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ALGORITMA HIBRID PEMBELAJARAN TETULANG MENDALAM
UNTUK PENEMUAN PENGIRAAN DAN PENCIRIAN PROTEIN KECIL
MENGGUNAKAN MYCOBACTERIUM TUBERCULOSIS SEBAGAI
MODEL

ABSTRAK

Ramalan dan pencirian tepat bagi rangka bacaan terbuka kecil (smORF) adalah
penting untuk memahami peranan fungsinya dalam pengawalan gen dan proses
selular. Kajian ini membentangkan pembangunan dan penilaian satu algoritma
pembelajaran mesin hibrid baharu yang menggabungkan kekuatan model Random
Forest dan Gradient Boosting bagi meningkatkan ketepatan ramalan smORF. Prestasi
algoritma hibrid ini dinilai secara menyeluruh dan dibandingkan dengan model
individu menggunakan metrik penilaian komprehensif termasuk ketepatan, sensitiviti,
spesifisiti dan kawasan di bawah lengkung ROC (AUC). Keputusan menunjukkan
bahawa model hibrid mencapai prestasi yang lebih tinggi dengan ketepatan 0.998,
sensitiviti 0.998, dan spesifisiti 1.00, sekali gus mengatasi prestasi model Random
Forest dan Gradient Boosting secara individu. Selain itu, data transkriptom daripada
Mycobacterium tuberculosis digunakan untuk mengesahkan ramalan tersebut,
menonjolkan kaitan biologi dan potensi aplikasi pendekatan yang dicadangkan dalam
biologi pengiraan. Kajian ini menekankan kepentingan gabungan teknik pembelajaran
mesin untuk meningkatkan ketepatan ramalan dan menyediakan kerangka kukuh bagi
kemajuan penemuan smORF. Walaupun tumpuan diberikan kepada perbandingan
antara model individu dan hibrid, kajian ini turut mengenal pasti peluang untuk
penanda aras lanjutan terhadap alatan luaran bagi mengesahkan lagi sumbangannya.

Penemuan ini menyumbang kepada bidang penyelidikan biologi dan pengiraan, serta
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menawarkan pandangan mendalam tentang metodologi ramalan smORF dan

aplikasinya.
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A DEEP REINFORCEMENT LEARNING HYBRID ALGORITHM FOR THE
COMPUTATIONAL DISCOVERY AND CHARACTERIZATION OF
SMALL PROTEINS UTILIZING MYCOBACTERIUM TUBERCULOSIS AS

A MODEL

ABSTRACT

The accurate prediction and characterization of small open reading frames
(smORFs) are critical for understanding their functional roles in gene regulation and
cellular processes. This study presents the development and evaluation of a novel
hybrid machine learning algorithm that integrates the strengths of Random Forest and
Gradient Boosting models to enhance the prediction of smORFs. The performance of
the hybrid algorithm was rigorously assessed and compared to the standalone models
using comprehensive evaluation metrics, including accuracy, sensitivity, specificity,
and area under the receiver operating characteristic curve (AUC). Results
demonstrated that the hybrid model achieved superior performance, with an accuracy
of 0.998, a sensitivity of 0.998, and a specificity of 1.00, significantly outperforming
both the Random Forest and Gradient Boosting models individually. Additionally,
transcriptomic data from Mycobacterium tuberculosis were utilized to validate the
predictions, highlighting the biological relevance and potential applications of the
proposed approach in computational biology. This study underscores the importance
of combining machine learning techniques to improve prediction accuracy and
provides a robust framework for advancing smORF discovery. While the focus was on
comparing standalone and hybrid models, the study identifies opportunities for future

benchmarking against external tools to further validate its contributions. The findings

xvii



contribute to both computational and biological research, offering insights into smORF

prediction methodologies and their applications.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

In recent years, there has been a growing interest in studying small proteins.
These small proteins have been discovered and studied across various domains of life
including prokaryote, archaea and eukaryote. However, many of them still poorly
understood functions, lack defined secondary structures, and show limited similarities
across different species (Weidenbach et al., 2022). Small open reading frames
(smORFs) are gaining increasing attention due to their significant role in encoding small
peptides. In the past, these peptides were considered non-functional or junk DNA by
early gene prediction methods (Guerra-Almeida et al., 2021). However, they are now
known to be involved in a wide range of physiological functions, including muscle
formation, cell proliferation, immune activation, and more (Kute et al., 2022).
Advancements in genomics and molecular biology have led to the discovery of
numerous small open reading frames (smORFs) in various transcripts. Initially, many
of these smORFs were considered non-functional; however, a significant number have
since been identified as playing important roles in physiological functions and human
diseases (Kute et al., 2022). The association between smORFs and human diseases
emphasizes the importance of understanding their roles and functions. This knowledge
can provide valuable insights into disease mechanisms and potential therapeutic targets

(Kute et al., 2022).



Small open reading frames (smORFs) can encode proteins that act as key factors
and play important roles in organisms. smORFs also constitute the potential pool for
promoting de novo gene birth, leading to evolutionary progress and the development of
various species. As a result, discovering these entities through theoretical and practical
approaches has become a remarkable endeavor (Yu et al., 2023). smORFs have been
identified as key player in a various of biological processes, including muscle formation
and contraction, cell growth, and immune stimulation (Ji et al., 2020). A significant
portion of these smORFs functions is still unknown. Hence, the development of
computational techniques to determine the function of smORFs has become
increasingly important (Ji et al., 2020). smORFs evolve continuously in species, serving
as templates for protein production and potentially as building blocks for evolutionary
adaptations (Sandmann et al., 2023). Comprehensive analyses have also categorized
smORFs into different functional categories, ranging from inert DNA sequences to

those that encode biologically active peptides (Couso & Patraquim, 2017).

smORFs have been found to play significant roles in various biological
processes (Ladoukakis et al., 2011; Orr et al., 2020). These smORFs can be located in
non-coding RNAs such as circular RNAs, mitochondrial RNAs, and long noncoding
RNAs (IncRNAs), as well as in coding transcripts (5'UTR, CDS, and 3'UTR) (Orr et
al., 2020). smORFs are present in all domains of life and are characterized by having
start and stop codons within a span of 100 codons or fewer (Guerra-Almeida et al.,
2021; Ladoukakis et al., 2011). These smORFs are highly abundant, surpassing the
number of annotated protein-coding ORFs. While functional proteins containing fewer
than 100 amino acids are known, the coding potential of smORFs has been largely

overlooked in the past (Couso & Patraquim, 2017; Yu et al., 2023).
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Therefore, despite their prevalence in genes with less than 100 codons (Cheng
et al., 2011), smORFs have often been disregarded in gene prediction and annotation.
However, recent studies have shed light on the significance of smORFs in various
biological processes, including muscle formation, cell growth, and their potential roles
in adaptation (Ji et al., 2020; Sandmann et al., 2023). Functional smORFs often remain
unannotated due to the lack of experimental confirmation (Couso & Patraquim, 2017).
there are frequently overlooked simply because they haven't been experimentally
verified (Couso & Patraquim, 2017). Overcoming this challenge is difficult and rarely
achieved by chance (Couso & Patraquim, 2017).

Computational annotation relies on identifying similar sequences, which may
suggest the significance or function of the smORFs, or even match with known proteins,
offering valuable insights into their roles (Couso & Patraquim, 2017; Hood et al., 2009;
Kochetov, 2008; Samandi et al., 2017; Yu et al., 2023). The discovery of small peptides
has drawn increasing attention, leading to expanded research in this field. Current
studies on smORFs predominantly rely on computational prediction and biological
experiments. Common experiments methos include ribosome profiling (Erhard et al.,
2018; Fritsch et al., 2012), immunoblot assays (Hemm et al., 2008) and mass
spectrometry (Kersten et al., 2011; Oyama et al., 2007). Despite the advances,
biological investigation of small peptides or smnORFs are hampered by their small size,
short length, and low relative mass. These limitations often result in lengthy, costly

experiments that may be ineffective and inaccurate.

However, rapid developments of algorithms have greatly benefited several
fields, including IncRNA-disease association (Yu et al., 2020), cell-penetrating peptide

identification (Wei et al.,, 2017), IncRNA identification (Meng et al., 2021), and



miRNA-IncRNA interaction (Kang et al., 2020). Machine learning algorithm also holds
great potential as valuable tools for validating biological experiments, reducing costs

and time, and advancing research.

Tuberculosis has recently been declared a global health emergency due to the
rise in cases of Multidrug-resistant Tuberculosis (MDR-TB) worldwide. In a study by
(Ejalonibu et al., 2021), researchers developed new and more effective antibiotics
against resistant M. tuberculosis (Ejalonibu et al., 2021). These antibiotics are designed
to inhibit essential bacterial proteins, offering a promising strategy for combating the
global tuberculosis (TB) epidemic (Ejalonibu et al., 2021). The main objective of drug
design and discovery is to identify compounds that can specifically target a protein's
active site thereby disrupting its enzymatic activity. Once a compound with these
properties is identified, it undergoes rigorous testing, including clinical trials, to

evaluate its efficacy against the pathogen in the host (Ejalonibu et al., 2021).

In recent years, computational and analytical methods have emerged as valuable
tools in drug development. These techniques offer a significant improvement over
traditional methods, which can be time-consuming and laborious. Specifically,
computational techniques have been enhanced with the use of advanced software that
aids in the development and optimization of active compounds (Ejalonibu et al., 2021).
These compounds have the potential to be used in future chemotherapeutic development

to combat the global problem of tuberculosis resistance (Ejalonibu et al., 2021).

Machine learning (ML) refer to a set of algorithms that learn hidden patterns
from datasets, enabling tasks such as classification and clustering (Zhu & Gribskov,

2019). The development of an effective ML-based method for a particular problem



depends on a good dataset and a good choice of a specific ML algorithm (Barbierato &
Gatti, 2024). Many bioinformatics tools have been developed using machine learning
(ML), such as the ability to predict ORF coding potential (Kang et al., 2017; Wang et
al., 2013). Algorithm techniques also play a crucial role in genomics prediction, with
ML methods widely applied in various genomic tasks, including protein coding
potential identification (Yu et al., 2023), classification of disease-related genes (Le Thi
et al., 2008), protein binding site detection (Pan & Yan, 2017), and disease diagnosis
(Manogaran et al., 2018).

Despite the increasing use of machine learning and deep learning methods in
genomics, accurate prediction remain a challenge (Oubounyt et al., 2019). Moreover,
most current approaches rely on single shallow machine learning model, such as
Support Vector Machines (SVM) and Logistic Regression. These classifiers, however,
come with inherent limitations, leaving a room for further development and

improvement in this field.

In this study, we present a hybrid algorithm of Random Forest and Gradient
Boosting algorithms specifically for identifying small proteins or small open reading
frames less than 100 codons. These smORFs, through crucial in many biological
processes are often overlooked due to their size, lack of conservation and difficult in
annotating smORFs in prokaryotic genomes. Enhancing the accuracy, sensitivity,
specificity, and robustness of smORFs prediction is essential. An effective algorithm is
needed for the computational discovery and characterization of smORFs with

Mycobacterium tuberculosis as a model organism.



1.2 Problem Statement

Small proteins often exhibit diverse structures and functions that are not well
characterized. Their short sequences pose a challenge for traditional algorithms, which
rely on larger datasets to effectively identify patterns (Fuchs & Engelmann, 2023). As
a result, these algorithms tend to have high false-negative rates, where actual small
proteins are overlooked (Jeffery, 2023).

Previous studies have compiled and annotated numerous smORFs, but the
functions of the majority of these smORFs remain unknown (Ji et al., 2020). Despite
this, some smORFs that have been studied play crucial roles in various biological
functions (Bartholomaéus et al., 2021; Ji et al., 2020; Yu et al., 2023; Zhu & Gribskov,
2019). Identifying smORFs experimentally has proven challenging (Yu et al., 2023).
While several in silico techniques have been developed to distinguish between long
non-coding RNAs (IncRNAs) and coding RNAs (mRNAs), they are less effective with
RNAs containing smORFs (Zhang et al., 2021). Furthermore, traditional methods are
often computationally intensive and not scalable for large datasets and complex genes
features (Yu et al., 2023).

This study aims to address these issues by introducing a more effective
algorithm for the computational discovery and characterization of smORFs, using
Mycobacterium tuberculosis (M. tuberculosis) as a model. M. tuberculosis causes
tuberculosis, which is the ninth leading causes of death globally and the leading cause
of mortality due from a single infectious agent, with the highest infection and death

rates occurring in developing and low-income countries (Bagcchi, 2023).



1.3 Study Rationale

Recent advancements in genome sequencing and transcriptomics have
generated vast amounts of data (Satam et al., 2023), yet the identification and functional
characterization of smORFs remain underexplored. These smORFs, typically less than
100 amino acids in length, are challenging to detect with traditional bioinformatics tools
due to their small size and the inherent noise in genomic data (Leong et al., 2022).
Although previous studies have highlight the presence and potential significance of
smORFs in various biological processes, but comprehensive datasets and robust
prediction models are still lacking (Ji et al., 2020).

This study aims to address these gaps by focusing on the computational
discovery and characterization of smORFs. Our goal is to contribute to the development
and innovation of smORFs prediction in bacterial species. This research highlights the
urgency of filing current knowledge gaps and focuses specifically on bacterial

species and smORFs characterization.

1.4 Research Questions
1. How can an algorithm be developed to improve the efficiency of discovering
and characterizing of small open reading frames (smORFs) or small proteins?
2. How can a computational framework be developed to identify small open
reading frames (smORFs)?

3. How to validate transcriptome analysis in the discovery of novel smORFs?



1.5 Objectives of the Study

1.5.1 General Objective
The main objective of this study is to develop an algorithm for the computational
discovery and characterization of small open reading frames (smORFs) or small

proteins using Mycobacterium tuberculosis as a model.

1.5.2 Specific Objectives

1. To develop a hybrid algorithm for the prediction and identification of small
open reading frames (SmORFs).

2. To evaluate and compare the performance of the standalone Random Forest
and Gradient Boosting models against the developed hybrid algorithm in
predicting smORFs.

3. To validate the predicted smORFs from Mycobacterium tuberculosis by
mapping them to its transcriptome data.

4. To identify and characterize novel smORFs in M. tuberculosis.

1.6 Conceptual Framework

The conceptual framework provides an approach to explore the diverse and
functional significance of smORFs within bacterial genomes. By combining
computational methods and transcriptome analysis to identify and characterize small

proteins (Figure 1.1).
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Figure 1.1 Diagram showing the conceptual framework



CHAPTER 2

LITERATURE REVIEW

2.1 Algorithm

Machine learning (ML) algorithms have evolved tremendously over the past two
decades, transitioning from a laboratory curiosity to essential tools in widespread
commercial applications. Within artificial intelligence (Al), machine learning has
become the preferred approach for developing practical software for tasks such as
computer vision, speech recognition, natural language processing and robot control
(Jordan & Mitchell, 2015; Soori et al., 2023). ML encompasses a broad range of
algorithms and modelling tools for various data processing tasks and has impacted most

scientific disciplines in recent years (Carleo, 2019).

2.1.1 Hidden Markov Models

Hidden Markov Models (HMM) are used to account for unequal and
unpredictable evolutionary rates across different positions in molecular sequences
(Baldi et al., 1994). Evolutionary rates at distinct positions are constrained to a limited
range of possible rates. The likelihood of phylogeny is calculated as a sum of terms,
where each term is the probability of observing the data given a specific assignment of
rates to sites, multiplied by the prior probability of that rate combination (Felsenstein &
Churchill, 1996).

An HMM consists of a finite set of states linked by transitions. Each state is
characterized by two sets of probabilities: a transition probabilities, which determine
the likelihood of moving from one state to another, and output probability distribution

or density functions (Yang et al., 1994). These distributions provide the probability of
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emitting each output symbol from a finite alphabet or a continuous random vector of

the current state (Yang et al., 1994).

2.1.2 Hybrid Algorithm

Hybrid algorithms are optimization algorithms that combine two or more
different techniques to achieve better performance (Ting et al., 2015). This approach
leverages the strengths of each technique while minimizing their weaknesses. Hybrid
algorithms are important in enhancing algorithm search capability. The goal of
hybridization is to integrate the benefits of each algorithm to develop a hybrid algorithm
while minimizing any significant downsides. In general, hybridization results in
increased computational speed or accuracy (Ting et al., 2015). In contrast, ensemble
algorithms combine the predictions of multiple models often of the same or similar
types (e.g., multiple decision trees or classifiers) to achieve better generalization
performance. These models operate independently, and their outputs are aggregated
using techniques such as majority voting, weighted averaging, or stacking. Popular

ensemble strategies include bagging, boosting, and random forests (Brown, 2017).

2.1.3 Random Forest Algorithm

Random Forest (RF) is an algorithm proposed by Breiman (2001), RF builds
multiple decision trees by randomly selecting subsets of data and features. This
approach helps improve the model's robustness against noise, making it suitable for
handling complex datasets (Figure 2.1). Numerous empirical studies have confirmed
the high prediction accuracy of the random forest algorithm, as well as its ability to
tolerate abnormal values and noise (Gao et al., 2019). RF has been utilized in various

fields in recent years. For instance, Malek et al. (2018) successfully predicted paediatric
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fracture healing time by combining Random Forest with self-organizing maps. Yu et al.
(2023) introduced RF to predict protein-coding potential. Similarly, Wang et al. (2018)
applied RF to condition monitoring and fault diagnosis in manufacturing and proposed
a panoramic crack detection method based on structured RF. In the study of Tabatabaee
Malazi & Davari (2018), they achieved a high level of accuracy in identifying complex
activities of elders at home by using RF and emerging pattern algorithms, as measured
by the F-measure index. In addition, in the study of de Santana et al. (2018), the authors
quantified the quality of soil parameters through multivariable regression of RF,
enabling a fast and automatic analysis process. Finally, Anitha & Raja (2017), proposed

a new computer-aided method for detecting brain tumors using the RF classifier.
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Figure 2.1 Structure of the Weighted Random Forest (Gao et al., 2019)

2.1.4 Gradient Boosting Algorithm

The gradient boosting machine (GBM) is an ensemble learning method that
constructs a predictive model by sequentially adding fitted weak learners (Friedman,

2002). Gradient Boosting Tree (GBT) uses a boosting method to improve a decision
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tree (DT) (Friedman, 2001). Rather than creating a new optimized model, the key idea
is to combine weak models to form a strong consensus model. The feature space is
initially partitioned into sub-regions in a DT (Hastie et al., 2001) to represent the
dependent variable for each region (Breiman et al., 2017). The objective is to learn a
functional mapping y = F(x; 8) from data {xi, yi} n i=1, where [ represents the set of
parameters of F, with the objective of minimizing a cost function Y n i=1 ®(yi, F(xi,
B)) (Chen et al., 2013). Boosting assumes that F(x) follows an "additive" expansion
form F(x) = > M m=0 pmf(x; tm), where f is referred to as the weak or base learner
and has a weight p and a parameter set t. Therefore, the whole parameter set f is
composed of {pm, tm} M m=1 (Chen et al., 2013). These parameters are learned in a
greedy "stage-wise" process, which involves: (1) setting an initial estimator f0(x); (2)
for each iteration m € {1, 2, ..., M}, solving (pm, Tm) = arg minp,t Y n i=1 O(yi,

Fm—1(xi) + pf(xi; 7)) (Y. Chen et al., 2013).

GBM approximates step two steps. First, it fits f(x; Tm) by

Tm = arg miny Z?:l(gim—f(xi;‘t))2 (1)

Where;

) 99 (y1,F (x1))
_ (2
gim = [ OF(x;) ]F(x) =Fp—1(x) )

Secondly, it learns p by

pm = argy™ Z?_ ¢ (1 B, (x) + pf + (4;Tm)) ()

Then, it modifies Fm (x) = Fm—1 (x) + pmf(x; Tm). However, in practical,

shrinkage is frequently added to prevent overfitting; as a result, the update becomes
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Fm(x) = Fm—1(x) + vomf(x; tm), where 0 < v < 1. Tree factors, such as tree size (or
depth) and the minimal number of samples at terminal nodes, influence the complexity
of f(x) if the regression tree is the weak learner. In addition to utilizing appropriate
shrinkage and tree parameters, subsampling, that is fitting each base learner on a random
subset of the training data could enhance GBM performance (Figure 2.2), this technique

is known as stochastic gradient boosting.
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Figure 2.2 Structure of Gradient Boosting Tree (Chen et al., 2022)

2.2 smORFs prediction approach

Various algorithms have been employed to predict smORFs, including Random
Forest (Yu et al., 2023), class-imbalance learning (Zhao et al., 2023), profile hidden
Markov models and deep learning (Durrant & Bhatt, 2021), Convolutional Neural
Networks (Al-Ajlan & El Allali, 2019), and DeepCPP, a deep neural network for coding
potential prediction (Zhang et al., 2021). In addition, logistic regression was utilized in
the MiPepid study (Zhu & Gribskov, 2019), while ORFpred (Srinivas et al., 2016)
employed a machine learning method to predict the likelthood of ORF translation

initiation and elongation. Other approaches include the smORFer algorithm
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(Bartholomaus et al., 2021) and RNA expression analysis using reannotated microarray
probes (Ji et al., 2020). Below, we will provide a detailed discussion on the distinct
characteristics of algorithms employed by various smORF prediction tools. The purpose
of this comprehensive analysis is to enhance understanding of the different approaches
used in smORF prediction, while considering the tools. Specifically, we will examine

both the advantages and limitations of each algorithm.

2.2.1 Prokaryotic Predictions

2.2.1(a) ProsmORF-pred: A machine learning based method for the identification
of smallORFs in prokaryotic genomes

ProsmORF-pred used Random Forest approach for the prediction of small open
reading frames (smORFs) encoding proteins with less than 100 amino acids (Khanduja
et al., 2023). ProsmORF-pred, a machine learning-based technique created after a
complete examination of known prokaryotic smORFs, was introduced in the research
of (Khanduja et al., 2023). Based on sequence and genomic neighbourhood similarity
searches, this technique shows potential in predicting smORFs and assisting in their
functional annotation (Khanduja et al., 2023). The ProsmORF-pred methodology to
identify smORFs entails training two separate ML models within ProsmORF-pred. The
model for detecting protein-like sequences is trained using annotated smORFs from
Escherichia coli, whereas the model for identifying initiation site recognition is trained
using longer ORFs (>100aa) from the same genome. The work describes a detailed
benchmarking of ProsmORF-pred, proving its performance on annotated smORFs from
32 bacterial genomes in comparison to previous techniques. The technique achieved

sensitivity of 0.96 in predicting smORFs.
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The discussion revolves around the significance of smORFs in cellular
processes and the challenges associated with their computational identification. The
authors elucidate the limitations of existing approaches, emphasizing the necessity for
more accurate prediction tools, especially. They highlight the potential impact of
ProsmORF-pred in complementing high-throughput experimental approaches and the

importance of machine learning in advancing smORF prediction.

2.2.1(b) Automated Prediction and Annotation of Small Open Reading Frames in
Microbial Genomes

smORFs and microproteins have been identified to play a significant role in
microbes (Durrant & Bhatt, 2021). However, there are still numerous unknown
smORFs in human-associated microbes. A recent bioinformatic analysis aimed to
improve the prediction of small protein families by utilizing evolutionary conservation
signals. To facilitate the annotation of specific smORFs, they developed a tool called
SmORFinder (Durrant & Bhatt, 2021). This tool combined profile hidden Markov
models of each smORF family with deep learning models that possess superior
generalization capabilities for smORF families not included in the training set.
Consequently, the predictions made by SmORFinder incorporate Ribo-seq translation
signals. An analysis of feature importance revealed that the deep learning models can
identify Shine-Dalgarno sequences, prioritize specific positions in each codon, and
group synonymous codons present in the codon table. Furthermore, an examination of
the core genome of 26 bacterial species identified several core smORFs with unknown
functions. They have pre-computed smORF annotations for thousands of RefSeq isolate

genomes and Human Microbiome Project metagenomes, which are accessible through
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a public web portal. In this study, they developed two deep learning models using the
hyperband algorithm to fine-tune hyperparameters. These models, collectively referred
to as DeepSmORFNets (DSN), include the first model (DSN1), which was optimized
to achieve the lowest validation loss on a validation set of observed smORF families
("Validation - Observed"), and the second model (DSN2), which was optimized to
achieve the highest F1 score on a validation set of unobserved smORF families. Based
on these findings, it can be concluded that the deep learning models generally exhibit
better performance in generalizing to unobserved smORF families, while the pHMMs
still demonstrated superior precision at a significance cutoff of an E-value < 1 x 1076.
This suggests that the models may complement each other when used together to
identify smORFs. The authors utilize a combination of profile hidden Markov models
(pHMMs) and deep learning models to predict smORFs and their encoded
microproteins (Durrant & Bhatt, 2021).

This approach, named SmORFinder, improves the detection of smORFs that are
often missed by traditional methods. The deep learning models within SmORFinder
identify biologically meaningful features of smORFs sequences, including Shine-
Dalgarno sequences, codon synonyms, and codon wobble positions. Through rigorous
evaluations and comparisons with existing tools, the authors demonstrate the
effectiveness of their approach in identifying smORFs with improved precision and
recall. Applying their approach to 26 bacterial species, the authors identified several
core smORFs of unknown function (Durrant & Bhatt, 2021).

This discovery highlights the potential functional significance of these smORFs
in microbial genomes. Moreover, the research provides a comprehensive analysis of
thousands of RefSeq isolate genomes and Human Microbiome Project metagenomes,

offering valuable annotations through a public web portal. This resource facilitates
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further research and exploration of smORFs in various microbial genomes. The results
of this research indicate that deep learning algorithms outperform in terms of
generalizing to unobserved smORF groups in general, while the accuracy of pHMMs
remains superior with a significance threshold of an E-value < 1 x 10°. The algorithms
can potentially supplement each other when employed jointly for smORFs
identification. The study introduces a novel approach to addressing the challenges of
smORFs prediction and annotation in microbial genomes. Their deep learning models
not only enhance detection accuracy but also uncover biologically relevant features of
smORF sequences (Durrant & Bhatt, 2021). By identifying core smORFs of unknown
function, this study provides insights into potential novel regulators of microbial
processes. The SmORFinder annotation tool and the accompanying web portal offer
valuable resources for the scientific community to explore smORFs' roles in microbial
genomics. This research opens avenues for further investigations into the functional
significance of these often-overlooked small proteins, additionally the study only
focused on smORFs in microbial genomes and did not consider smORFs in other

organisms (Durrant & Bhatt, 2021).

2.2.1(c) smORFer: a modular algorithm to detect small ORFs in prokaryotes
Small proteins are increasingly recognized as important in physiological
processes (Bartholoméus et al., 2021). However, the functional identification and
genome annotation of these proteins remain challenging. Ribosome profiling, a method
that sequences ribosome-protected fragments, can detect active open-reading frames
(ORFs) and annotate coding sequences (CDSs) (Bartholomdus et al., 2021). While
multiple identifiers had been successful in eukaryotic smORFs annotation, they faced

difficulties in prokaryotic genomes due to unique features such as polycistronic
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messages and non-canonical initiation (Bartholoméaus et al., 2021). To address this
issue, a new algorithm called smORFer was developed (Bartholoméus et al., 2021). This
algorithm aims to detect putative smORFs in prokaryotic organisms by using an
integrated approach that considers the structural features of the genetic sequence and
in-frame translation. This was achieved by converting these parameters into a
measurable score using Fourier transform (Bartholoméus et al., 2021). The algorithm
can be executed in a modular way, allowing different modules to be selected for
smORFs search depending on the available data for a particular organism.

In the study conducted by Bartholomdus et al. (2021), presented a novel
approach to identifying smORFs in prokaryotic genomes. SmORFs, which encode
small proteins with fewer than 50 amino acids, have recently gained recognition for
their central roles in various physiological processes (Bartholomius et al., 2021).
However, their systematic annotation and functional identification remain challenging
both experimentally and computationally. The paper introduces a new algorithm,
smORFer, which addressed these challenges by leveraging ribosome profiling data and
considering unique features of prokaryotic genomes. The smORFer algorithm utilized
ribosome profiling, also known as Ribo-Seq, which involves deep sequencing of
ribosome-protected fragments to identify actively translated open-reading frames
(ORFs). Unlike previous approaches that rely on the 3-nt periodicity in Ribo-Seq data
sets for eukaryotic smORFs annotation, smORFer took into account the distinct
characteristics of prokaryotic genomes. This includes factors such as overlapping ORFs,
polycistronic messages, non-canonical initiation and leaderless translation, which can
complicate smORFs prediction in prokaryotes (Bartholomaus et al., 2021).

One of the unique features of smORFer is its integrated approach, combining structural

features of genetic sequences with in-frame translation (Bartholomaus et al., 2021). The

19



algorithm employed Fourier transform to convert these parameters into a measurable
score, enabling accurate selection of putative smORFs. The modular nature of smORFer
allows researchers to tailor the algorithm to specific organisms by selecting different
modules based on available data. This flexibility enhances the algorithm's versatility
and adaptability to various prokaryotic species.

The author compared RibORF with smORFer in detecting lengthy ORFs in the
E. coli genome, specifically those longer than 1000 nt. Using the genomic sequence,
RibORF and smORFer predicted many possible ORFs. The number was higher than the
identified ORFs in E. coli, however, because they considered numerous start codons
that shared the same stop codon. Both techniques detected 99.6% of the known
annotated ORFs when counting ORFs based on unique stop codons. RibORF identified
235 translated ORFs (1.2% of all known ORFs >1000 nt) by including extra criteria,
whereas smORFer recognized 740 (45% of all known ORFs >1000 nt) (Bartholoméus
et al., 2021). This discrepancy might be attributable in part to the use of TIS-Ribo-Seq
data, highlighting the relevance of include such datasets for precise mapping of
initiation locations. It is worth noting that RibORF, which does not require TIS-Ribo-
Seq, runs slower than the algorithm used in the study. The study contributes to the
development of smORFer, a novel algorithm designed to accurately detect smORFs in
prokaryotic genomes (Bartholomaius et al., 2021).

By accounting for the unique genomic architecture of prokaryotes, smORFer
overcame challenges associated with traditional smORFs prediction methods. This
algorithm holds promise for advancing our understanding of small protein function and
expanding our knowledge of their roles in microbial physiology. In addition, the
research paper introduces smORFer as an innovative algorithm for the detection of

smORFs in prokaryotic genomes. By incorporating structural features of genetic
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sequences and in-frame translation, smORFer demonstrates high accuracy in
identifying putative smORFs. This modular approach provides researchers with a
versatile tool to address the challenges of smORF annotation in prokaryotic organisms.
The limitation shows that the use of a single dataset for peptide identification and the
need for further validation of smORFer's predictions, including the need for more
comprehensive datasets and the development of methods to study the function of small

proteins (Bartholomaéus et al., 2021).

2.2.1(d) Pervasive translation in Mycobacterium tuberculosis.

The study by Smith et al. (2022) investigates pervasive translation in M.
tuberculosis. The authors employed advanced ribosome profiling techniques to map
translation activity across the M. tuberculosis genome, addressing limitations of
conventional gene prediction algorithms that often miss small and unconventional open

reading frames (ORFs).

The researchers utilized two ribosome profiling approaches: Ribo-seq and Ribo-
RET. Ribo-RET treats bacterial cultures with retapamulin to trap initiating ribosomes
at start codons, enriching translation initiation sites. Ribo-seq captures elongating
ribosomes across mMRNAs. RNA fragments of about 31 nucleotides were size-selected,
dephosphorylated, and prepared into sequencing libraries, which were sequenced to
identify regions of active translation. Bioinformatic analyses included mapping
ribosome footprints to the genome, detecting novel ORFs, particularly short ORFs, and
analyzing their features. Evolutionary analyses examined codon usage patterns and
signatures of purifying selection, providing insights into the potential functional

importance of identified ORFs.
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The study revealed widespread translation of numerous previously unannotated
ORFs, most being short and encoding peptides of 50 amino acids or less. While many
showed characteristics consistent with non-functional proteins, such as lack of
conservation and signatures of neutral evolution, a subset demonstrated signs of
evolutionary constraint. Approximately 90 ORFs exhibited evidence of purifying
selection, suggesting functional relevance. The total number of these ORFs exceeds the
annotated genes in the M. tuberculosis genome, highlighting pervasive translation. The
findings imply that M. tuberculosis continuously translates a broad spectrum of
genomic regions, generating short peptides that could serve as raw material for gene
evolution or other roles in bacterial physiology.

The authors interpret their findings as evidence that pervasive translation in M.
tuberculosis produces a large repertoire of short peptides, most likely non-functional.
However, the subset under purifying selection suggests that some of these short ORFs
may evolve in genes with specific functions. This dynamic indicates that pervasive
translation might serve as a substrate for genetic innovation, allowing bacteria to adapt
rapidly to environmental pressures. These insights into the bacterial translational
landscape emphasize the complexity of microbial genomes and challenge traditional
notions of gene annotation.

The study further provided a comprehensive analysis demonstrating that M.
tuberculosis exhibits extensive translation of novel genomic regions, mainly short
ORFs. Their integration of ribosome profiling with evolutionary evidence highlights the
potential for new gene emergence and enhances our understanding of bacterial gene
regulation and evolution. The findings underscores the importance of experimental

approaches in revealing hidden layers of the bacterial transcriptome and proteome,
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offering a foundation for future studies into the functional roles of these newly identified

peptides (Smith et al., 2022).

2.2.1(e) Leaderless Transcripts and Small Proteins Are Common Features of
Mycobacterial Translational Landscape

The study by Shell et al. (2015) provides a comprehensive investigation into the
translational landscape of mycobacteria, specifically Mycobacterium smegmatis and M.
tuberculosis. The authors employ an integrative approach combining RNA-seq,
transcription start site (TSS) mapping, ribosome profiling, and N-terminal mass
spectrometry to elucidate gene structures and translation mechanisms. They reveal that
approximately 25% of transcripts are leaderless, initiated directly at an AUG or GUG
start codon without upstream ribosome-binding sites, yet are translated efficiently,
challenging the canonical view based on E. coli paradigms. The study uncovers
numerous unannotated small proteins and alternative start codons, indicating significant
underannotation and proteome diversity. Functional assays demonstrate that leaderless
translation in mycobacteria solely depends on the presence of a start codon, whereas
leadered translation requires Shine-Dalgarno interactions (Shell et al., 2015). However,
these findings are limited to specific growth conditions, and the mechanisms of
leaderless translation across different environmental states or stress conditions remain
unclear. Moreover, while the study provides evidence for the prevalence and efficiency
of leaderless translation, the precise molecular mechanisms behind this process are not
fully characterized. These limitations suggest that additional studies are necessary to
generalize the findings and fully understand how diverse conditions influence
translation modes and regulation in mycobacteria. Despite these constraints, the work

significantly advances our understanding of mycobacterial gene regulation and offers
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important insights for genome annotation, pathogenicity, and therapeutic targeting of

bacterial translation machinery (Shell et al., 2015).

Therefore, several approaches have been utilized for predicting smORFs using
different algorithms, including Random Forest (Yu et al.,, 2023), class-imbalance
learning (Zhao et al., 2023), profile hidden Markov models and deep learning (Durrant
& Bhatt, 2021), Convolutional Neural Networks (Al-Ajlan & El Allali, 2019), and
DeepCPP, a deep neural network for coding potential prediction (Zhang et al., 2021).
Furthermore, in the study of MiPepid (Zhu & Gribskov, 2019), utilized logistic
regression and ORFpred (Srinivas et al., 2016), used machine learning method to
predict the likelihood of ORF translation initiation and elongation. Moreover, there are
other approaches like the smORFer algorithm (Bartholomaus et al., 2021), and RNA

expression analysis using reannotated microarray probes (Ji et al., 2020).

2.2.1(f) Integrated sequence and omic features reveal novel small proteome of M.
tuberculosis

Sinha et al. (2024) developed a bioinformatics pipeline integrating sequence
features with high-throughput omics data, RNA-Seq, Ribo-Seq, and proteomics to
predict and validate small proteins in M. tuberculosis. Public datasets from various
conditions, including exponential growth, nutrient starvation, and hypoxia, were used
to capture diverse gene expression profiles. Features such as codon usage bias, GC
content, and sequence conservation were used as inputs to train a Random Forest
classifier to distinguish coding from non-coding regions. Incorporating Ribo-Seq data

improved the detection of actively translated smORFs.

24





