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ALGORITMA HIBRID PEMBELAJARAN TETULANG MENDALAM 

UNTUK PENEMUAN PENGIRAAN DAN PENCIRIAN PROTEIN KECIL 

MENGGUNAKAN MYCOBACTERIUM TUBERCULOSIS SEBAGAI 

MODEL 

ABSTRAK 

Ramalan dan pencirian tepat bagi rangka bacaan terbuka kecil (smORF) adalah 

penting untuk memahami peranan fungsinya dalam pengawalan gen dan proses 

selular. Kajian ini membentangkan pembangunan dan penilaian satu algoritma 

pembelajaran mesin hibrid baharu yang menggabungkan kekuatan model Random 

Forest dan Gradient Boosting bagi meningkatkan ketepatan ramalan smORF. Prestasi 

algoritma hibrid ini dinilai secara menyeluruh dan dibandingkan dengan model 

individu menggunakan metrik penilaian komprehensif termasuk ketepatan, sensitiviti, 

spesifisiti dan kawasan di bawah lengkung ROC (AUC). Keputusan menunjukkan 

bahawa model hibrid mencapai prestasi yang lebih tinggi dengan ketepatan 0.998, 

sensitiviti 0.998, dan spesifisiti 1.00, sekali gus mengatasi prestasi model Random 

Forest dan Gradient Boosting secara individu. Selain itu, data transkriptom daripada 

Mycobacterium tuberculosis digunakan untuk mengesahkan ramalan tersebut, 

menonjolkan kaitan biologi dan potensi aplikasi pendekatan yang dicadangkan dalam 

biologi pengiraan. Kajian ini menekankan kepentingan gabungan teknik pembelajaran 

mesin untuk meningkatkan ketepatan ramalan dan menyediakan kerangka kukuh bagi 

kemajuan penemuan smORF. Walaupun tumpuan diberikan kepada perbandingan 

antara model individu dan hibrid, kajian ini turut mengenal pasti peluang untuk 

penanda aras lanjutan terhadap alatan luaran bagi mengesahkan lagi sumbangannya. 

Penemuan ini menyumbang kepada bidang penyelidikan biologi dan pengiraan, serta 
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menawarkan pandangan mendalam tentang metodologi ramalan smORF dan 

aplikasinya.   
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A DEEP REINFORCEMENT LEARNING HYBRID ALGORITHM FOR THE 

COMPUTATIONAL DISCOVERY AND CHARACTERIZATION OF 

SMALL PROTEINS UTILIZING MYCOBACTERIUM TUBERCULOSIS AS 

A MODEL 

 

ABSTRACT 

The accurate prediction and characterization of small open reading frames 

(smORFs) are critical for understanding their functional roles in gene regulation and 

cellular processes. This study presents the development and evaluation of a novel 

hybrid machine learning algorithm that integrates the strengths of Random Forest and 

Gradient Boosting models to enhance the prediction of smORFs. The performance of 

the hybrid algorithm was rigorously assessed and compared to the standalone models 

using comprehensive evaluation metrics, including accuracy, sensitivity, specificity, 

and area under the receiver operating characteristic curve (AUC). Results 

demonstrated that the hybrid model achieved superior performance, with an accuracy 

of 0.998, a sensitivity of 0.998, and a specificity of 1.00, significantly outperforming 

both the Random Forest and Gradient Boosting models individually. Additionally, 

transcriptomic data from Mycobacterium tuberculosis were utilized to validate the 

predictions, highlighting the biological relevance and potential applications of the 

proposed approach in computational biology. This study underscores the importance 

of combining machine learning techniques to improve prediction accuracy and 

provides a robust framework for advancing smORF discovery. While the focus was on 

comparing standalone and hybrid models, the study identifies opportunities for future 

benchmarking against external tools to further validate its contributions. The findings 
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contribute to both computational and biological research, offering insights into smORF 

prediction methodologies and their applications.
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1. CHAPTER 1 

 

INTRODUCTION 

1.1 Background of the Study 

In recent years, there has been a growing interest in studying small proteins. 

These small proteins have been discovered and studied across various domains of life 

including prokaryote, archaea and eukaryote. However, many of them still poorly 

understood functions, lack defined secondary structures, and show limited similarities 

across different species (Weidenbach et al., 2022). Small open reading frames 

(smORFs) are gaining increasing attention due to their significant role in encoding small 

peptides. In the past, these peptides were considered non-functional or junk DNA by 

early gene prediction methods (Guerra-Almeida et al., 2021). However, they are now 

known to be involved in a wide range of physiological functions, including muscle 

formation, cell proliferation, immune activation, and more (Kute et al., 2022). 

Advancements in genomics and molecular biology have led to the discovery of 

numerous small open reading frames (smORFs) in various transcripts. Initially, many 

of these smORFs were considered non-functional; however, a significant number have 

since been identified as playing important roles in physiological functions and human 

diseases (Kute et al., 2022). The association between smORFs and human diseases 

emphasizes the importance of understanding their roles and functions. This knowledge 

can provide valuable insights into disease mechanisms and potential therapeutic targets 

(Kute et al., 2022).  
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Small open reading frames (smORFs) can encode proteins that act as key factors 

and play important roles in organisms. smORFs also constitute the potential pool for 

promoting de novo gene birth, leading to evolutionary progress and the development of 

various species. As a result, discovering these entities through theoretical and practical 

approaches has become a remarkable endeavor (Yu et al., 2023). smORFs have been 

identified as key player in a various of biological processes, including muscle formation 

and contraction, cell growth, and immune stimulation (Ji et al., 2020). A significant 

portion of these smORFs functions is still unknown. Hence, the development of 

computational techniques to determine the function of smORFs has become 

increasingly important (Ji et al., 2020). smORFs evolve continuously in species, serving 

as templates for protein production and potentially as building blocks for evolutionary 

adaptations (Sandmann et al., 2023). Comprehensive analyses have also categorized 

smORFs into different functional categories, ranging from inert DNA sequences to 

those that encode biologically active peptides (Couso & Patraquim, 2017). 

 

smORFs have been found to play significant roles in various biological 

processes (Ladoukakis et al., 2011; Orr et al., 2020). These smORFs can be located in 

non-coding RNAs such as circular RNAs, mitochondrial RNAs, and long noncoding 

RNAs (lncRNAs), as well as in coding transcripts (5′UTR, CDS, and 3′UTR) (Orr et 

al., 2020). smORFs are present in all domains of life and are characterized by having 

start and stop codons within a span of 100 codons or fewer (Guerra-Almeida et al., 

2021; Ladoukakis et al., 2011). These smORFs are highly abundant, surpassing the 

number of annotated protein-coding ORFs. While functional proteins containing fewer 

than 100 amino acids are known, the coding potential of smORFs has been largely 

overlooked in the past (Couso & Patraquim, 2017; Yu et al., 2023).  
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Therefore, despite their prevalence in genes with less than 100 codons (Cheng 

et al., 2011), smORFs have often been disregarded in gene prediction and annotation. 

However, recent studies have shed light on the significance of smORFs in various 

biological processes, including muscle formation, cell growth, and their potential roles 

in adaptation (Ji et al., 2020; Sandmann et al., 2023). Functional smORFs often remain 

unannotated due to the lack of experimental confirmation (Couso & Patraquim, 2017). 

there are frequently overlooked simply because they haven't been experimentally 

verified (Couso & Patraquim, 2017). Overcoming this challenge is difficult and rarely 

achieved by chance (Couso & Patraquim, 2017).  

Computational annotation relies on identifying similar sequences, which may 

suggest the significance or function of the smORFs, or even match with known proteins, 

offering valuable insights into their roles (Couso & Patraquim, 2017; Hood et al., 2009; 

Kochetov, 2008; Samandi et al., 2017; Yu et al., 2023). The discovery of small peptides 

has drawn increasing attention, leading to expanded research in this field. Current 

studies on smORFs predominantly rely on computational prediction and biological 

experiments. Common experiments methos include ribosome profiling (Erhard et al., 

2018; Fritsch et al., 2012), immunoblot assays (Hemm et al., 2008) and mass 

spectrometry (Kersten et al., 2011; Oyama et al., 2007). Despite the advances, 

biological investigation of small peptides or smORFs are hampered by their small size, 

short length, and low relative mass. These limitations often result in lengthy, costly 

experiments that may be ineffective and inaccurate.  

However, rapid developments of algorithms have greatly benefited several 

fields, including lncRNA-disease association (Yu et al., 2020), cell-penetrating peptide 

identification (Wei et al., 2017), lncRNA identification (Meng et al., 2021), and 
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miRNA-lncRNA interaction (Kang et al., 2020). Machine learning algorithm also holds 

great potential as valuable tools for validating biological experiments, reducing costs 

and time, and advancing research.  

Tuberculosis has recently been declared a global health emergency due to the 

rise in cases of Multidrug-resistant Tuberculosis (MDR-TB) worldwide. In a study by 

(Ejalonibu et al., 2021), researchers developed new and more effective antibiotics 

against resistant M. tuberculosis (Ejalonibu et al., 2021). These antibiotics are designed 

to inhibit essential bacterial proteins, offering a promising strategy for combating the 

global tuberculosis (TB) epidemic (Ejalonibu et al., 2021). The main objective of drug 

design and discovery is to identify compounds that can specifically target a protein's 

active site thereby disrupting its enzymatic activity. Once a compound with these 

properties is identified, it undergoes rigorous testing, including clinical trials, to 

evaluate its efficacy against the pathogen in the host (Ejalonibu et al., 2021).  

In recent years, computational and analytical methods have emerged as valuable 

tools in drug development. These techniques offer a significant improvement over 

traditional methods, which can be time-consuming and laborious. Specifically, 

computational techniques have been enhanced with the use of advanced software that 

aids in the development and optimization of active compounds (Ejalonibu et al., 2021). 

These compounds have the potential to be used in future chemotherapeutic development 

to combat the global problem of tuberculosis resistance (Ejalonibu et al., 2021). 

Machine learning (ML) refer to a set of algorithms that learn hidden patterns 

from datasets, enabling tasks such as classification and clustering (Zhu & Gribskov, 

2019). The development of an effective ML-based method for a particular problem 
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depends on a good dataset and a good choice of a specific ML algorithm (Barbierato & 

Gatti, 2024). Many bioinformatics tools have been developed using machine learning 

(ML), such as the ability to predict ORF coding potential (Kang et al., 2017; Wang et 

al., 2013). Algorithm techniques also play a crucial role in genomics prediction, with 

ML methods widely applied in various genomic tasks, including protein coding 

potential identification (Yu et al., 2023), classification of disease-related genes (Le Thi 

et al., 2008), protein binding site detection (Pan & Yan, 2017), and disease diagnosis 

(Manogaran et al., 2018).  

Despite the increasing use of machine learning and deep learning methods in 

genomics, accurate prediction remain a challenge (Oubounyt et al., 2019). Moreover, 

most current approaches rely on single shallow machine learning model, such as 

Support Vector Machines (SVM) and Logistic Regression. These classifiers, however, 

come with inherent limitations, leaving a room for further development and 

improvement in this field. 

In this study, we present a hybrid algorithm of Random Forest and Gradient 

Boosting algorithms specifically for identifying small proteins or small open reading 

frames less than 100 codons. These smORFs, through crucial in many biological 

processes are often overlooked due to their size, lack of conservation and difficult in 

annotating smORFs in prokaryotic genomes. Enhancing the accuracy, sensitivity, 

specificity, and robustness of smORFs prediction is essential. An effective algorithm is 

needed for the computational discovery and characterization of smORFs with 

Mycobacterium tuberculosis as a model organism. 
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1.2 Problem Statement 

 Small proteins often exhibit diverse structures and functions that are not well 

characterized. Their short sequences pose a challenge for traditional algorithms, which 

rely on larger datasets to effectively identify patterns (Fuchs & Engelmann, 2023). As 

a result, these algorithms tend to have high false-negative rates, where actual small 

proteins are overlooked (Jeffery, 2023). 

Previous studies have compiled and annotated numerous smORFs, but the 

functions of the majority of these smORFs remain unknown (Ji et al., 2020). Despite 

this, some smORFs that have been studied play crucial roles in various biological 

functions (Bartholomäus et al., 2021; Ji et al., 2020; Yu et al., 2023; Zhu & Gribskov, 

2019). Identifying smORFs experimentally has proven challenging (Yu et al., 2023). 

While several in silico techniques have been developed to distinguish between long 

non-coding RNAs (lncRNAs) and coding RNAs (mRNAs), they are less effective with 

RNAs containing smORFs (Zhang et al., 2021). Furthermore, traditional methods are 

often computationally intensive and not scalable for large datasets and complex genes 

features (Yu et al., 2023).  

This study aims to address these issues by introducing a more effective 

algorithm for the computational discovery and characterization of smORFs, using 

Mycobacterium tuberculosis (M. tuberculosis) as a model. M. tuberculosis causes 

tuberculosis, which is the ninth leading causes of death globally and the leading cause 

of mortality due from a single infectious agent, with the highest infection and death 

rates occurring in developing and low-income countries (Bagcchi, 2023). 
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1.3 Study Rationale   

Recent advancements in genome sequencing and transcriptomics have 

generated vast amounts of data (Satam et al., 2023), yet the identification and functional 

characterization of smORFs remain underexplored. These smORFs, typically less than 

100 amino acids in length, are challenging to detect with traditional bioinformatics tools 

due to their small size and the inherent noise in genomic data (Leong et al., 2022). 

Although previous studies have highlight the presence and potential significance of 

smORFs in various biological processes, but comprehensive datasets and robust 

prediction models are still lacking (Ji et al., 2020). 

This study aims to address these gaps by focusing on the computational 

discovery and characterization of smORFs. Our goal is to contribute to the development 

and innovation of smORFs prediction in bacterial species. This research highlights the 

urgency of filing current knowledge gaps and focuses specifically on bacterial 

species and smORFs characterization. 

1.4 Research Questions 

1. How can an algorithm be developed to improve the efficiency of discovering 

and characterizing of small open reading frames (smORFs) or small proteins? 

2. How can a computational framework be developed to identify small open 

reading frames (smORFs)? 

3. How to validate transcriptome analysis in the discovery of novel smORFs? 
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1.5 Objectives of the Study 

1.5.1 General Objective 

The main objective of this study is to develop an algorithm for the computational 

discovery and characterization of small open reading frames (smORFs) or small 

proteins using Mycobacterium tuberculosis as a model. 

1.5.2 Specific Objectives 

1. To develop a hybrid algorithm for the prediction and identification of small 

open reading frames (smORFs). 

2. To evaluate and compare the performance of the standalone Random Forest 

and Gradient Boosting models against the developed hybrid algorithm in 

predicting smORFs. 

3. To validate the predicted smORFs from Mycobacterium tuberculosis by 

mapping them to its transcriptome data. 

4. To identify and characterize novel smORFs in M. tuberculosis. 

1.6 Conceptual Framework 

The conceptual framework provides an approach to explore the diverse and 

functional significance of smORFs within bacterial genomes. By combining 

computational methods and transcriptome analysis to identify and characterize small 

proteins (Figure 1.1). 



9 

 

 

Figure 1.1 Diagram showing the conceptual framework 
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2. CHAPTER 2 

LITERATURE REVIEW 

2.1 Algorithm 

Machine learning (ML) algorithms have evolved tremendously over the past two 

decades, transitioning from a laboratory curiosity to essential tools in widespread 

commercial applications. Within artificial intelligence (AI), machine learning has 

become the preferred approach for developing practical software for  tasks such as 

computer vision, speech recognition, natural language processing and robot control 

(Jordan & Mitchell, 2015; Soori et al., 2023). ML encompasses a broad range of 

algorithms and modelling tools for various data processing tasks and has impacted most 

scientific disciplines in recent years (Carleo, 2019).  

2.1.1 Hidden Markov Models 

Hidden Markov Models (HMM) are used to account for unequal and 

unpredictable evolutionary rates across different positions in molecular sequences 

(Baldi et al., 1994). Evolutionary rates at distinct positions are constrained to a limited 

range of possible rates. The likelihood of phylogeny is calculated as a sum of terms, 

where each term is the probability of observing the data given a specific assignment of 

rates to sites, multiplied by the prior probability of that rate combination (Felsenstein & 

Churchill, 1996). 

An HMM consists of a finite set of states linked by transitions. Each state is 

characterized by two sets of probabilities: a transition probabilities, which determine 

the likelihood of moving from one state to another, and output probability distribution 

or density functions (Yang et al., 1994). These distributions provide the probability of 
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emitting each output symbol from a finite alphabet or a continuous random vector of 

the current state (Yang et al., 1994). 

2.1.2 Hybrid Algorithm 

Hybrid algorithms are optimization algorithms that combine two or more 

different techniques to achieve better performance (Ting et al., 2015). This approach 

leverages the strengths of each technique while minimizing their weaknesses. Hybrid 

algorithms are important in enhancing algorithm search capability. The goal of 

hybridization is to integrate the benefits of each algorithm to develop a hybrid algorithm 

while minimizing any significant downsides. In general, hybridization results in 

increased computational speed or accuracy (Ting et al., 2015). In contrast, ensemble 

algorithms combine the predictions of multiple models often of the same or similar 

types (e.g., multiple decision trees or classifiers) to achieve better generalization 

performance. These models operate independently, and their outputs are aggregated 

using techniques such as majority voting, weighted averaging, or stacking. Popular 

ensemble strategies include bagging, boosting, and random forests (Brown, 2017). 

2.1.3 Random Forest Algorithm 

Random Forest (RF) is an algorithm proposed by Breiman (2001), RF builds 

multiple decision trees by randomly selecting subsets of data and features. This 

approach helps improve the model's robustness against noise, making it suitable for 

handling complex datasets (Figure 2.1). Numerous empirical studies have confirmed 

the high prediction accuracy of the random forest algorithm, as well as its ability to 

tolerate abnormal values and noise (Gao et al., 2019). RF has been utilized in various 

fields in recent years. For instance, Malek et al. (2018) successfully predicted paediatric 
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fracture healing time by combining Random Forest with self-organizing maps. Yu et al. 

(2023) introduced RF to predict protein-coding potential. Similarly, Wang et al. (2018) 

applied RF to condition monitoring and fault diagnosis in manufacturing and proposed 

a panoramic crack detection method based on structured RF. In the study of Tabatabaee 

Malazi & Davari (2018), they achieved a high level of accuracy in identifying complex 

activities of elders at home by using RF and emerging pattern algorithms, as measured 

by the F-measure index. In addition, in the study of de Santana et al. (2018), the authors 

quantified the quality of soil parameters through multivariable regression of RF, 

enabling a fast and automatic analysis process. Finally,  Anitha & Raja (2017), proposed 

a new computer-aided method for detecting brain tumors using the RF classifier. 

 

Figure 2.1 Structure of the Weighted Random Forest (Gao et al., 2019) 

2.1.4 Gradient Boosting Algorithm 

The gradient boosting machine (GBM) is an ensemble learning method that 

constructs a predictive model by sequentially adding fitted weak learners (Friedman, 

2002). Gradient Boosting Tree (GBT) uses a boosting method to improve a decision 
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tree (DT) (Friedman, 2001). Rather than creating a new optimized model, the key idea 

is to combine weak models to form a strong consensus model. The feature space is 

initially partitioned into sub-regions in a DT (Hastie et al., 2001) to represent the 

dependent variable for each region (Breiman et al., 2017). The objective is to learn a 

functional mapping 𝑦 = 𝐹(𝑥; 𝛽) from data {𝑥𝑖, 𝑦𝑖} 𝑛 𝑖=1, where 𝛽 represents the set of 

parameters of 𝐹, with the objective of minimizing a cost function ∑𝑛 𝑖=1 Φ(𝑦𝑖, 𝐹(𝑥𝑖; 

𝛽)) (Chen et al., 2013).  Boosting assumes that 𝐹(𝑥) follows an "additive" expansion 

form 𝐹(𝑥) = ∑𝑀 𝑚=0 𝜌𝑚𝑓(𝑥; 𝜏𝑚), where 𝑓 is referred to as the weak or base learner 

and has a weight 𝜌 and a parameter set 𝜏. Therefore, the whole parameter set 𝛽 is 

composed of {𝜌𝑚, 𝜏𝑚} 𝑀 𝑚=1 (Chen et al., 2013). These parameters are learned in a 

greedy "stage-wise" process, which involves: (1) setting an initial estimator 𝑓0(𝑥); (2) 

for each iteration 𝑚 ∈ {1, 2, . . . , 𝑀}, solving (𝜌𝑚, 𝜏𝑚) = arg min𝜌,𝜏 ∑𝑛 𝑖=1 Φ(𝑦𝑖, 

𝐹𝑚−1(𝑥𝑖) + 𝜌𝑓(𝑥𝑖; 𝜏)) (Y. Chen et al., 2013).  

GBM approximates step two steps. First, it fits 𝑓(𝑥; 𝜏𝑚) by 

                                       τm = arg 𝑚𝑖𝑛𝑇 ∑ (𝑔𝑖𝑚 − 𝑓(𝑥𝑖; τ))2𝑛

1=1
   (1) 

 

  Where; 

𝑔𝑖𝑚 = − [
𝜕𝜙(𝑦1,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)
   (2) 

Secondly, it learns 𝜌 by 

ρm = 𝑎𝑟𝑔  ρ
𝑚𝑖𝑛 ∑ 𝜙 (𝑦𝑖, 𝐹𝑚−1

(𝑥𝑖) + ρ𝑓 + (𝑥1; τm))
𝑛

𝑖=1
 (3) 

 

Then, it modifies 𝐹𝑚 (𝑥) = 𝐹𝑚−1 (𝑥) + 𝜌𝑚𝑓(𝑥; 𝜏𝑚). However, in practical, 

shrinkage is frequently added to prevent overfitting; as a result, the update becomes 
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𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + v𝜌𝑚𝑓(𝑥; 𝜏𝑚), where 0 < v ≤ 1. Tree factors, such as tree size (or 

depth) and the minimal number of samples at terminal nodes, influence the complexity 

of 𝑓(𝑥) if the regression tree is the weak learner. In addition to utilizing appropriate 

shrinkage and tree parameters, subsampling, that is fitting each base learner on a random 

subset of the training data could enhance GBM performance (Figure 2.2), this technique 

is known as stochastic gradient boosting. 

 

 

 

 

 

 

Figure 2.2 Structure of Gradient Boosting Tree (Chen et al., 2022) 

2.2 smORFs prediction approach      

Various algorithms have been employed to predict smORFs, including Random 

Forest (Yu et al., 2023), class-imbalance learning (Zhao et al., 2023), profile hidden 

Markov models and deep learning (Durrant & Bhatt, 2021), Convolutional Neural 

Networks (Al-Ajlan & El Allali, 2019), and DeepCPP, a deep neural network for coding 

potential prediction (Zhang et al., 2021). In addition, logistic regression was utilized in 

the MiPepid study (Zhu & Gribskov, 2019), while ORFpred (Srinivas et al., 2016) 

employed a machine learning method to predict the likelihood of ORF translation 

initiation and elongation. Other approaches include the smORFer algorithm 
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(Bartholomäus et al., 2021) and RNA expression analysis using reannotated microarray 

probes (Ji et al., 2020). Below, we will provide a detailed discussion on the distinct 

characteristics of algorithms employed by various smORF prediction tools. The purpose 

of this comprehensive analysis is to enhance understanding of the different approaches 

used in smORF prediction, while considering the tools. Specifically, we will examine 

both the advantages and limitations of each algorithm. 

2.2.1 Prokaryotic Predictions 

2.2.1(a) ProsmORF-pred: A machine learning based method for the identification    

of smallORFs in prokaryotic genomes 

ProsmORF-pred used Random Forest approach for the prediction of small open 

reading frames (smORFs) encoding proteins with less than 100 amino acids (Khanduja 

et al., 2023). ProsmORF-pred, a machine learning-based technique created after a 

complete examination of known prokaryotic smORFs, was introduced in the research 

of (Khanduja et al., 2023). Based on sequence and genomic neighbourhood similarity 

searches, this technique shows potential in predicting smORFs and assisting in their 

functional annotation (Khanduja et al., 2023). The ProsmORF-pred methodology to 

identify smORFs entails training two separate ML models within ProsmORF-pred. The 

model for detecting protein-like sequences is trained using annotated smORFs from 

Escherichia coli, whereas the model for identifying initiation site recognition is trained 

using longer ORFs (>100aa) from the same genome. The work describes a detailed 

benchmarking of ProsmORF-pred, proving its performance on annotated smORFs from 

32 bacterial genomes in comparison to previous techniques. The technique achieved 

sensitivity of 0.96 in predicting smORFs. 
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The discussion revolves around the significance of smORFs in cellular 

processes and the challenges associated with their computational identification. The 

authors elucidate the limitations of existing approaches, emphasizing the necessity for 

more accurate prediction tools, especially. They highlight the potential impact of 

ProsmORF-pred in complementing high-throughput experimental approaches and the 

importance of machine learning in advancing smORF prediction. 

 

2.2.1(b) Automated Prediction and Annotation of Small Open Reading Frames in 

Microbial Genomes 

smORFs and microproteins have been identified to play a significant role in 

microbes (Durrant & Bhatt, 2021). However, there are still numerous unknown 

smORFs in human-associated microbes. A recent bioinformatic analysis aimed to 

improve the prediction of small protein families by utilizing evolutionary conservation 

signals. To facilitate the annotation of specific smORFs, they developed a tool called 

SmORFinder (Durrant & Bhatt, 2021). This tool combined profile hidden Markov 

models of each smORF family with deep learning models that possess superior 

generalization capabilities for smORF families not included in the training set. 

Consequently, the predictions made by SmORFinder incorporate Ribo-seq translation 

signals. An analysis of feature importance revealed that the deep learning models can 

identify Shine-Dalgarno sequences, prioritize specific positions in each codon, and 

group synonymous codons present in the codon table. Furthermore, an examination of 

the core genome of 26 bacterial species identified several core smORFs with unknown 

functions. They have pre-computed smORF annotations for thousands of RefSeq isolate 

genomes and Human Microbiome Project metagenomes, which are accessible through 
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a public web portal. In this study, they developed two deep learning models using the 

hyperband algorithm to fine-tune hyperparameters. These models, collectively referred 

to as DeepSmORFNets (DSN), include the first model (DSN1), which was optimized 

to achieve the lowest validation loss on a validation set of observed smORF families 

("Validation - Observed"), and the second model (DSN2), which was optimized to 

achieve the highest F1 score on a validation set of unobserved smORF families. Based 

on these findings, it can be concluded that the deep learning models generally exhibit 

better performance in generalizing to unobserved smORF families, while the pHMMs 

still demonstrated superior precision at a significance cutoff of an E-value < 1 x 10-6. 

This suggests that the models may complement each other when used together to 

identify smORFs. The authors utilize a combination of profile hidden Markov models 

(pHMMs) and deep learning models to predict smORFs and their encoded 

microproteins (Durrant & Bhatt, 2021).  

This approach, named SmORFinder, improves the detection of smORFs that are 

often missed by traditional methods. The deep learning models within SmORFinder 

identify biologically meaningful features of smORFs sequences, including Shine-

Dalgarno sequences, codon synonyms, and codon wobble positions. Through rigorous 

evaluations and comparisons with existing tools, the authors demonstrate the 

effectiveness of their approach in identifying smORFs with improved precision and 

recall. Applying their approach to 26 bacterial species, the authors identified several 

core smORFs of unknown function (Durrant & Bhatt, 2021).  

This discovery highlights the potential functional significance of these smORFs 

in microbial genomes. Moreover, the research provides a comprehensive analysis of 

thousands of RefSeq isolate genomes and Human Microbiome Project metagenomes, 

offering valuable annotations through a public web portal. This resource facilitates 
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further research and exploration of smORFs in various microbial genomes. The results 

of this research indicate that deep learning algorithms outperform in terms of 

generalizing to unobserved smORF groups in general, while the accuracy of pHMMs 

remains superior with a significance threshold of an E-value < 1 x 10-6. The algorithms 

can potentially supplement each other when employed jointly for smORFs 

identification. The study introduces a novel approach to addressing the challenges of 

smORFs prediction and annotation in microbial genomes. Their deep learning models 

not only enhance detection accuracy but also uncover biologically relevant features of 

smORF sequences (Durrant & Bhatt, 2021). By identifying core smORFs of unknown 

function, this study provides insights into potential novel regulators of microbial 

processes. The SmORFinder annotation tool and the accompanying web portal offer 

valuable resources for the scientific community to explore smORFs' roles in microbial 

genomics. This research opens avenues for further investigations into the functional 

significance of these often-overlooked small proteins, additionally the study only 

focused on smORFs in microbial genomes and did not consider smORFs in other 

organisms (Durrant & Bhatt, 2021). 

2.2.1(c) smORFer: a modular algorithm to detect small ORFs in prokaryotes 

Small proteins are increasingly recognized as important in physiological 

processes (Bartholomäus et al., 2021). However, the functional identification and 

genome annotation of these proteins remain challenging. Ribosome profiling, a method 

that sequences ribosome-protected fragments, can detect active open-reading frames 

(ORFs) and annotate coding sequences (CDSs) (Bartholomäus et al., 2021). While 

multiple identifiers had been successful in eukaryotic smORFs annotation, they faced 

difficulties in prokaryotic genomes due to unique features such as polycistronic 
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messages and non-canonical initiation (Bartholomäus et al., 2021). To address this 

issue, a new algorithm called smORFer was developed (Bartholomäus et al., 2021). This 

algorithm aims to detect putative smORFs in prokaryotic organisms by using an 

integrated approach that considers the structural features of the genetic sequence and 

in-frame translation. This was achieved by converting these parameters into a 

measurable score using Fourier transform (Bartholomäus et al., 2021). The algorithm 

can be executed in a modular way, allowing different modules to be selected for 

smORFs search depending on the available data for a particular organism. 

In the study conducted by Bartholomäus et al. (2021), presented a novel 

approach to identifying smORFs in prokaryotic genomes. SmORFs, which encode 

small proteins with fewer than 50 amino acids, have recently gained recognition for 

their central roles in various physiological processes (Bartholomäus et al., 2021). 

However, their systematic annotation and functional identification remain challenging 

both experimentally and computationally. The paper introduces a new algorithm, 

smORFer, which addressed these challenges by leveraging ribosome profiling data and 

considering unique features of prokaryotic genomes. The smORFer algorithm utilized 

ribosome profiling, also known as Ribo-Seq, which involves deep sequencing of 

ribosome-protected fragments to identify actively translated open-reading frames 

(ORFs). Unlike previous approaches that rely on the 3-nt periodicity in Ribo-Seq data 

sets for eukaryotic smORFs annotation, smORFer took into account the distinct 

characteristics of prokaryotic genomes. This includes factors such as overlapping ORFs, 

polycistronic messages, non-canonical initiation and leaderless translation, which can 

complicate smORFs prediction in prokaryotes (Bartholomäus et al., 2021). 

One of the unique features of smORFer is its integrated approach, combining structural 

features of genetic sequences with in-frame translation (Bartholomäus et al., 2021). The 
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algorithm employed Fourier transform to convert these parameters into a measurable 

score, enabling accurate selection of putative smORFs. The modular nature of smORFer 

allows researchers to tailor the algorithm to specific organisms by selecting different 

modules based on available data. This flexibility enhances the algorithm's versatility 

and adaptability to various prokaryotic species.  

The author compared RibORF with smORFer in detecting lengthy ORFs in the 

E. coli genome, specifically those longer than 1000 nt. Using the genomic sequence, 

RibORF and smORFer predicted many possible ORFs. The number was higher than the 

identified ORFs in E. coli, however, because they considered numerous start codons 

that shared the same stop codon. Both techniques detected 99.6% of the known 

annotated ORFs when counting ORFs based on unique stop codons. RibORF identified 

235 translated ORFs (1.2% of all known ORFs >1000 nt) by including extra criteria, 

whereas smORFer recognized 740 (45% of all known ORFs >1000 nt) (Bartholomäus 

et al., 2021). This discrepancy might be attributable in part to the use of TIS-Ribo-Seq 

data, highlighting the relevance of include such datasets for precise mapping of 

initiation locations. It is worth noting that RibORF, which does not require TIS-Ribo-

Seq, runs slower than the algorithm used in the study. The study contributes to the 

development of smORFer, a novel algorithm designed to accurately detect smORFs in 

prokaryotic genomes (Bartholomäus et al., 2021).  

By accounting for the unique genomic architecture of prokaryotes, smORFer 

overcame challenges associated with traditional smORFs prediction methods. This 

algorithm holds promise for advancing our understanding of small protein function and 

expanding our knowledge of their roles in microbial physiology. In addition, the 

research paper introduces smORFer as an innovative algorithm for the detection of 

smORFs in prokaryotic genomes. By incorporating structural features of genetic 
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sequences and in-frame translation, smORFer demonstrates high accuracy in 

identifying putative smORFs. This modular approach provides researchers with a 

versatile tool to address the challenges of smORF annotation in prokaryotic organisms. 

The limitation shows that the use of a single dataset for peptide identification and the 

need for further validation of smORFer's predictions, including the need for more 

comprehensive datasets and the development of methods to study the function of small 

proteins (Bartholomäus et al., 2021). 

2.2.1(d) Pervasive translation in Mycobacterium tuberculosis. 

The study by Smith et al. (2022) investigates pervasive translation in M. 

tuberculosis. The authors employed advanced ribosome profiling techniques to map 

translation activity across the M. tuberculosis genome, addressing limitations of 

conventional gene prediction algorithms that often miss small and unconventional open 

reading frames (ORFs). 

 

The researchers utilized two ribosome profiling approaches: Ribo-seq and Ribo-

RET. Ribo-RET treats bacterial cultures with retapamulin to trap initiating ribosomes 

at start codons, enriching translation initiation sites. Ribo-seq captures elongating 

ribosomes across mRNAs. RNA fragments of about 31 nucleotides were size-selected, 

dephosphorylated, and prepared into sequencing libraries, which were sequenced to 

identify regions of active translation. Bioinformatic analyses included mapping 

ribosome footprints to the genome, detecting novel ORFs, particularly short ORFs, and 

analyzing their features. Evolutionary analyses examined codon usage patterns and 

signatures of purifying selection, providing insights into the potential functional 

importance of identified ORFs. 
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The study revealed widespread translation of numerous previously unannotated 

ORFs, most being short and encoding peptides of 50 amino acids or less. While many 

showed characteristics consistent with non-functional proteins, such as lack of 

conservation and signatures of neutral evolution, a subset demonstrated signs of 

evolutionary constraint. Approximately 90 ORFs exhibited evidence of purifying 

selection, suggesting functional relevance. The total number of these ORFs exceeds the 

annotated genes in the M. tuberculosis genome, highlighting pervasive translation. The 

findings imply that M. tuberculosis continuously translates a broad spectrum of 

genomic regions, generating short peptides that could serve as raw material for gene 

evolution or other roles in bacterial physiology. 

The authors interpret their findings as evidence that pervasive translation in M. 

tuberculosis produces a large repertoire of short peptides, most likely non-functional. 

However, the subset under purifying selection suggests that some of these short ORFs 

may evolve in genes with specific functions. This dynamic indicates that pervasive 

translation might serve as a substrate for genetic innovation, allowing bacteria to adapt 

rapidly to environmental pressures. These insights into the bacterial translational 

landscape emphasize the complexity of microbial genomes and challenge traditional 

notions of gene annotation. 

The study further provided a comprehensive analysis demonstrating that M. 

tuberculosis exhibits extensive translation of novel genomic regions, mainly short 

ORFs. Their integration of ribosome profiling with evolutionary evidence highlights the 

potential for new gene emergence and enhances our understanding of bacterial gene 

regulation and evolution. The findings underscores the importance of experimental 

approaches in revealing hidden layers of the bacterial transcriptome and proteome, 
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offering a foundation for future studies into the functional roles of these newly identified 

peptides (Smith et al., 2022). 

2.2.1(e) Leaderless Transcripts and Small Proteins Are Common Features of 

Mycobacterial Translational Landscape 

The study by Shell et al. (2015) provides a comprehensive investigation into the 

translational landscape of mycobacteria, specifically Mycobacterium smegmatis and M. 

tuberculosis. The authors employ an integrative approach combining RNA-seq, 

transcription start site (TSS) mapping, ribosome profiling, and N-terminal mass 

spectrometry to elucidate gene structures and translation mechanisms. They reveal that 

approximately 25% of transcripts are leaderless, initiated directly at an AUG or GUG 

start codon without upstream ribosome-binding sites, yet are translated efficiently, 

challenging the canonical view based on E. coli paradigms. The study uncovers 

numerous unannotated small proteins and alternative start codons, indicating significant 

underannotation and proteome diversity. Functional assays demonstrate that leaderless 

translation in mycobacteria solely depends on the presence of a start codon, whereas 

leadered translation requires Shine-Dalgarno interactions (Shell et al., 2015). However, 

these findings are limited to specific growth conditions, and the mechanisms of 

leaderless translation across different environmental states or stress conditions remain 

unclear. Moreover, while the study provides evidence for the prevalence and efficiency 

of leaderless translation, the precise molecular mechanisms behind this process are not 

fully characterized. These limitations suggest that additional studies are necessary to 

generalize the findings and fully understand how diverse conditions influence 

translation modes and regulation in mycobacteria. Despite these constraints, the work 

significantly advances our understanding of mycobacterial gene regulation and offers 
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important insights for genome annotation, pathogenicity, and therapeutic targeting of 

bacterial translation machinery (Shell et al., 2015). 

 

Therefore, several approaches have been utilized for predicting smORFs using 

different algorithms, including Random Forest (Yu et al., 2023), class-imbalance 

learning (Zhao et al., 2023), profile hidden Markov models and deep learning (Durrant 

& Bhatt, 2021), Convolutional Neural Networks (Al-Ajlan & El Allali, 2019), and 

DeepCPP, a deep neural network for coding potential prediction (Zhang et al., 2021). 

Furthermore, in the study of MiPepid (Zhu & Gribskov, 2019), utilized logistic 

regression and ORFpred (Srinivas et al., 2016), used machine learning method to 

predict the likelihood of ORF translation initiation and elongation. Moreover, there are 

other approaches like the smORFer algorithm (Bartholomäus et al., 2021), and RNA 

expression analysis using reannotated microarray probes (Ji et al., 2020). 

2.2.1(f) Integrated sequence and omic features reveal novel small proteome of M. 

tuberculosis 

Sinha et al. (2024) developed a bioinformatics pipeline integrating sequence 

features with high-throughput omics data, RNA-Seq, Ribo-Seq, and proteomics to 

predict and validate small proteins in M. tuberculosis. Public datasets from various 

conditions, including exponential growth, nutrient starvation, and hypoxia, were used 

to capture diverse gene expression profiles. Features such as codon usage bias, GC 

content, and sequence conservation were used as inputs to train a Random Forest 

classifier to distinguish coding from non-coding regions. Incorporating Ribo-Seq data 

improved the detection of actively translated smORFs. 




