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NANOPARTIKEL BESI OKSIDA BERSADUR BISMUT 

BERBANTUKAN ULTRASONIK YANG BERPOTENSI SEBAGAI MEDIA 

KONTRAS PENGIMEJAN DWI-MODAL CT/MR 

ABSTRAK 

Penggabungan zarah nano bismut (Bi NPs) dan zarah nano magnetit (Fe3O4 

NPs) ke dalam nano kuar uji (Fe3O4@Bi) adalah teknik yang berpotensi tinggi 

berdasarkan sifat pengubahsuaian, penstabilan dan pelbagai fungsinya dalam aplikasi 

bioperubatan. Walau bagaimanapun, kaedah konvensional untuk menghasilkan NP 

komposit Bi/Fe3O4 adalah memerihkan, mengambil masa yang panjang, rumit dan 

mahal kerana memerlukan pelbagai jenis reagen. Dalam kajian ini, pengubahsuaian 

Fe3O4 NP secara pantas dapat dilakukan dengan menggunakan ultrasound melalui 

pensaduran permukaannya dengan Bi NP bagi menghasilkan NP komposit Fe3O4@Bi 

yang unik sebagai kegunaan imbasan tomografi (CT) dan pengimejan resonans 

magnetik (MRI). Pada mulanya, NP Fe3O4 dihasilkan melalui kaedah pemendakan 

bersama bantuan proses hijau. Selepas itu, NP komposit Fe3O4@Bi disintesis dan 

dioptimumkan secara statistik menggunakan kaedah sonokimia dan metodologi 

permukaan tindak balas (RSM). Reka bentuk komposit pemprosesan berpusat-muka 

(FCCD) mengkaji kesan tetapan penghasilan terhadap kestabilan, saiz dan taburan saiz 

nanokomposit. Parameter penghasilan yang dioptimumkan yang mempengaruhi 

tindak balas, masing-masing adalah 40 ml, 5 ml dan 12 min untuk kepekatan Bi, 

kepekatan natrium borohidrida (SBH), dan masa sonikasi. Nilai yang diramalkan 

untuk potensi zeta, saiz hidrodinamik, dan indeks polidispersiti (PdI) pada larutan 

kebolehinginan tertinggi (100%) ialah -45 mV, 172 nm, dan 0.257, manakala nilai 

eksperimen yang disahkan masing-masing ialah -47.1 mV, 125 nm, dan 0.281. Adalah 
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didapati bahawa masa sonikasi adalah faktor yang paling berpengaruh dalam semua 

respons. Sifat fizikokimia NP yang disintesis telah dicirikan menggunakan DLS, XRD, 

TEM, FESEM, EDX, RAMAN, FTIR, UV-visible, dan VSM. Berdasarkan analisis 

DLS, ultrasound menstabilkan dan memfungsikan Fe3O4 NP dengan ketara berikutan 

pengubahsuaiannya kepada Fe3O4@Bi NPs dan meningkatkan nilai potensi zeta 

daripada -33.5 kepada -47.1 mV, dan saiz hidrodinamik meningkat daripada 98 nm 

kepada 125 nm. Keputusan menunjukkan bahawa Fe3O4 NPs sebelum dan selepas 

pengubahsuaian adalah sfera dan mono-dispersi dengan saiz zarah purata 11.7 nm dan 

19.5 nm, manakala nilai magnetisasi tepu (Ms) masing-masing ialah 132.33 emu/g dan 

92.192 emu/g. Sitotoksisiti dan kadar penyerapan selular Fe3O4@Bi NPs pada sel 

THLE-2 dan HEK-293 menunjukan ia tidak ketoksikan, bergantung kepada masa, dan 

internalisasi bergantung kepada dos. Fe3O4@Bi NPs kemudiannya diuji untuk agen 

kontras CT dan MRI. Nilai pengecilan sinar-X dan pengenduran melintang (r2) yang 

diukur menunjukkan nilai masing-masing 399.11 HU dan 273.06 mM-1 s-1 iaitu lebih 

besar daripada nilai NPs komersial dan juga nilai NPs yang dihasilkan melalui kaedah 

konvensional. Hasil kerja ini membuktikan kemajuan yang besar dalam mensintesis 

Fe3O4@Bi NPs yang berkualiti tinggi, stabil dan biokompatibel melalui kaedah yang 

cepat dan mudah dalam masa 12 minit dan nanokomposit mempunyai potensi besar 

sebagai agen kontras dwi-modal untuk pengimejan CT dan MRI. 
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ULTRASOUND ASSISTED BISMUTH COATED IRON OXIDE 

NANOPARTICLES FOR A POTENTIAL DUAL-MODAL CT/MR IMAGING 

CONTRAST MEDIA 

ABSTRACT 

The incorporation of bismuth nanoparticles (Bi NPs) and magnetite 

nanoparticles (Fe3O4 NPs) into a single (Fe3O4@Bi) nanoprobe is a promising 

technique for their properties modification, stabilization, and multi-functionalization 

in biomedical applications. However, conventional methods of producing Bi/Fe3O4 

composite NPs are laborious, time-consuming, complicated, and costly by requiring 

multiple reagents. In this study, ultrasound rapidly modified Fe3O4 NPs by coating 

their surface with Bi NPs, creating unique Fe3O4@Bi composite NPs for computed 

tomography (CT) scan and magnetic resonance imaging (MRI). Initially, Fe3O4 NPs 

were produced through the green-assisted co-precipitation method. Subsequently, the 

Fe3O4@Bi composite NPs were synthesized and statistically optimized using the 

sonochemical method and response surface methodology (RSM). A face-centered 

central composite design (FCCD) investigated the effect of preparation settings on the 

stability, size, and size distribution of the nanocomposite. The optimized preparation 

parameters that influenced the responses were determined to be 40 ml, 5 ml, and (12 

min, 40 W, and 40%) for Bi volume, sodium borohydride (SBH) volume, and 

(sonication time, power, frequency), respectively. The predicted values for the zeta 

potential, hydrodynamic size, and polydispersity index (PdI) at the highest desirability 

solution (100%) were -45 mV, 122 nm, and 0.257, while the validated experimental 

values were -47.1 mV, 125 nm, and 0.281, respectively. It was found that the 

sonication time was the most influential factor in all of the responses. Physicochemical 
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properties of the synthesized NPs were characterized using DLS, XRD, TEM, FESEM, 

EDX, RAMAN, FTIR, UV-visible, and VSM. Based on the DLS analysis, ultrasound 

significantly stabilized and functionalized Fe3O4 NPs following modification to 

Fe3O4@Bi NPs and improved the zeta potential value from -33.5 to -47.1 mV, and the 

hydrodynamic size increased from 98 nm to 125 nm. The results revealed that 

Fe3O4NPs before and after modification were spherical and mono-dispersed with 

average particle sizes of 11.7 nm and 19.5 nm, while their saturation magnetization 

(Ms) values were 132.33 emu/g and 92.192 emu/g, respectively. The cytotoxicity and 

cellular uptake of Fe3O4@Bi NPs on THLE-2 and HEK-293 cells revealed non-

toxicity, time-dependent, and dose-dependent internalization. The Fe3O4@Bi NPs 

were then tested for CT and MRI contrast agents. The X-ray attenuation and transverse 

relaxivity (r2) values were measured to be 399.11 HU and 273.06 mM-1 s-1 are greater 

than those of Bi/Fe3O4 NPs produced by conventional methods. The results 

demonstrate that this work has considerable progress in synthesizing high-quality, 

stable, and biocompatible Fe3O4@Bi NPs through a rapid and facile method within 12 

minutes and the nanocomposites have great potential as dual-modal contrast agents for 

CT and MRI imaging. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Nanoscience and nanotechnology 

The prefix "nano" originates from the Greek word for "dwarf" or "extremely 

small," and it represents a measurement that is one thousand millionth of a meter (10-9 

m) in size. Nanoscience and nanotechnology should be distinguished. Nanotechnology 

refers to the technological implementation of nanoscience, which is the interdisciplinary 

study of structures and molecules at nanometer scales between 1 and 100 nm. 

Nanotechnology allows nanoscale material observation, quantification, manipulation, 

assembly, regulation, and production. It is a promising 21st-century technology. 

Richard Feynman, a Nobel Prize-winning physicist from the United States, introduces 

the notion of nanotechnology in 1959. In 1974, after fifteen years, Japanese scientist 

Norio Taniguchi was the first to adopt and define the term "nanotechnology" as: 

“Nanotechnology mainly consists of the processing of separation, consolidation, and 

deformation of materials by one atom or one molecule” [1]. 

The development of a scanning tunneling microscope capable of visualizing 

individual atoms was the beginning of modern nanotechnology. It has been established 

in nanoscale science and technology that materials at the nanoscale have properties 

(such as mechanical, optical, chemical, electrical, etc.) that are significantly different 

from those of bulk materials. The improved performance properties of nanoparticles 

(NPs) over bulk materials in similar applications have been established. The production 

of nanocatalysts, a novel form of catalysts, is considered as an essential application of 

NPs [2]. As an example, bulk gold is known to be inert and unreactive as a catalyst, 

whereas gold NPs demonstrate extremely high catalytic reactivity in a range of gas-

phase reactions, such as carbon monoxide and alcohol oxidation [3]. In another 
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example, the antifungal activity of bismuth oxide (Bi2O3) nanoneedles against C. 

albicans was four times higher than that of the Bi2O3 bulk powder [4]. In contrast to 

their non-magnetic bulk counterparts, gold (Au), platinum (Pt), and palladium (Pd) 

nanoscale materials embedded in polymer displayed magnetic moments [5,6].  

Two factors can explain why NPs’ physicochemical properties differ 

significantly from those of their bulk counterparts: (1) the surface effect of nanoscale 

materials, in which the fraction of atoms at the surface has fewer neighboring atoms 

than those in the bulk form, and (2) quantum effects that exhibit discontinuous behavior 

as a result of shells completion in systems with delocalized electrons [7]. These unique 

features of NPs have led to their widespread use in numerous fields, including 

electronics, energy, telecommunication, and biomedicine. Nanomaterials exploited in 

biomedical and related applications include polymeric micelles, liposomes, block 

ionomer complexes, quantum dots, dendrimers, and inorganic NPs including bismuth, 

gold, silica, and superparamagnetic iron oxide nanoparticles (SPIONs) [8,9]. 

1.2 Superparamagnetic magnetite nanoparticles (Fe3O4 NPs) 

Magnetite (Fe3O4) NPs are inorganic materials with sizes ranging between 1 and 

100 nm. Due to their small sizes, which allow them to have a high magnetic 

susceptibility and a single magnetic domain, Fe3O4 NPs (ferromagnetic materials with 

a grain size of less than 20 nm) exhibit superparamagnetic behavior (the ability to have 

zero magnetism in the absence of external magnetic field). Fe3O4 NPs have risen to 

prominence in many applications that facilitate the rapid advancement of nanoscale-

based high-technology. Fe3O4 NPs have exhibited exceptional features, including ease 

of synthesis, small sizes, relative non-toxicity, slow oxidation, superparamagnetic 

crystal, and strong magnetic properties [10,11], and their potential as a promising 
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candidate for a wide range of biomedical applications, such as targeted drug delivery, 

biosensors, tumor detection and treatment, magnetic hyperthermia, and magnetic 

resonance imaging (MRI) has been validated [12–15]. 

1.3 Bismuth-iron oxide composite nanoparticles (Fe3O4@Bi NPs) 

Despite extensive research on the exploration of Fe3O4 NPs, poor optical 

properties, and weak electrical conductivity hinders their widespread implementation 

[16]. Recent advances in Fe3O4 NPs research include not only the synthesis of 

homogeneous and stable core magnetic Fe3O4 NPs but also the formation of innovative 

nanostructures (functionalized surfaces, composites, core/shell, etc.) and the application 

of these nanomaterials in a variety of biomedical fields [17]. Composite NPs, 

particularly the core@shell structure that comprises distinct components, have recently 

been the subject of numerous investigations due to their unique physicochemical 

properties and multiple functionalities. The core@shell nanomaterials significantly 

improve intrinsic performance, overcome the restrictions of single-component 

properties, and exhibit a range of innovative features. Core@shell NPs typically 

composed of a core structure in the center and an exterior coated shell that varies in 

size, morphology, and organic/ inorganic interaction combinations. These NPs are 

capable of modifying the outer surface characteristics while retaining the properties of 

the inner core [18,19]. 

The application of Fe3O4 NPs can be expanded by incorporating new functional 

high atomic number (Z) groups into their structure, such as gold (Au) [20], silver (Ag) 

[21], and bismuth (Bi) [22]. Owing to their exceptional properties, which include high 

chemical stability, low toxicity, cost-effectiveness, high X-ray attenuation coefficient, 

strong absorbance of near-infrared (NIR) light, and high photo-to-thermal conversion 
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capability, Bi-based NPs have attracted considerable research interest for biomedical 

and in vivo applications [8]. Thus, Bi-incorporating Fe3O4 NPs are promising due to the 

combined advantages and properties of both components, enabling the development of 

Fe3O4 NPs applications such as double contrast agents for magnetic resonance imaging 

(MRI), and computed tomography (CT) scans, photothermal and magnetic 

hyperthermia therapies, and drug delivery. 

1.4 Contrast agents (CAs) 

Contrast agents are chemical compounds that enable the visualization of specific 

anatomical structures of the human body in medical imaging and are an essential 

component of many imaging techniques. Initially, contrasts were used to improve the 

visibility of vascular structures and the digestive (gastrointestinal) system. With the 

development of cross-sectional imaging techniques, contrast agents have become an 

integral part of medical imaging, allowing for better visualization and characterization 

of focal lesions in solid organs as well as better assessment of their vascularization and 

perfusion. Iodine- and barium-containing substances are extensively employed in X-

ray-based imaging techniques (radiography, computed tomography (CT), fluoroscopy, 

and angiography), whereas gadolinium-containing chemicals are frequently used in 

magnetic resonance imaging (MRI). Depending on the targeted anatomical area, 

contrast compounds can be given intravenously, orally, or rectally [23]. 

NPs-based contrast agents can produce a much higher payload and much longer 

blood circulation half-life. The evolution of fabrication methods with multiple 

properties and different functionalities makes the NPs powerful that can be efficiently 

targeted in multimodality imaging or used as theranostic agents. Bi-containing NPs are 

very active and effective as ideal CT contrast agents and have more advantages over 
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currently used iodine (I)-based contrast agents and it is more appropriate for in vivo 

applications in comparison with other metals such as (Ag). Nevertheless, incorporating 

CT with other imaging probes is more suited for precise diagnosis by accumulating 

benefits and controlling defects of both imaging methods. Scientists are currently 

shifting from a single imaging modality (which usually cannot meet favorable 

diagnostic requirements) to a combination of different accurate imaging modalities. 

Therefore, combining CT with powerful MRI is convenient to acquire high-quality 

images and more accurate diagnosis [8,24–26]. 

1.5 Problem statement 

Synthesis of bismuth-iron oxide composite NPs to allow control over their size, 

morphology, and surface coating is limitedly experienced. There are several 

methodologies have been employed to generate Bi/Fe3O4 composite NPs. However, the 

majority of them are limited and criticized by lengthy reaction time, long purification 

processes, and/or high reaction temperature [24,27,28], laborious synthesis process, 

complex growth mechanism, and high cost with utilizing multiple reagents 

[22,26,29,30]. Direct coating is an example of a technique that appears straightforward 

but is rather challenging due to the intricate steps of integrating two seemingly 

mismatched surfaces. In addition, the integration of Bi into the Fe3O4 core resulted in 

hybrid NPs with extremely low saturation magnetization and non-superparamagnetic 

properties [24]. Consequently, the incorporation of Bi into Fe3O4 must be 

technologically improved, particularly in minimizing hazardous reagents and 

controlling the particle size, magnetic characteristics, and composition of the NPs. 

Sonochemical (the application of high-intensity ultrasound) is a facile, rapid, non-

conventional, and versatile approach that can be used to synthesize Fe3O4@Bi NPs. 
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Under physiological conditions, chemical stability and monodisperse are the main 

promising properties of nanocomposites for medical and related applications [31]. In 

addition, highly biocompatible and non-aggregated NPs are desired for biomedical 

applications. Uncoated Fe3O4@Bi NPs are unstable in aqueous solutions due to the 

strong affinity of Bi3+ for hydroxide ions and susceptibility of Fe3O4 for surface 

oxidation, then the nanocomposites eventually promote precipitation, resulting in 

agglomeration of the nanostructures [8,32]. To address this issue, most of previous 

studies utilized chemical organic acids and polymers in the preparation of Bi/Fe3O4 

composite NPs [8,33,34], which are costly synthetic reagents, resulting in inadequate 

stability [22,24,26], and some organic acids are toxic and make NPs biologically 

incompatible. Due to the presence of multiple biocompatible organic acids and amino 

acids in their structure, it may be advantageous to use Sumac extract solution as a 

stabilizing and capping agent in the fabrication process to produce stable, 

monodispersed, and biocompatible NPs [35–38].  

It is critical to systematically design the experiment and scientifically optimize the 

fabrication process for the composite NPs to obtain the optimum result with a limited 

or minimum number of experiments.  However, few reports highlighted the 

optimization of nanocomposites and the protocol for optimizing the stability and 

hydrodynamic size of Fe3O4@Bi composite NPs has not been established. Hence, 

Fe3O4@Bi NPs need to be well dispersed and stabilized, and their hydrodynamic size 

must be optimized in an aqueous media. Response surface methodology (RSM) is a 

powerful mathematical and multivariate statistical technique that can be used to develop 

and optimize Fe3O4@Bi NPs [16,39–41]. 

Nanocomposites-based dual CT/ MRI contrast agents must greatly induce X-ray 

attenuation and have high-efficiency T2-weighted MRI contrast. Dedicated efforts have 
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presented the synthesis of Bi/Fe3O4-based contrast agents comprising assembly 

composition and core@shell structure. In a previous study, hybrid Bi/Fe3O4 NPs 

indicated good CT contrast due to the high bismuth proportion, but with extremely low 

transverse relaxivity which exhibited poor magnetic properties [24]. In contrast with 

another study, the Bi/Fe3O4 core@shell structure provided an effective T2-MRI contrast 

agent due to its superparamagnetic behavior, along with attenuated X-ray only at high 

concentrations [29]. Nonetheless, none of these studies elucidated the foremost reasons 

for the inadequacy of Fe3O4@Bi in their compositions as dual-modal contrast agents. 

The core@shell structures have recently accumulated substantial interest compared to 

the combined assembly nanocomposites [28,29,42]. Sonochemical is recently shown as 

a prominent process to affect the structure and modifies the surface of Fe3O4 NPs. 

Although nanostructure experiments have proven the impact of sonochemistry on the 

deposition of organic and inorganic materials on the surface of Fe3O4 NPs [42,43], the 

evaluation of the synthesis of biocompatible Fe3O4@Bi composite NPs in a core@shell 

nanostructure through sonochemical method has not been examined and the effect of 

ultrasonication on the deposition of Bi on the surface of Fe3O4 NPs remain unexplored. 

In this study, a simple and rapid sonochemical method was investigated to 

synthesize Fe3O4@Bi composite NPs with distinctive physiochemical properties, 

including high stability, monodispersity, uniformity, and high biocompatibility, along 

with the potential application as a dual-modal contrast agent for MRI and CT imaging. 

This research also aimed to optimize the sonochemical conditions for the efficient 

coating of Bi shell on Fe3O4 core NPs to produce biocompatible and exceptionally stable 

Fe3O4@Bi NPs. Using a statistical experimental design that was controlled by FCCD 

in RSM, several detectable parameters, including bismuth precursor, sodium 
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borohydride, and sonication time were employed to optimize the zeta potential value, 

hydrodynamic size, polydispersity indexes of the as-synthesized Fe3O4@Bi NPs. 

1.6 Objectives of the study 

The main aim of this study is to accomplish fundamental research on the 

implementation of a new technique for synthesizing extremely stable, highly magnetic, 

and biocompatible core@shell Fe3O4@Bi composite NPs that have the potential to be 

highly sensitive as a dual-modal contrast agent for MRI and CT applications. Compared 

to the conventional methods, this new technique of ultrasonically incorporating Fe3O4 

with Bi NPs is straightforward, rapid, and inexpensive requiring few reagents. Several 

specific objectives of this study are summarized in the following points: 

1. To rapidly synthesize highly stable biocompatible Fe3O4@Bi composite NPs via the 

sonochemical method. 

2. To optimize the synthesized Fe3O4@Bi nanocomposites using FCCD in RSM, and 

examine the interaction effects between the independent variables (factors) on the 

dependent variables (responses). 

3. To characterize the physicochemical properties of the optimized Fe3O4 and 

Fe3O4@Bi NPs. 

4. To assess the cytotoxicity and cellular uptake (internalization) of the Fe3O4@Bi 

composite NPs by THLE-2 and HEK-293 cells. 

5. To evaluate the sensitivity of the Fe3O4@Bi nanocomposites synthesized under 

optimal synthetic conditions as a dual-modal contrast agent for MRI and CT 

imaging. 
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1.7 Scope of the study 

This study focuses solely on the synthesis of Fe3O4 core coated with Bi shell to 

rapidly produce extremely stable, biocompatible Fe3O4@Bi composite NPs using a 

sonochemical approach. In response surface methodology (RSM), a face-centered 

central composite design (FCCD) was used exclusively for the optimization procedure. 

The tip size horn, frequency, amplitude, and power of the ultrasonic probe are limited 

to 1.3 cm, 20 kHz, 40%, and 750 Watts, respectively. The agar phantoms containing 

different concentrations of Fe3O4@Bi NPs were employed as dual-modal contrast 

agents in both MRI and CT scans. 

1.8 Thesis outline 

This thesis is divided into six chapters. Chapter 1 contains the introduction, 

problem statement, aims, and objectives of this thesis. Chapter 2 presents a review of 

the literature on the synthesis of Fe3O4 NPs, Fe3O4@Bi composite NPs, and surface 

modification with various organic and inorganic materials, as well as their cytotoxicity 

and biocompatibility. Chapter 3 discusses the various theories that were used to support 

this research. The entire experimental procedure, characterization techniques, and 

application of the as-synthesized Fe3O4@Bi nanocomposites as a double contrast agent 

for CT and MR imaging are described in Chapter 4. The details of the various results 

observed in this work are highlighted and discussed in Chapter 5. In Chapter 6, the 

conclusion and future work of this thesis are presented. 
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CHAPTER 2  
 

THEORY 

2.1 Introduction 

This chapter describes the fundamentals of sonochemistry, focuses on the effect 

of the acoustic cavitation process in liquids, and provides details on the physical, 

chemical, and thermal influences of the cavitation phenomena. In addition, the effects 

of ultrasound on the stability of NPs are also discussed in this chapter. Furthermore, the 

design of experiments (DOE) and central composite design (CCD) techniques for 

optimizing the response(s) of a system are also explained. Finally, this chapter discusses 

the theories, principles, mechanisms, and applications of MRI and CT-Scan, as well as 

dual CT/MRI contrast agents. 

2.2 Theory of sonochemistry 

The application of intense ultrasound on molecules to initiate chemical reactions 

and processes in liquids is called “sonochemistry”. The chemical effects of ultrasound 

do not result from a direct interaction between the ultrasound and chemical species at 

the molecular level. They originate from nonlinear acoustic events, specifically acoustic 

cavitation. Ultrasound is a component of the acoustic spectrum ranging from around 20 

kHz to 10 MHz and is categorized into three major regions based on its frequency 

ranges, as depicted in Figure 2.1: (1) low frequency with high power ultrasonic waves 

(20 kHz to 100 kHz), (2) high frequency with medium power ultrasound (100 kHz to 1 

MHz), and (3) high frequency with low power ultrasonic waves (1 MHz to 10 MHz).  

However, ultrasonic frequencies ranging from 20 kHz to about 1 MHz are used 

in the field of sonochemistry, whereas frequencies significantly higher than 1 MHz are 

utilized in the field of sonography, which is a medical and diagnostic application of 
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ultrasound [44,45]. By exposing water or liquids to ultrasonic irradiation, high and low-

pressure regions are created within the liquid due to the periodic expansion and 

compression of the ultrasonic waves. This uniqueness in liquids initiates the acoustic 

cavitation phenomenon, which consists of bubble formation, expansion, and collapse 

[46]. The energy absorption from rarefaction and compression grows the ultrasound-

produced bubbles. After a few sonic cycles, the bubbles will reach a threshold size and 

collapse rapidly. During the fast-transient collapse of the bubbles, it is assumed that 

almost no heat is transferred from the interior to the surrounding media. Consequently, 

the pressure and temperature that are built up inside the sphere of the bubbles rise to 

around 1000 atm and 5000 K, respectively [47]. The region of the core that has the 

maximum pressure and temperature is known as the “hot spot”. After the bubbles have 

collapsed, there is a rapid transfer of heat from the high-temperature region of the 

collapsed bubbles to the surrounding liquid at a rate of around 1010 K/s. In addition, the 

pressure difference between the inner and outer regions of the bubbles produces a 

“shock wave”. This shock wave and radicals created by the thermal breakdown within 

or close to the bubbles play an important role in the cavitation phenomena that takes 

place in sonochemistry. Sonochemistry is affected by the ultrasound's operational 

parameters, including input power, ultrasound frequency, ultrasonic intensity, dissolved 

gases, and bulk temperature [48]. 
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Figure 2.1 Classification of sound based on its frequency ranges. 

 

2.2.1 Acoustic cavitation and bubble formation 

The process of acoustic cavitation is considered to be the basis of sonochemistry. 

The term "cavitation" refers to the formation of tiny compressed gas bubbles (cavities) 

inside of a homogeneous liquid medium. It is a physical phenomenon that can result 

from an abrupt decrease in pressure [49]. As shown in Figure 3.2, the cavitation 

phenomenon is created when ultrasonic waves propagate through a liquid and induce 

pressure variations [50]. Irradiating a liquid with ultrasonic waves causes the molecules 

in the liquid to move in an oscillatory pattern, and this pattern is then transmitted 

through the liquid by pressure waves. Consequently, it creates rarefaction and 

compression waves in the molecular structure of the liquid. This results in the liquid 

molecules vibrating around their position. As the ultrasonic intensity within the liquid 

is increased, the distances between the molecules can also increase and the 

intramolecular tensions within the molecular structures can be dissipated. The 

molecules of the liquid break down and a cavity known as a cavitation bubble is created. 

These bubbles expand and compress in response to the ultrasonic field within the liquid, 
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and then eventually collapse. This process, which includes bubble formation, 

expansion, and collapse, is known as “Acoustic Cavitation” [50–52].  

Acoustic cavitation is the formation and collapse of pre-existing microbubbles 

in liquids under the ultrasonic field. The cavitation bubbles can be characterized by the 

dynamics of their distinctive oscillations and the highest temperatures and huge 

pressures obtained when they explode. The level of cavitation depends on the 

transducer; different transducers produce different levels of cavitation. When it comes 

to horn-type transducers, the sound energy is focused at the tip of the horn (usually 

between 20 and 100 kHz). This causes the development of discrete cavitation and high 

movement of fluids in the area near the tip of the horn [53]. Plate-type transducers, 

which operate between 20 kHz and 2 MHz and have a diameter of about 5.0 cm, allow 

for greater sound-wave dispersion and, hence, greater wave propagation over the entire 

liquid. Thus, horn transducers are used for low liquid volumes and high energy 

concentration in a short region, while plate transducers are used for larger volumes and 

more uniform wave fields. 

The cavitation bubble can be categorized as either stable or transient. In stable 

cavitation, a bubble can undergo multiple vibrational cycles of refraction and 

compression before collapsing, whereas in transient cavitation, bubbles expand double 

their size in one sonic cycle and then collapse [54]. The number of bubbles that are 

present at the active site, the size of the active bubbles, and the intensity of bubbles 

collapse are all influenced by the geometry of the reactor vessel, liquid height, and the 

type of solution, as well as the power, frequency, and solution conditions of the 

sonication process [55]. High-frequency cavitation bubbles tend to be stable, but the 

transient cavitation bubbles that result from low frequency are frequently unstable. The 

overall implication is that the size of active bubbles decreases with increasing 
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frequency, therefore the collapse intensity would be proportionally smaller at higher 

frequencies. However, due to increasing antinodes in the solution, the increasing 

frequency rises the number of active bubbles [56–58]. These factors make 

sonochemistry difficult to compare their investigations from different systems and 

different research groups. The implosive collapse of bubbles is frequently producing 

hot spots with temperatures of about 5000 K, pressures of 1000 atm, and cooling rates 

of 1010 Ks-1 (Figure 2.2). Nevertheless, transient cavitation is more powerful than stable 

cavitation. 

 

Figure 2.2 Schematic representation of the acoustic cavitation process. 

 

2.2.2 Effect of acoustic cavitation 

The frequency that is most commonly employed in sonochemistry is a low 

ultrasonic frequency ranging from 20 KHz to 40 KHz. This frequency does not have a 

direct influence on any of the physical, chemical, or biological effects. Since the 

frequency is so low, there is no possibility of a direct interaction between the ultrasound 

and the substance (chemical species). Nevertheless, the acoustic cavitation process of 

the ultrasound and materials can interact indirectly. The concentrated energy created 
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from the collapsed microbubbles is sufficient to affect molecules. Compared to other 

conventional energy sources, ultrasonic irradiation provides several unique and 

exceptional reaction conditions by the acoustic cavitation process (a short duration of 

extremely high temperatures and huge pressures in liquids) which cannot be procured 

from other techniques [44]. These conditions can result in a wide array of physical, 

mechanical, chemical, and biological effects, enabling the application of the acoustic 

cavitation process in several fields, including food extractions, drug transport, medical 

imaging, water treatment, emulsification, cleaning surface of materials, sonocatalysis, 

sonoluminescence, and sonochemistry [55]. 

2.2.2(a) Physical effects 

A number of different physical phenomena, such as microjets and shock waves, 

often appear alongside the localized hotspot after the sonic bubble collapses [59]. The 

creation of these physical phenomena relies mainly on the discrete features of the 

medium, which may be a homogeneous (uniform liquid) or a heterogeneous (non-

uniform) medium. In the homogeneous liquid, acoustic cavitation generates 

symmetrical cavitation as well as shock waves with high pressures greater than 1 kbar. 

However, in a non-homogeneous medium (solid-liquid interface), asymmetric 

cavitation and high-speed microjets are generated, which disrupts the solid surface and 

leads to mechanical damage [60,61]. Benjamin and Ellis (1966) and Naude and Ellis 

(1961) were the first to observe microjets experimentally. The greater velocity of the 

microjet (usually more than 100 m/s) suggests a conversion of the collapsing bubble's 

potential energy into kinetic energy [62]. In contrast, the formation of microjets during 

the acoustic cavitation process at the solid-liquid interface depends highly on the size 

of the interface [63]. The size of the collapsing bubbles must be greater than the solid 

barrier. If the ultrasonic field has a frequency of 20 kHz and the solid particles are 
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smaller than the diameter of the collapsing bubble (less than 150 μm), then the 

ultrasonic field is incapable of initiating the formation of microjets since the 

environment is homogeneous; as a result, regular cavitation and the emission of shock 

waves will take place. In contrast to microjets, which produce mechanical damage to 

materials such as erosion and pitting, shock waves create a powerful force that causes 

random acceleration of the NPs at considerable velocities, leading to inter-particle 

collisions [64,65]. 

2.2.2(b) Chemical effects 

The chemical reaction generated by ultrasonic irradiation can be attributed to a 

localized hotspot and extraordinary conditions caused by the collapsing of bubbles [55]. 

The hotspot is an appropriate way for concentrating the diffused (dispersed) sound 

energy. The chemical effects of ultrasonic waves have been described by Richards and 

Loomis for the first time in 1927. Several researchers have deployed this unique effect 

of ultrasonic acoustic cavitation to easily and rapidly fabricate a wide range of 

nanostructures [65]. 

2.3 Effect of ultrasound on the stability of NPs 

The particles of a colloidal system are considered stable if they can remain in an 

equilibrium state while suspended in a solution. The stability of a colloidal system is 

determined by the uniform distribution of colloidal particles in the layers of the solution. 

More particles suspended in layers increase the stability of the colloidal system. The 

zeta potential is a measure that can be utilized to determine the stability of a colloidal 

solution. Experimental studies indicate that the use of ultrasonic treatment breaks down 

large clusters of NPs into smaller clusters or even individual NPs. Figure 2.3 graphically 

depicts the sonochemistry treatment mechanism. In sonochemistry, the acoustic 
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cavitation process also aids to preserve the stability of nano-fluids and colloidal 

solutions by functionalizing the surface and structure of the NPs, hence preventing 

clusters from agglomerating [66,67]. The use of sonochemistry has made it possible to 

study the dispersion behaviors of numerous nano-fluids. Therefore, it is essential to 

analyze the particular sonochemistry conditions for various nano-fluids. Related 

researches also suggest that direct sonochemistry (the use of a probe/horn) is more 

effective than the use of indirect sonochemistry (bath sonicator) for dispersing NPs in a 

base liquid/solution [68]. Therefore, to get the optimal dispersion, researchers must 

conduct benchmark studies on the efficiency of sonochemistry parameters, such as 

power, frequency, time, type of sonochemistry (probe or bath), probe diameter, etc., for 

various types of NPs, such as metals and metal oxides. Moreover, the best sonochemical 

conditions for a nanofluid are characterized by the smallest increase in viscosity and the 

largest increase in heat conductivity [49]. 

 

Figure 2.3 Schematic illustration of braking down the NPs’ agglomeration by 

sonochemistry. 

2.4 Properties of Fe3O4 NPs 

Magnetite, maghemite, and hematite are the most common forms of IONPs. 

Among them, hematite is the most chemically stable phase in the presence of air over 
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an extended duration of time. However, hematite possesses the lowest magnetic strength 

[69,70]. The word "magnetite" originates from the region of Asia Minor known as 

"Magnesia," which is the location where significant deposits (quantities) of the mineral 

were found. Due to its presence of both ferric (oxidized) and ferrous (reduced) iron 

atoms, magnetite is frequently inferred to be iron (III) oxide [71,72]. The following 

chemical composition depicts a typical magnetite production reaction: 

FeO (Ferrous oxide) +  Fe2O3 (Ferric oxide) → Fe3O4 (magnetite) 

2.4.1 Structural and physical properties 

Iron oxide is a typical chemical compound comprised of iron and oxygen atoms. 

The chemical formula and composition of magnetite are, respectively, Fe3O4 and 

Fe2+(Fe3+)2(O
2-)4. Magnetite possesses a crystalline structure, which is a face-centered 

cubic lattice and inverse spinel structure, and comprises octahedral and mixed 

tetrahedral/octahedral layers packed along the (111) plane, wherein O2- ions form a 

cubic structure while Fe2+ and Fe3+ occupy interstitial sites (1/3 tetrahedral and 2/3 

octahedral), as displayed in Figure 2.4 [70–72]. Unlike other forms of iron oxides, Fe3O4 

is unique because it includes both divalent (Fe2+) and trivalent (Fe3+) iron ions. 

Physically, the colloidal suspension solution and powder form of pure magnetite can be 

identified by the shiny jet-black color. However, bare Fe3O4 oxidizes to γ-Fe2O3 when 

it is exposed to air (oxidation), which is characterized by its brownish color [70]. 
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Figure 2.4 The Crystal structure of Fe3O4. The green balls denote the (Fe3+); the 

black balls denote the (Fe2+), and the red balls denote the (O2-) [71]. 

2.4.2 Magnetic properties 

Iron oxides possess an intrinsic magnetic property. Nevertheless, the magnetic 

strengths of iron oxides are varying. The magnetic dipole moments of a magnetic 

material (a tendency measure of a material to align with a magnetic field) are originated 

from the spin and orbital motion of the electron, as well as the interactions between 

electrons. The 3d electronic orbital is crucial for regulating the unique properties of the 

iron (Fe) atom. Due to the presence of four unpaired electrons in the 3d orbital, iron 

atoms often possess a significant magnetic moment. Fe2+ and Fe3+ ions have 3d6 (four 

unpaired electrons) and 3d5 (five unpaired electrons), respectively. Fe+2 and Fe3+ ions 

undergo magnetically ordered phase changes below the transition temperature and 

become ferromagnetic, antiferromagnetic, or superparamagnetic [72–74]. 

As shown in Figure 2.5, the magnetism of materials can be categorized as 

diamagnetic, paramagnetic, or ferromagnetic based on their response and orientation to 

an externally applied magnetic field. In addition to ferromagnetic, there are also 
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ferrimagnetic and antiferromagnetic materials [75]. Diamagnetism is a distinguishing 

property of a material that exists only in the presence of an external magnetic field. 

However, the net magnetization value is zero in the absence of this magnetic field. 

When a magnetic field is applied, magnetic dipoles point in the opposite direction of 

the applied magnetic field. Therefore, a diamagnetic material has a negative and lower 

magnetic susceptibility (-10-6) [76]. 

Paramagnetic materials have unpaired electrons and a small positive 

susceptibility to an external magnetic field. These materials have a weak magnetic 

attraction to the magnetic field, the dipole moments are randomly aligned, and lose their 

magnetism when the applied magnetic field is removed. In contrast, when the magnetic 

field is applied, all magnetic dipoles become uniformly aligned in the same direction of 

the magnetic field. 

Unlike paramagnetic, ferromagnetic materials possess a large positive 

susceptibility to an external applied magnetic field. Ferromagnetic materials are 

strongly attracted to the applied magnetic field and retain their magnetic characteristics 

after the field is removed. Ferromagnetic materials also include unpaired electrons; 

therefore, their atoms possess a permanent net magnetic moment (magnetization). This 

permanent magnetic moment in a ferromagnetic material is due to the un-canceled 

electron spins in its electron structure. All magnetic moments align in the direction of 

an applied external magnetic field until saturation magnetization (Ms) is attained. When 

the magnetic field is removed, the magnetization does not instantly return to its initial 

value. Instead, there is a remanent magnetization (Mr) and a coercivity field (Hc) which 

is required to return the system to its initial state. However, antiferromagnetic materials 

have zero net magnetization because the external magnetic field causes magnetic 

moments to align antiparallel [17,32].  
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Figure 2.5 M-H curves, a schematic illustration of magnetization as a function of 

an applied magnetic field (a) Diamagnetic material, where magnetic moment (M) 

decreases as the external magnetic field increases (H). (b) For paramagnetic material, 

M increases with H. (c) Ferromagnetic material demonstrates a hysteresis loop with 

remanence (Mr) and coercivity (Mc). (d) Superparamagnetic material that has a 

similar sigmoid shape to ferromagnetic material with no hysteresis loop, remanence, 

and coercivity. 

 

Nevertheless, ferromagnetic and ferrimagnetic NPs exhibit superparamagnetic 

behavior, a property in which magnetic materials strongly respond (have a substantially 

higher magnetic susceptibility than typical paramagnetic materials) and their magnetic 

moments rapidly align to the same direction (parallel) of an externally applied magnetic 

field without magnetic memory, no Hc and no Mr. In other words, superparamagnetic 

materials do not maintain any net magnetization when the external magnetic field is 
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removed. Superparamagnetic materials have magnetic anisotropy, which generally 

refers to the preferred alignment of their magnetization. Bulk iron oxides, particularly 

Fe3O4 with average particle diameters up to 100 nm, have a multi-magnetic domain 

structure. When the size of the NPs is reduced to less than 30 nm, a single domain (a 

region in which the magnetic fields of atoms are aligned) eventually will be formed, 

and thus Fe3O4 NPs become superparamagnetic [77,78]. 

2.5 Properties of Bi NPs 

Due to their distinctive optical and electrical properties, inorganic particles, 

particularly metal NPs, have been extensively researched and developed in various 

fields. As a semimetal with a relatively narrow band gap, bismuth (Bi) is an essential 

component in a variety of existing technological applications. In place of Bi bulk 

materials, Bi-based nanoscale particles have recently attracted considerable scientific 

interest for advanced technological applications. Bi NPs exhibit unique features that are 

absent or substantially different from their bulk materials [79]. Recent investigations 

for the formation of nanosized Bi-containing materials have shifted from chemical, 

electrical, optical, and engineering to biomedicine due to their biosafety, low-cost 

production techniques, and tunability in size, shape, and porosity. Bi has been exploited 

to synthesize diverse NPs with distinct physicochemical, structural, and compositional 

characteristics to combine a variety of properties [80]. 

Among plenty of investigated inorganic and organic nanostructures for potential 

biomedical applications, single elemental Bi NPs and Bi-based NPs have recently 

attracted much research attention due to their incredible chemical, physical, and 

biological properties which include excellent chemical stability, relative non-toxicity, 

high surface area, cost-effectiveness, simplicity of functionalization, high electrical, 
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diamagnetic and magnetoresistance properties under the influence of a magnetic field, 

suitable catalytic activity, chemical inertness, radiostability, radiosensitization, high X-

ray attenuation coefficient, and photo-to-thermal conversion efficiency, favorable near-

infrared (NIR) absorption, and lengthy blood circulation half-life. Additionally, 

compared to other heavy metals like silver, Bi is thought to be one of the most 

biocompatible and low-toxic materials for in vitro and in vivo applications [8,81]. 

Nanomaterials with high atomic numbers (Z) have a high attenuation 

coefficient, demonstrating their utility as contrast agents for computed tomography 

(CT) imaging. Bismuth has various biomedical advantages over other high Z elements. 

Due to its highest atomic number (Z = 83) among non-radioactive substances, Bi has a 

larger X-ray attenuation coefficient (5.74 cm2/g at 100 keV), resulting in its higher CT 

contrast agent. In addition, elemental metal Bi strongly absorbs light throughout a wide 

spectral range that extends into the infrared (IR), enabling the photothermal heating of 

elemental Bi NPs by an IR light to be employed for photoacoustic imaging as well as 

photothermal therapy, which can synergistically enhance radiotherapy [82,83]. 

Furthermore, due to its good chemical reactivity, dissolving capabilities, and 

bioactivity, Bi can easily be excreted from the body. These distinctive properties make 

Bi NPs more appealing for biological applications than other metal-based NPs.  

Bi has conventionally been deployed in the fabrication of pharmaceuticals for 

the treatment of many diseases such as hypertension, gastrointestinal, and syphilis; 

however, in recent years, the application of Bi-based nanoscales has developed 

dramatically in diverse biomedical fields, such as bio-imaging, combined cancer 

therapy, X-ray radiotherapy, biosensors, heavy metal ion detectors, tissue engineering, 

and antimicrobial formulations has expanded dramatically [73,76]. Bulk Bi is a 

semimetal with long Fermi wavelengths, strong diamagnetism, and high 
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magnetoresistance, that may be utilized to create various forms and compositions of 

BiNPs. Besides, Bi single-component NPs (elemental BiNPs) can be employed as 

intermediates in the fabrication of additional types of BiNPs [73,84–86]. Bi-

chalcogenides, which belong to group VI of Bi compounds, Bi-oxyhalides, and other 

forms of Bi nanostructures are among the most interesting types of Bi-based NPs with 

adopting various structures and morphologies as illustrated by a diagram in Figure 2.6. 

In addition to their chemical stability, the nanoscale structures of these Bi-compounds 

exhibit inherent electrical and optical properties, making them particularly suitable for 

a variety of biomedical applications [8,80,81]. Similar to the synthesis of iron oxide 

NPs, Bi-containing NPs have been fabricated using different physical, chemical, and 

biological methodologies, including laser-mediated approaches, chemical reduction 

methods, hydrothermal/solvothermal synthesis, sol–gel approaches, microemulsion 

techniques, evaporation routes, microwave irradiation, and sonochemical synthesis [8]. 

 

Figure 2.6 Schematic diagram of the most common types of Bi-based NPs. 


