantageous in curve fitting as

it provides an optimized value of α from the PSO method. Besides, the proposed

scheme also provides the flexibility to construct the desired curve with a smaller dis-

tance between the curve and its control polygon compared to the previous methods.

An experimental result is provided to demonstrate the usefulness and efficiency of the

proposed method. The implementation of the optimized bi-QT-Bézier curve to fit cir-

cular and composite shapes will also be analyzed. The result shows that the proposed

method is an excellent tool in curve fitting. This work also presents the modified Pro-

gressive Iterative Approximation (PIA), namely PIA Type 1 and Type 2, to convert the

curve construction into Bézier and QT-Bézier respectively. PIA Type 1 deals with the

increment of degree while PIA Type 2 deals with the adjustment of shape parameter

m. Numerical results of the application of both approaches to several examples are

discussed.

xv



CHAPTER 1

INTRODUCTION

1.1 Introduction

A crucial operation in engineering design is the approximation of data, points,

lines, or arbitrary curves of various types. Because of the simplicity of these curves

and the ability of milling machines to run along straight lines and circular pathways,

Parkinson and Moreton (1991) mentioned that the approximation of curves by straight

lines and circular arcs is really important. A commonly employed method for approx-

imating arc splines is the biarc. A biarc is a curve formed by connecting two circular

arcs with G1 continuity, ensuring a smooth transition with a matching tangent (Bolton,

1975; Meek and Walton, 1992; Park, 2004b; Piegl and Tiller, 2002a).

Biarc exhibits G1 continuity, which means that the tangents at the connection point

of the two circular arcs are collinear. This ensures a smooth and continuous transition

between the arcs without any abrupt changes in direction or slope. To understand G1

continuity in a biarc, imagine two circular arcs that make up a curve. At the point

where the arcs meet, the tangents of both arcs are extended to form a line. In a G1

continuous biarc, these extended tangents lie on the same straight line. This alignment

ensures that there is no visible break or corner at the connection point. It is worth

noting that the length of each tangent at the connecting point of a biarc is different.

This is because a biarc is a curve formed by joining two circular arcs with different

radii and centers. The difference in radii and centers results in varying lengths of the

tangents at the connecting point.
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According to Bolton (1975), biarc is used to replace the conventional approach of

curve fitting, which is cubic spline. The conventional biarc approach comprises an

additional constraint to determine the biarc uniquely. When considering the specific

data points p0 and p4, as well as their corresponding tangents t1 and t2, it is possible to

create a biarc that connects these endpoints. This concept, described by Sakai (1994)

and Ong et al. (1996), involves representing the biarc using two circular arcs, which

are labeled as D1 and D2. These arcs form the components of the biarc and satisfy both

conditions as follows:

1. Di (where i = 1,2) passes through endpoints and are tangential to end tangents

at respective endpoints. This ensures that each arc starts and ends at the correct

point and smoothly transitions into the direction indicated by the tangent.

2. Di (where i = 1,2) are tangential to each other at their joint. This guarantees that

the transition between the two arcs is seamless and that they form a continuous

curve without any abrupt changes in direction or curvature.

Figure 1.1 illustrates the biarc construction to demonstrate the conditions. The first

condition emphasizes that the arcs D1 (brown arc) and D2 (purple arc) pass through

their respective endpoints. This means that the curve starts at p0 and ends at p4, en-

suring that the biarc spans the desired interval. Additionally, at each endpoint p0 and

p4, the tangent of the arc at endpoints which are indicated by black arrows, are aligned

with the end tangents that are represented by the blue and orange dashed lines, respec-

tively. This ensures a smooth transition between the tangent direction and the curve,

creating a visually pleasing and continuous curve.
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Figure 1.1: Biarc construction

Furthermore, the second condition emphasizes the tangential relationship between

the two arcs D1 (Brown arc) and D2 (Purple arc) at their connecting point, p2. When

the arcs meet, they are tangential to each other, meaning they share the same direction

at the connecting point p2, as indicated by the red arrows. This ensures a seamless

transition between the two arcs, without any abrupt changes in direction or curvature.

The tangential connection guarantees that the curve flows smoothly and maintains a

consistent direction throughout, enhancing its visual continuity and aesthetic appeal.

In summary, the first condition focuses on the behavior of the arcs at the endpoints,

ensuring that they pass through the respective endpoints and align with the end tan-

gents. The second condition, on the other hand, emphasizes the tangential connection

between the two arcs at their joint, guaranteeing a seamless transition and a continuous

curve.
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The biarc curve possesses six degrees of freedom, which correspond to six inde-

pendent parameters that define its shape. These parameters include the start point (2

coordinates), the endpoint (2 coordinates), the start tangent (1 direction), and the end

tangent (1 direction). However, when considering conditions (1) and (2), only five of

these degrees of freedom are utilized. This is due to the fact that the endpoint of the

first arc coincides with the start point of the second arc, resulting in one shared degree

of freedom between the two arcs. In the context of a biarc curve, the missing degree

of freedom would result in an incomplete specification of the curve. This could lead to

ambiguity or multiple possible curve configurations, making it challenging to achieve

the desired curve.

To address this issue and distinguish the biarc, additional constraints are intro-

duced. One common constraint is that the tangent at the connecting point remains par-

allel to the line connecting the two endpoints (Sabin, 1977). This constraint provides

an additional condition that aids in uniquely defining the biarc. By considering con-

ditions (1) and (2) along with the additional constraints, a well-defined and uniquely

determined biarc curve can be obtained.
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Figure 1.2: C-shaped biarc

Figures 1.2 and 1.3 provide visual representations of biarc interpolation. In Figure

1.2, a C-shaped biarc is illustrated, which is formed when the end tangents, represented

as t1 and t2, exhibit different directions. Specifically, this occurs when t1 is positive and

t2 is negative, or vice versa. The C-shaped biarcs are characterized by having the data

points p1 and p3 located on the same sides of the curve, as shown in Figure 1.2. On

the other hand, Figure 1.3 illustrates an S-shaped biarc, which arises when the end

tangents have the same direction. In this case, both t1 and t2 are either positive (both

greater than zero) or negative (both less than zero). The S-shaped biarcs exhibit the

characteristic of having the data points p1 and p3 located on the opposite side of the

curve, as shown in Figure 1.3.
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Figure 1.3: S-shaped biarc

This thesis focuses on enhancing the arc spline approximation. The goal is to con-

struct a curve that closely approximates the control polygon. Instead of using a biarc,

this study proposed an optimized bi-QT-Bézier curve. The optimized bi-QT-Bézier is a

curve formed by connecting two QT-Bézier curves in a G1 continuity manner, ensuring

a minimal distance between the curve and the control polygon using an optimization

method. The optimization method aims to find the optimal value of the length of the

control triangle which is denoted as α . The value of α is crucial in shaping the curves.

Therefore, by optimizing the value of α , the resulting optimized bi-QT-Bézier curve

can fit the given data points and reduce the distance between the curve and the control

polygon.

Additionally, the thesis explores the conversion of curves into two different ba-
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sis functions using a modified iterative approach. This conversion process aims to

transform the curve representation into alternative basis functions, which can offer ad-

vantages in terms of computational efficiency. Overall, this thesis investigates the im-

provement of curve construction by incorporating optimization methods and exploring

alternative basis functions. The objective is to enhance the accuracy and effective-

ness of curve fitting while minimizing the distance between the curve and the control

polygon and reducing the number of segments needed to achieve a good fit.

1.2 Motivation

The work by Park (2004b) proposed an interesting biarc formulation namely opti-

mal single biarc. This study highlights the key properties of the proposed biarc, which

does not impose any additional constraints. The approach leverages the flexibility in

determining the biarc to achieve a more accurate fit by minimizing the distance be-

tween the curve and the control polygon. Furthermore, the proposed biarc results in

a reduced number of segments in spline approximation. The study is also simple in

concept since the approach does not require any additional constraints to uniquely de-

termine the biarc. This makes the approach simpler to understand and implement. Ad-

ditionally, the approach is computationally inexpensive and can be applied efficiently.

The utilization of the optimal single biarc is extensive and has been employed to ad-

dress issues related to the arc spline approximation of 2D data points (Park, 2004a).

In addition, the study conducted by Uzma et al. (2012) emphasized the characteris-

tics of the Quadratic Trigonometric (QT) Bézier curve with a single shape parameter.

The QT-Bézier curve plays a significant role in minimizing the distance between the
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curve and the control polygon. It is noteworthy that the properties of the QT-Bézier

curve are similar to those of the ordinary quadratic Bézier curve. However, the QT-

Bézier curve offers added utility due to the inclusion of the shape parameter. Moreover,

under specific conditions, the QT-Bézier curve can effectively represent arcs of circles

and ellipses.

Furthermore, the Particle Swarm Optimization (PSO) algorithm is a powerful op-

timization technique that has been widely employed for solving complex optimiza-

tion problems. Its ease of implementation and fast convergence rate make it a popular

choice among practitioners. In the study conducted by Liu and Li (2016), PSO was uti-

lized to determine the optimal shape parameters for curves. The results demonstrated

its effectiveness in enhancing the fairness and smoothness of the curves, thereby vali-

dating its usefulness in curve optimization.

Lastly, the work by Chantakamo and Dejdumrong (2013) points out the advantage

of using the Progressive Iterative Approximation (PIA) algorithm, where it can con-

struct a non-rational Bézier curve that fits the sampling points that are obtained from

the input rational Bézier curve. This allows for the conversion of a rational Bézier

curve into a non-rational Bézier curve, which can be helpful in certain applications.

Additionally, the PIA algorithm can be used to adjust the control points of the non-

rational Bézier curve to improve the approximation.

1.3 Problem Statements

Existing approaches in biarc fitting often lack critical components, such as Trigono-

metric Bézier with shape parameters and optimization algorithms, which can enhance
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curve accuracy and minimize the distance between the curve and the control polygon.

The basis transformation in Chantakamo and Dejdumrong’s (2013) work is limited

to transforming rational Bézier curves into non-rational Bézier curves, which restricts

its application in basis transformation.

1.4 Objectives

This thesis deals with the improvement of the biarcs construction by minimizing

the distance between the curve and the control polygon. The main focus of this study

is to observe the usefulness of the proposed approach called optimized bi-QT-Bézier

and also to convert the input curve using Progressive Iterative Approximation. The

objectives of this study are as follows:

1. To improve a curve fitting method namely optimized bi-QT-Bézier via Particle

Swarm Optimization.

2. To enhance the efficiency and accuracy of generating curves by minimizing the

number of segments and reducing the distance between curves and control poly-

gons.

3. To achieve higher precision in curve approximation using modified Progressive

Iterative Approximation methods.

1.5 Scope and Limitations of Research

This research employed the QT-Bézier with a single shape parameter as the funda-

mental basis function in the optimized bi-QT-Bézier. The utilization of QT-Bézier is
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advantageous as it represents the lowest degree of basis function incorporating a shape

parameter. Furthermore, for the purpose of this research and to answer the objectives,

this research is focused on fitting two-dimensional data points by improving the curve

construction and minimizing the distance between the curve and its control polygon.

1.6 Outline of Thesis

The description of the chapters included in this thesis is as follows:

Chapter 2 presents an overview of the usefulness of the biarc curve fitting. This

chapter will review the journey and the process of the optimized bi-QT-Bézier as well

as the advantage of the Particle Swarm Optimization algorithm as an optimization al-

gorithm in solving a problem. Furthermore, this chapter also discusses the importance

of the Progressive Iterative Approximation method. All domains are supported by pre-

vious works of literature and related work.

In Chapter 3, the methodology is discussed in detail. All the formulations and

algorithms are presented. Flowcharts of the optimized bi-QT-Bézier using Particle

Swarm Optimization and the modified Progressive Iterative Approximation of Type 1

and Type 2 are also provided.

In Chapter 4, the usefulness of the proposed approach, optimized bi-QT-Bézier

will be demonstrated. The optimized bi-QT-Bézier will be applied to fit a circle and

a composite shape composed of arcs and straight lines. A comparison between the

proposed approach and the previous approaches will also be presented to verify its

effectiveness.
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Chapter 5 deals with the conversion of curves into different basis functions using

the modified Progressive Iterative Approximation of Type 1 and Type 2. Both methods

use different approaches to minimize the error in converting the curve. Examples are

provided to demonstrate the algorithm of both PIA Type 1 and Type 2.

Lastly, Chapter 6 concludes the research work with a summary of the findings and

some suggestions for future work.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Biarc Curve Fitting

B-spline curves are used in applied geometry and Computer Aided Geometric De-

sign (CAGD) to describe objects. However, in many applications, such as Computer

Numerical Control (CNC) machines, B-splines are less practical and paths made from

simple geometric forms are more advantageous. This leads to the need for quality ap-

proximations of B-spline curves by simpler forms to get an acceptable transfer between

design and implementation. Previously, the cubic spline is the most common form of

curve fitting. The segments of the curve between subsequent data points are repre-

sented by cubic equations, and the smoothness of the curve is derived by matching the

first and second derivatives of each segment over all intermediate data points.

However, higher-order equations can be used to describe each curve segment, but

they are more difficult to solve and are more likely to result in undesirable inflections.

Furthermore, the intersection of a cubic spline with a line, circle, or another cubic

spline is non-analytic and must be found through iteration (Bolton, 1975). The easiest

way to approximate curves is to use straight line segments, but this method has disad-

vantages such as a lack of smoothness and a lot of line segments needed. Arc splines

are tangent-continuous, piecewise curves made of circular arcs, which are smooth, easy

to calculate arc length, and easy to find offset curves. These properties make them suit-

able candidates for curve fitting. According to Bolton (1975), biarc is used to replace

the conventional approach of curve fitting, which is a cubic spline. A biarc is widely
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used for arc spline approximation (Park, 2004a; Piegl and Tiller, 2002a).

A biarc is a curve formed by smoothly connecting two circular arcs that interpolate

two endpoints and two end tangents (Bolton, 1975; Meek and Walton, 1992; Park,

2004a; Piegl and Tiller, 2002b). In order for the biarc to have G1 continuity, the two

arcs must have the same tangent at their intersection point. It is important to note

that the conventional method of biarc fitting requires additional constraints to uniquely

determine the biarc. The work by Bolton (1975) proposed a biarc with equal angles for

the two arcs. The aim was to minimize the difference in radii between the circular arcs.

This study also highlighted the properties of biarcs and demonstrated their usefulness

in the shipbuilding industry. According to Bolton (1975), there are often situations

in ship forms where a curve needs to smoothly transition to a predefined line. Biarc

curves have been found to be highly adaptable in such cases, avoiding the tendency

of certain analytic curves to overshoot. Bolton (1975) provided valuable insights into

the potential applications of biarcs, inspiring further extensive research in this area by

scholars.

Furthermore, Sabin (1977) proposed another variant of the biarc, incorporating an

additional constraint, where the tangent at the connecting point remains parallel to the

line connecting the two endpoints. This constraint allows the ratio of the two radii to

approach r = 1, indicating the robustness of the biarc (Park, 2004a; Piegl and Tiller,

2002b). Additionally, Meek and Walton (1992) proposed a biarc with an additional

constraint, where the intersection point lies on the bisector of the line segment con-

necting the two endpoints. The paper also introduces modifications to two existing

algorithms used for approximating discrete data with a polygon, transforming them to
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approximate the data with an arc spline instead. The first algorithm focuses on finding

locally optimal approximations, while the second algorithm utilizes a bisection ap-

proach. These algorithmic modifications generated approximations composed of both

biarcs and straight-line segments, which serve as the fundamental building blocks of

an arc spline.

The research conducted by Schönherr (1993) introduces a method for construct-

ing biarcs with two important goals. Firstly, the method ensures that the biarcs have

equal tangents at the point where they connect, creating a smooth transition with con-

sistent direction. Secondly, it aims to achieve continuous curvature as the curve tran-

sitions from one biarc to the other, maintaining a consistent curve shape. To achieve

smoothness, the proposed biarc fitting method uses a linearized approach, which min-

imizes curvature changes and promotes local smoothness. This approach is efficient

and works well even for curves with significant changes in tangent direction. To deter-

mine the tangents at the data points, the method solves nonlinear equations to minimize

strain energy. Practical examples are provided to demonstrate the effectiveness of the

method in generating smooth and accurate curves for various curve-fitting problems.

However, these claims can be contended by Ong et al. (1996) and Park (2004b),

who have not imposed any additional constraints on the proposed biarcs. According to

Ong et al. (1996), the additional constraints imposed in biarc construction need more

segments for a good fit. They presented an approach to the optimal fitting of a biarc-

spline to a given B-spline curve to achieve a better fit and improve surface quality. The

approach described in the paper introduces two main advancements in biarc curve-

fitting techniques. Firstly, it offers more flexibility in selecting the biarc that best fits a
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given pair of endpoints and their tangents, allowing for a more customized fitting pro-

cess. Secondly, unlike previous methods, the approach allows the endpoints to be off-

curve, enabling better control over tolerance and enhancing the precision of the fitting.

To evaluate the approach, the paper utilized numerical integration and discretization

techniques to simulate curves based on discrete data points. It also presented numer-

ical results from applying the approach to various examples. The results demonstrate

that the proposed method achieves a close fit between the biarc curve and the original

curve using fewer segments. This leads to improved surface finish, facilitates CNC

code verification, and reduces memory requirements.

The research by Piegl and Tiller (2002a) proposes an algorithm for approximating

arbitrary NURBS curves using biarcs. The algorithm employed a geometric design

formulation that incorporates curves to represent the biarcs, building upon the well-

established NURBS framework. One notable advantage is its ability to ensure G1 con-

tinuity, ensuring smooth transitions between the biarcs and the original NURBS curve.

The algorithm follows a two-step process. First, it constructs a polygon approximation

of the NURBS curve, simplifying the subsequent biarc approximation. Then, it re-

fines the polygon by replacing straight segments with biarcs until the desired tolerance

level is achieved. This iterative approach enables efficient and accurate approximation

of NURBS curves with biarcs. By combining the flexibility of biarcs with the power

of NURBS curves, the algorithm offers an effective solution for curve approximation.

The two-step process of polygon approximation followed by biarc refinement provides

a systematic and efficient framework for accurate curve representation.

Besides, the study by Park (2004b) proposed a new approach for fitting an optimal
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single biarc to a given 2D polygon and its two end tangents. The conventional method

of biarc construction imposes additional constraints to ensure uniqueness, but this new

approach leverages the variability in choosing the biarc to achieve a better fit. The pro-

posed approach was extensively tested on various 2D polygons, and its performance

was compared to the conventional method. The experimental results clearly demon-

strate that the proposed approach outperforms the conventional method by achieving a

better fit with fewer segments. This reduction in segments has practical implications as

it improves efficiency and accuracy in applications that rely on biarc curves. The abil-

ity to optimize the fit of biarc curves has several benefits. It enables the generation of

smoother and more precise paths for robots and machine tools, ultimately improving

their performance and efficiency. By minimizing the number of segments, the pro-

posed approach streamlines design processes and reduces computational complexity.

This has significant implications for computer-aided design, path planning for robots,

and machining operations.

The study by Mu et al. (2019) presented a biarc method tailored to address the

complexities of determining the end position, end direction, and task configuration

for concentric wire-driven manipulators, particularly in the context of minimally inva-

sive surgery. Unlike traditional methods, this approach employed biarc parameters to

parameterize the manipulator’s configuration and optimized task configuration by con-

sidering basic module parameters, end direction, and bending angle simultaneously.

Through simulations and experiments conducted on a concentric wire-driven manip-

ulator, the method showcased its ability to precisely track desired trajectories within

confined spaces, underscoring its relevance for real-time control in minimally inva-

sive surgical scenarios. The results emphasized the efficiency and effectiveness of the
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proposed biarc method, providing a robust solution for kinematics and configuration

planning.

Additionally, the study by Han et al. (2019) introduced an efficient algorithm for

computing the Minkowski sum of two planar geometric models with B-spline curve

boundaries. Initially, G1-biarc splines approximated the boundary curves within a

specified error bound. The biarc approximation facilitated the creation of a super-

set of the Minkowski sum boundary, which might have contained redundant arcs for

non-convex models. The main challenge lies in the effective and robust elimination of

these redundancies. To address this, the study employed the Minkowski sum of interior

disks of the input models, leveraging the biarc approximation for enhanced efficiency.

By testing each redundant arc against a selected set of interior disks, the majority of

redundancies were successfully eliminated. The remaining arcs were then used to con-

struct the Minkowski sum boundary with the correct topology. The study underscored

the significant role of biarc splines in achieving real-time performance and stability in

circle-based Minkowski sum computation.

Moreover, the study by Bertolazzi et al. (2020) introduced an algorithm for com-

puting a spline composed of biarcs to interpolate a given set of ordered planar points.

Biarcs were optimized at each point to minimize three criteria which are the over-

all spline length, the integral of absolute curvature, and the integral of squared cur-

vature. Conditions for spline existence, based on admissible point sequences, were

outlined. The proposed method’s effectiveness was demonstrated through numerical

experiments. Additionally, the study highlighted the use of equations and identities for

simplification, with a specific formula playing a crucial role in initializing the nonlinear
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programming process.

2.2 Quadratic Trigonometric Bézier

Han (2002) presented quadratic trigonometric polynomial curves with a shape pa-

rameter. These curves are constructed with three consecutive control points for each

curve segment and can be closer to the given control polygon than the quadratic B-

spline curves. This is because the shape parameter can be adjusted to yield tight en-

velopes for the control polygon. Note that, tight envelopes refer to curves that closely

follow the shape of a given control polygon or set of points. They minimize the dis-

tance between the curve and the control points, ensuring a close fit. The study also

demonstrated the ability of the trigonometric polynomial curves to be decreased to

linear trigonometric polynomial curves, which can represent ellipses. Furthermore,

the study emphasized the utilization of non-uniform knot vectors to enhance the flex-

ibility of curve representation. By strategically adjusting the distribution of knots, it

becomes possible to increase the number of knots in areas that demand more intricate

detail, while simultaneously reducing the number of knots in smoother regions. This

approach ultimately results in a more efficient representation of the curve

Wu et al. (2007) introduced quadratic trigonometric spline curves with multiple

shape parameters. These curves, constructed from four consecutive control points,

offer global or local adjustment through shape parameter manipulation. The paper

also explored quadratic trigonometric Bézier curves as a special case. The study also

reported that by using non-uniform knot vectors, C1 continuity is achieved, while a

uniform knot vector ensures C3 continuity when all shape parameters are set to 1.
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These trigonometric spline curves exhibit the ability to represent ellipses and gener-

ate families of ellipses sharing control points. Additionally, Misro et al. (2017) pre-

sented a technique involving five templates of transition curves constructed using cubic

trigonometric Bézier spirals. This technique utilizes shape parameters in trigonomet-

ric Bézier curves, allowing precise control over curvature without modifying control

points or employing weightage in rational functions. The study defined planar para-

metric curves, tangent vectors, and curvature, further enhancing understanding and

control of the curves. Both studies emphasized the importance of shape parameters in

achieving flexibility and control over the resulting curves.

The studies by Xu et al. (2011) and Uzma et al. (2012) introduced methods for con-

structing quadratic curves with shape parameters. In Xu et al. (2011), a novel approach

is presented for quadratic TC-Bézier curves, utilizing a shape parameter to precisely

adjust the curve’s shape and accurately represent circles and ellipses. The study com-

pares this method with previous approaches and concludes that a single shape param-

eter effectively controls the curve’s shape. Similarly, Uzma et al. (2012) proposed a

method for constructing quadratic trigonometric Bézier curves using a single shape pa-

rameter. The basis functions of the curve are defined, and the shape parameter is used

to modify the curve’s shape. The properties of the curve and its basis functions are

analyzed and compared to those of the quadratic Bézier curve. The research demon-

strated that the quadratic trigonometric Bézier curve accurately represents a wide range

of shapes without altering the control polygon. By adjusting the shape parameter, the

curve can be made closer to the quadratic Bézier curve or approximate the control

polygon more closely. Both studies highlighted the effectiveness of shape parameters

in controlling the shape of quadratic curves and their ability to accurately represent
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various geometric shapes. The proposed methods offer flexibility and ease of manipu-

lation without requiring modifications of control points or increasing curve complexity.

The study by Eshan and Tey (2017) investigates the effect of the shape parameter

on the equation formed via the Moving Least Square (MLS) Method, a technique for

creating smooth functions from scattered points. The researchers applied it to heat

transfer simulation data with different shape parameter values to observe their influ-

ence on the curve’s shape. The study reported that the shape parameter plays a large

factor in the curve fitting. Moreover, the study by Ismail and Misro (2020) evalu-

ated and compared continuous curves with varying levels of continuity as the degree

of the Bézier curve increased. The study also mentioned that the higher degree of

Bézier polynomials resulted in smoother curves due to the involvement of more con-

trol points, enhancing precision. The introduction of shape parameters provided users

with flexibility in constructing the curve. Additionally, Adnan et al. (2020) employed

multiple degrees of trigonometric Bézier curves to fit complex shapes, emphasizing the

flexibility and adaptability of these curves to data. The method ensured smooth curve

fitting by achieving various levels of continuity between segments. The study also re-

ported that the piecewise approach simplified shape design and to optimize the fitting

process, the Harmony Search (HS) algorithm was utilized, proving more effective than

other methods in the comparison. Trigonometric Bézier curves with shape parameters

emerged as a suitable choice for curve fitting in the study, offering flexibility, smooth-

ness, and optimization possibilities.
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2.3 Particle Swarm Optimization

Optimization is a mathematical technique used to find the best solution within given

constraints. It is applied across industries to maximize profits, minimize costs, and

improve efficiency. Optimization involves finding optimal values for variables that sat-

isfy constraints and optimize an objective function. Genetic Algorithm and Particle

Swarm Optimization are two commonly used algorithms in optimization. In the study

conducted by Gulsen et al. (1995), two methods for curve fitting in the presence of

noisy data are compared, which are a genetic algorithm approach and a least-squares

approach. The authors evaluated the performance of these methods on three test prob-

lems and determined that the genetic algorithm approach outperforms the least-squares

approach in terms of accuracy and robustness to noise. They demonstrated that the ge-

netic algorithm approach can converge to the true solution even when initial estimates

are significantly different from the true values. However, it is significant to highlight

that the genetic algorithm approach is computationally more expensive. Overall, the

study provides valuable insights into the strengths and limitations of these methods for

curve fitting with noisy data.

The study conducted by Kumar et al. (2003) explores the application of B-spline

curves and surfaces for CAD data representation and investigates the emerging tech-

nique of freeform shape synthesis from point cloud data. The study focuses on the

challenge of achieving precise curves and surface fitting from point clouds, which re-

quires the development of a robust parameterization model. To tackle this challenge,

the authors proposed an innovative approach that utilizes genetic algorithms for pa-

rameter optimization. They introduced a novel population initialization scheme that
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ensures global optimization while minimizing the time needed to converge. The study

specifically concentrates on Non-Uniform B-spline curve fitting, a widely used tech-

nique in computer-aided design. The effectiveness of the optimization procedure is

evaluated using the Root Mean Square (RMS) error, a common metric for assessing

curve fitting quality. The results demonstrated that, despite the complexity of the op-

timization process, convergence can still be achieved with additional generations. By

presenting the proposed approach, the study makes a valuable contribution to the field

by providing insights into achieving accurate curve and surface fitting from point cloud

data. This knowledge is crucial in various applications, including computer graphics,

virtual reality, and shape modeling.

On the other hand, Gálvez and Iglesias (2011) presented an approach for data fit-

ting using B-splines, which are commonly employed mathematical functions for ap-

proximating curves. The method employs Particle Swarm Optimization (PSO) to au-

tomatically determine knot placements, which mark points of direction change in the

B-spline. This utilization of PSO yields improved accuracy in data fitting. PSO is a

metaheuristic optimization algorithm inspired by the collective behavior of bird flocks

or fish schools, enabling it to handle complex, multimodal, and nonlinear optimiza-

tion problems. The proposed approach effectively handles curves with singularities

or cusps, thereby surpassing the limitations of prior methods. In addition, Liu and

Li (2016) studied a method for obtaining optimal shape parameters in CAGD. While

shape parameters are typically given as intervals, it is often necessary to determine

the optimal values to achieve the desired fairness and smoothness in curves. The pro-

posed method tackles this problem by utilizing a fairing criterion and applying the

PSO algorithm to find the optimal model. The study established a general automatic
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mathematical model for solving optimal parameters and demonstrates its effectiveness

through examples of three curve classes. The method can be applied to various curves

with shape parameters, ensuring fairness and smoothness in the resulting curves

The study by BiBi et al. (2022) presents a method for optimizing the assembly of

GHT-Bézier developable surfaces using the Particle Swarm Optimization (PSO) tech-

nique. The primary objective is to improve the efficiency of complex engineering

products by constructing highly accurate developable surfaces. In this approach, the

control points of the GHT-Bézier surface are considered as design variables, and the

degree of developability of the ruled surface is defined as the objective function. The

shape parameters are treated as optimization variables, and PSO is employed to search

for the optimal shape control parameters within a specified value range. The effective-

ness of the proposed method is demonstrated through modeling examples, showcasing

its ability to generate fair surfaces that closely approximate the original surface. By

utilizing PSO to search for the optimal shape control parameters, the method enables

the creation of developable surfaces with exceptional accuracy in their developabil-

ity. This advancement has significant implications for the manufacturing process of

complex free-form surfaces, as it addresses various challenges and enhances overall

performance. PSO is selected for its simplicity, ease of implementation, and its ability

to effectively explore the search space as a population-based algorithm. Furthermore,

PSO’s capability to handle non-differentiable or noisy objective functions makes it

well-suited for a wide range of optimization problems.
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2.4 Progressive Iterative Approximation

Lin et al. (2005) focused on investigating the Progressive Iteration Approximation

(PIA) property of curves and tensor product surfaces that are generated by blending

a given set of data points and a set of basis functions. The study highlighted the sig-

nificance of the PIA property, which ensures that a sequence of curves or surfaces

interpolates the given data points. This property plays a crucial role in guaranteeing

that the iterative adjustments of control points converge to a unique solution. The PIA

property holds great relevance in computer-aided design and manufacturing, where

curves and surfaces are employed to represent intricate shapes and surfaces. The au-

thors established that B-spline, NURBS, and Bezier curves and surfaces possess the

progressive iteration approximation property if the corresponding collocation matrix is

nonsingular. This finding contributes to the understanding of the behavior and proper-

ties of these widely used curve and surface representations in the context of iterative

approximation.

Huang et al. (2008) introduced a method for approximating a rational Bézier curve

by utilizing a sequence of Bézier curves. These Bézier curves have control points

obtained from degree-elevated rational Bézier curves. The method is extendable to

other cases involving rational functions, such as rational B-splines and rational sur-

faces. Degree-elevation of a given rational Bézier curve involves increasing its degree

and the number of control points required to represent it. This elevation can impact the

curve’s shape and properties, potentially introducing undesired oscillations. However,

by carefully selecting the control points of the elevated curve, it is possible to manage

and optimize these changes, achieving the desired level of accuracy and smoothness.
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