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FORMULASI KAEDAH PENGESANAN KONVERGENSI TAPAK 

PEMBELAHAN NUKLEAR FIDELITI TINGGI DALAM PENILAIAN 

KESELAMATAN REAKTOR MONTE CARLO 

ABSTRAK 

Simulasi pengangkutan neutron Monte Carlo (MC) merupakan alat pengiraan 

yang digunakan secara luas untuk menilai keselamatan pelbagai teknologi nuklear, 

termasuk reaktor nuklear. Semasa simulasi tersebut, tekaan awal taburan sumber 

neutron diperlukan, dan apabila beberapa kitaran MC disimulasikan, ia akan menumpu 

kepada taburan sebenar secara beransuran. Hasil daripada beberapa kitaran awal 

dibuang, dan hasil daripada kitaran seterusnya dikumpul untuk mendapatkan 

keputusan yang bermakna secara statistik. Oleh itu, pengenalpastian trend penumpuan 

dengan tepat adalah penting untuk mengelakkan pengumpulan ralat yang berpunca 

daripada tekaan awal. Teknik diagnostik penumpuan tradisional bergantung kepada 

pendiskretan geometri masalah, dan prestasi serta ketepatannya sering dipengaruhi 

oleh skema jejaring yang dipilih. Dalam penyelidikan ini, penunjuk diagnostik 

penumpuan yang bebas jejaring dan baharu, namanya pekali mod asas Fourier (FFMC), 

dirumus dan diperhalusi. Kaedah FFMC menggunakan pengembangan siri Fourier 

pada tapak pembelahan, dan aruhan matematik menunjukkan mod asas bagi pekali 

Fourier mempamerkan penumpuan yang paling perlahan apabila taburan sumber 

neutron menumpu. Pelaksanaan kaedah FFMC dengan algoritma MC piawai adalah 

mudah. Untuk menangani kelemahan kaedah FFMC, kebolehgunaan FFMC dikaji 

dalam konteks model reaktor homogen mudah. Penambahbaikan ini membawa kepada 

pembangunan pekali satu dimensi, yang dirujuk sebagai 1D-FFMC. Cadangan 



xiii 

kepungan yang berbatasan untuk 1D-FFMC ialah peliputan kawasan fisi yang tepat. 

Tujuannya untuk memastikan perwakilan sistem yang tepat. Kesahihan kaedah 1D-

FFMC diujikan dengan membandingkannya dengan penunjuk jarak Wasserstein (WD) 

yang baharu dalam masalah penanda aras simpanan papan dam dan model penuh 3D 

BEAVRS. Kedua-dua penunjuk menunjukkan persetujuan yang tinggi dari segi hasil 

penumpuan, dengan kaedah 1D-FFMC menunjukkan kecekapan pengiraan yang 

dipertingkatkan, sekurang-kurangnya 17% lebih cepat daripada kaedah WD. 
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FORMULATION OF A HIGH-FIDELITY NUCLEAR FISSION SITES 

CONVERGENCE DETECTION METHOD IN MONTE CARLO REACTOR 

SAFETY ASSESSMENTS 

ABSTRACT 

Monte Carlo (MC) neutron transport simulation is a widely used computational 

tool for assessing the safety of various nuclear technologies, including nuclear reactors. 

During the simulation, an initial guess of the neutron source distribution is required, 

and as several MC cycles are simulated, it converges to the true distribution. The 

outcomes from the initial cycles are discarded, and the outcomes from the subsequent 

cycles are accumulated to obtain a statistically meaningful result. Therefore, accurately 

identifying the convergence trend is crucial to prevent error accumulation from the 

initial guess. Traditional convergence diagnostic techniques rely on discretizing the 

problem geometry, and the selected meshing scheme heavily influences their 

performance and accuracy. This research formulated and refined a novel mesh-free 

convergence diagnostic indicator called Fourier fundamental mode coefficient 

(FFMC). The FFMC method utilizes the Fourier series expansion on the fission sites, 

and the mathematical induction shows that the fundamental mode of the Fourier 

coefficient exhibits the slowest convergence as the neutron source distribution 

converges. Implementing the FFMC method with a standard MC algorithm is 

straightforward. The limitations of the FFMC method are assessed and refined in the 

context of a simple homogenous reactor model. This refinement leads to one-

dimensional coefficients, referred to as 1D-FFMC. Regarding the bounding enclosure 

for 1D-FFMC, it is recommended to enclose the fissile region exactly, ensuring an 



xv 

accurate neutron source distribution representation. The validity of the 1D-FFMC 

method is verified by comparing it with the stage-of-the-arts Wasserstein distance 

(WD) indicator using the checkerboard storage of fuel assemblies benchmark problem 

and the 3D BEAVRS full core model. Both indicators exhibit high agreement in terms 

of convergence results, with the 1D-FFMC method demonstrating enhanced 

computational efficiency, being at least 17% faster than the WD method.  
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background 

Nowadays, the energy consumption by the current population is tremendous 

due to modernization and digitalization. As we advance towards the Fourth Industrial 

Revolution or the Age of Imagination, electrical energy becomes crucial for new-age 

technologies such as the Internet of Things, artificial intelligence, cloud computing, 

and other related domains. Electricity is generated from various primary energy 

sources, including fossil fuels, mineral fuels, biomass, solar energy, wind energy, 

geothermal energy, and others. However, using conventional energy sources such as 

fossil fuels, including coal, oil, and gas, negatively impacts our environment and 

society. For instance, burning fossil fuels releases carbon dioxide, contributing to the 

greenhouse effect. Thus, there is a demand for a shift towards using green energy to 

ensure the sustainability of human activities. Among other green energy sources, 

nuclear energy emerges as a potential substitute for fossil fuels. Due to the enormous 

energy released per unit of fuel through fission or fusion reactions, nuclear reactions 

are preferred to chemical burning reactions. Currently, only fission reactors are 

commercially available, while fusion reactors are still in the research stage. It is crucial 

to ensure the safety of fission reactors, as a failure in the safety assessment of fission 

reactors could result in a disaster, as seen in the Fukushima and Chernobyl accidents. 

The safety of a nuclear power system can be assessed through experiments or 

computational simulation. Computational simulation is preferred over experiments 

due to its flexibility to scale up and its low cost of operation. The reliability of the 

simulation depends on the accuracy and consistency of the numerical methods used. 
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The neutron transport equation describes the behaviour of the nuclear reactor core, and 

solving it reveals the stability of the nuclear reactor. The equation can be solved using 

two numerical methods: the deterministic method and the Monte Carlo method. The 

Monte Carlo simulation is currently preferred due to the availability of high-

performance computing and its capability to simulate various complex geometries.  

1.2 Problem Statement 

In Monte Carlo (MC) neutron transport simulation, the neutron distribution 

inside a fissile system can be obtained from an initial guess distribution by simulating 

each neutron from its birth to its termination. The initial guess neutron distribution 

consists of 𝑁  locations, where 𝑁  represents the input parameter for the number of 

simulated neutrons. Each location serves as the starting point, from which the neutron 

begins its random transport within the fissile system until its termination location. 

During the transport, the neutron may undergo various reactions such as scattering, 

capture, or fission events, which depend on a set of random numbers and the cross 

sections of the materials. Once all neutrons have been simulated, an MC cycle or 

generation is considered complete. The termination locations resulting from the fission 

event are assigned as the birth locations for the subsequent MC cycle. These locations 

are known as the fission sites. The number of fission sites in the next cycle may differ 

from the number of simulated neutrons, so the fission site count is normalized to 𝑁 . 

This normalization is performed to prevent an exponential increase or decrease in the 

number of neutrons, which could lead to premature termination of the simulation. As 

more cycles are simulated, the neutron distribution fluctuates and eventually converges 

to a stationary or equilibrium state. Tally quantities such as power distribution and 

reaction rates can only be accumulated once equilibrium has been achieved to avoid 
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errors arising from the initial guess. The iteration process is divided into inactive cycles 

for the purpose of convergence and active cycles for the tally of quantities of interest. 

False convergence detection in nuclear systems could lead to a catastrophic nuclear 

accident. Hence, it is crucial to improve the reliability of the convergence method to 

avoid critical errors in assessing the safety of a fissile system. 

To ensure the safety of a nuclear system, the convergence of neutron 

distribution must be realized before collecting the tallied results, ensuring that the 

results are free from contamination due to an incorrect estimation of the initial 

distribution (Kumar et al., 2020; Srivastava et al., 2020; Yamamoto & Sakamoto, 

2020). The conventional approach to address this challenge involves using an indicator 

to characterize the change in the distribution across successive MC cycles. However, 

the traditional convergence indicator is less precise and computationally expensive as 

it requires discretizing the problem space into a mesh comprising small bins. The 

fluctuations of the neutron source distribution are averaged by the summation over 

each mesh, which is likely to overlook any local changes in a smaller region (Kumar 

et al., 2020; Nowak et al., 2016). Moreover, the choice of the space discretization 

scheme is subjective, with different problems requiring different schemes, making the 

diagnosis of stationarity more challenging (Kumar et al., 2020; Omar, 2021a; Ueki & 

Chapman, 2011). Also, an excessively high or low discretization may fail to reveal 

details changes in the neutron source distribution (Brown et al., 2007; Cheatham & 

Brown, 2006). Therefore, a novel method is required to overcome the limitations of 

conventional approach by eliminating the need for space discretization. This proposed 

method must undergo validation with various reactor models and offers advantages in 

terms of implementation, computational efficiency, and adaptability to various reactor 

geometries.  
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1.3 Objectives 

The general objective of this research is to formulate a mesh-free or no spatial 

discretization mathematical technique for detecting the convergence of fission sites in 

Monte Carlo simulation for nuclear reactor safety assessment. Two sub-objectives that 

contribute to the achievement of the main objective are listed as follows:  

1. The first sub-objective aims to model the nuclear reactors and use the 

models to validate the proposed method.  

2. The second sub-objective aims to propose a simplified solution which 

enhances ease of implementation, computational efficiency, and 

adaptability to various reactor geometries.  

1.4 Scope and Limitations 

In this study, we utilized the OpenMC code (Romano et al., 2015) for all Monte 

Carlo (MC) neutron transport simulations. We expect that other MC codes would lead 

to the same conclusions as this study. These simulations include three models: a simple 

homogeneous reactor model, a checkerboard benchmark problem, and a 3D full core 

reactor model. For the simple homogenous reactor model, we generated the multigroup 

cross section library by specifying the cross sections for various neutron-nuclear 

interactions. For the benchmark problem and the full core reactor model, we used 

continuous energy nuclear data from the ENDF/B-VIII.0 library for the target 

materials. Similar conclusions are expected when using other nuclear libraries.  

Furthermore, OpenMC employs survival biasing as a variance reduction 

technique. Survival biasing is applied with a weight cutoff and Russian roulette. The 

weight of a neutron is adjusted by two parameters, 𝑤𝑐 and 𝑤𝑠. After a collision, if the 
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neutron’s weight 𝑤 is less than 𝑤𝑐 , it is killed with a probability of 1 − 𝑤 𝑤𝑠⁄ . If it 

survives, its weight is set to 𝑤𝑠. In OpenMC, the cutoff weight is set as 𝑤𝑐 = 0.25 and 

𝑤𝑠 = 1.0. It should be noted that different MC codes may use different variance 

reduction techniques, which should not pose any major issue.  

Additionally, Python was used to calculate the Pearson coefficients and 

evaluate performance during validation. All simulations and calculations in this study 

were conducted on a Windows Subsystem for Linux (WSL) laptop equipped with an 

Intel Core i7-7700HQ CPU, utilizing 8 parallel processes. This computational capacity 

allowed for simulations of up to 1 million neutron histories per MC cycle with an 

appropriate simulation duration. It is important to acknowledge that the results of 

performance assessment may differ based on the choice of programming languages, 

operating systems, and computational hardware used in the study.  

This research introduces a novel method for source convergence detection, 

characterized by its high efficiency and ease of implementation within standard MC 

codes. The nuclear community, particularly the Malaysian Nuclear Agency, can 

benefit from cost savings by avoiding licensing fees for MC codes and high-

performance computing. This method greatly integrates with the free and open-source 

code, OpenMC, while requiring fewer computing resources compared to other 

available methods. However, the primary challenge in disseminating the ideas of this 

project within the nuclear community is convincing them to adopt and test this method 

for various nuclear problems and models. The community can be conservative, making 

it challenging to persuade them to switch to a new method, as it may disrupt their 

existing processes.  
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1.5 Thesis Outline 

This thesis comprises five chapters: introduction, theory and literature review, 

methodology, results and discussions, and conclusion. Chapter one provides the 

background of the research, the problem statement, the research objectives, and the 

thesis outline. Chapter two discusses the relevant theory for this research, specifically 

the neutron transport equation and the Monte Carlo criticality calculation. This chapter 

also summarizes the previous research that addressed the same research problem: 

proposing new methods to determine the convergence of neutron source distribution. 

Chapter three presents the formulation of a new convergence detection method based 

on Fourier series expansion. The Fourier method is improved by dissociating it into 

three one-dimensional indicators. Chapter four highlights the erroneous convergence 

results of the proposed method for a simple homogeneous reactor model, emphasizing 

the need for an improved indicator. The improved indicator is validated by a 

benchmark problem and a real reactor model to establish its reliability and efficiency 

in determining stationarity. Finally, chapter five summarizes the findings that address 

the research problem and suggests perspectives to advance the research field.  
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CHAPTER 2  
 

THEORY AND LITERATURE REVIEW 

This chapter elucidates the theory behind this research, from the fundamental 

principles to the novel concept. The neutron transport equation is initially derived 

based on intuitive ideas, followed by its time-independent form, and further developed 

into nuclear criticality calculation. The nuclear criticality problem can be addressed 

using the Monte Carlo numerical method, which is explained in detail, from its 

fundamental concept to its application to criticality calculation. Lastly, a review of the 

previous methods proposed by several researchers for diagnosing the stationarity of 

fission sources is outlined in the last section.  

2.1 Neutron Transport Equation  

In a fissile system, the behaviour of neutrons is governed by the neutron 

transport equation or Boltzmann equation (Bell & Glasstone, 1970). This equation 

describes the motions and interactions between neutrons and nuclei but neglects the 

neutron-neutron interactions since the neutron density is negligible compared to the 

density of the materials. The main idea is to obtain the neutron population inside a 

specific system, treating the neutron population as a continuum. Initially, based on 

intuition, the conservation equation states that: 

 𝑑

𝑑𝑡 ข
𝑛 𝑑𝜏

𝑉༉༊།༊༖

The substantial derivative of
neutron population in a volume 𝑉

=
ข ຑิ

𝑄𝑖
𝑖

ຒ
𝑑𝜏

𝑉༉༊༊༊༊༊༊།༊༊༊༊༊༊༖

The sum of all sources and sinks 
in that volume

 
(2.1) 

where 𝑛 = 𝑛(𝑟, 𝐸, Ωว, 𝑡) represents the neutron density, 𝑄𝑖 denotes any production or 

absorption events of neutrons, and 𝑑𝜏 is a differential volume element. Also note that 
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𝑛ฝ𝑟, 𝐸, Ωว, 𝑡พ 𝑑𝜏 𝑑𝐸 𝑑Ω  represents the expected number of neutrons in a volume 

element 𝑑𝜏  about 𝑟 , travelling in the cone of direction 𝑑Ω  about vector Ωว , with 

energies between 𝐸  and 𝐸 + 𝑑𝐸 , at time 𝑡. Next, the Reynolds transport theorem 

states that:  

 𝑑

𝑑𝑡 ข
𝑛 𝑑𝜏

𝑉

=
ข

𝜕𝑛

𝜕𝑡
𝑑𝜏

𝑉

+
ข

𝑛𝑣 ⋅ 𝑑𝑎
𝑆

 (2.2) 

Here, 𝑣 = 𝑣(𝐸) denotes the neutron velocity with energy 𝐸  and 𝑑𝑎 is a differential 

vector surface element of the surface 𝑆. The left-hand side of Eq. (2.1) is replaced by 

Eq. (2.2), and the surface integral in Eq. (2.2) is transferred to the right-hand, resulting 

in: 

 
ข

𝜕𝑛

𝜕𝑡
𝑑𝜏

𝑉

=
ข ຑิ

𝑄𝑖
𝑖

ຒ
𝑑𝜏

𝑉

−
ข

𝑛𝑣 ⋅ 𝑑𝑎
𝑆

 (2.3) 

Utilizing the Gauss divergence theorem, the surface integral is replaced by the volume 

integral:  

 
ข

𝜕𝑛

𝜕𝑡
𝑑𝜏

𝑉

=
ข ຑิ

𝑄𝑖
𝑖

ຒ
𝑑𝜏

𝑉

−
ข

∇ ⋅ (𝑛𝑣) 𝑑𝜏
𝑉

 (2.4) 

implying: 

๧
Rate of change of

neutron population in 𝑉 ๨

=

⎝
⎜
⎜
⎛

๧
Rate of production of 

neutrons in 𝑉 ๨ − ๧
Rate of absorption of 

neutrons in 𝑉 ๨ 

⎠
⎟
⎟
⎞

− ๧
Rate of leakage of 
neutrons from 𝑉 ๨ 

  (2.5) 

In general, neutron production events can include in-scattering or fission events. In 

contrast, neutron absorption events can involve any neutron loss events except leakage, 

such as scattering, capture, or other disappearance reactions. It is convenient to use the 
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angular neutron flux 𝜓 = 𝜓ฝ𝑟, 𝐸, Ωว, 𝑡พ  to represent the neutron population by 

substituting the neutron density 𝑛 with 𝜓 = 𝑛𝑣, where 𝑣 = 𝑣(𝐸) is the neutron speed 

with energy 𝐸. By omitting the volume integration in Eq. (2.4) and expressing the 

production events and the total absorption events mathematically, we obtain the 

following: 

1

𝑣

𝜕𝜓

𝜕𝑡
=

ข ข
Σ𝑠𝜓 𝑑𝐸༜𝑑Ω༜

𝐸༣Ωว༣

+
𝜒

4𝜋 ข ข
𝜈Σ𝑓 𝜓 𝑑𝐸༜𝑑Ω༜

𝐸༣Ωว༣

− Σ𝑡𝜓 − Ωว ⋅ ∇𝜓  

  (2.6) 

where Σ𝑠𝜓 𝑑𝐸༜𝑑Ω༜ = Σ𝑠ฝ𝑟, 𝐸༜ → 𝐸, Ωว༜ → Ωวพ 𝜓ฝ𝑟, 𝐸༜, Ωว༜, 𝑡พ 𝑑𝐸༜𝑑Ω༜  represents 

the expected number of in-scattered neutrons per unit length at the position 𝑟 

with energy 𝐸′ and travelling in the direction Ωว ༜ that scatter into an energy 

interval 𝑑𝐸༜ about 𝐸 into a solid angle 𝑑Ω༜ about Ωว  at time 𝑡,  

𝜒

4𝜋
𝜈Σ𝑓 𝜓 𝑑𝐸༜𝑑Ω༜ =  𝜒(𝐸)

4𝜋
𝜈(𝐸༜) Σ𝑓 (𝑟, 𝐸༜) 𝜓ฝ𝑟, 𝐸༜, Ωว༜, 𝑡พ 𝑑𝐸༜𝑑Ω༜  represents the 

probable number of fission neutrons produced at 𝑟 with energy with 𝑑𝐸༜ about 

𝐸 within the cone of angles 𝑑Ω༜ about Ωว  per unit length travelled by neutron 

with energies 𝐸′ at time 𝑡,  

Σ𝑡𝜓 = Σ𝑡(𝑟, 𝐸) 𝜓ฝ𝑟, 𝐸, Ωว, 𝑡พ represents the expected rate of absorption of neutrons at 

𝑟 per unit energy per unit angle that is lost via any disappearance interactions 

at time 𝑡, and 

Ωว ⋅ ∇𝜓 = Ωว ⋅ ∇𝜓ฝ𝑟, 𝐸, Ωว, 𝑡พ represents the neutron leakage term. The production and 

absorption events in Eq. (2.6) are categorized into the fission (𝑓 ), in-scattering (𝑠), and 

total loss reactions (𝑡) along with the specified macroscopic cross section Σ = Σ(𝑟, 𝐸). 

The macroscopic cross section is derived from the microscopic cross section 𝜎 =

𝜎(𝑟, 𝐸) using Σ = 𝑁𝐷𝜎, where 𝑁𝐷 is the atom density of the interacting material, and 

𝜎 is defined as the effective cross-sectional area per nucleus interacted by the neutrons, 
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which depends on the neutron position 𝑟 and energy 𝐸. The fission event is associated 

with two physical parameters: the fission spectrum 𝜒(𝐸) and the average number of 

fission neutrons 𝜈(𝐸༜) produced in a fission event by a neutron with energy 𝐸༜. Note 

that 𝜒(𝐸) 𝑑𝐸  represents the probability that a fission neutron will have an energy 

interval 𝑑𝐸 about 𝐸.  

Solving Eq. (2.6) for 𝜓  via analytic method is challenging and requires 

additional assumptions, such as applying Fick’s law to simplify the equation. Since Eq. 

(2.6) is a partial differential equation, it is necessary to specify the initial and boundary 

conditions. Common boundary conditions include vacuum, reflective, white, and 

periodic conditions. When neutrons reach the vacuum boundary, they are permanently 

lost. The reflective boundary instructs neutrons to return as a mirror image, while the 

white boundary instructs neutrons to return isotropically. Neutrons crossing the 

periodic boundary will reappear at the opposite boundary, as both boundaries are part 

of a periodic lattice structure. Furthermore, 𝜓  must be a real, finite, and non-negative 

function to maintain its physical interpretation.  

2.1.1 Time-Independent Form and Multiplication Factor 

Typically, numerical methods are employed to solve the time-independent 

form of the neutron transport equation (Lewis & Miller, 1984). In this form, Eq. (2.6) 

simplifies to: 

 
Ωว ⋅ ∇𝜓 + Σ𝑡𝜓 =

ข ข
Σ𝑠𝜓 𝑑𝐸༜𝑑Ω༜

𝐸༣Ωว༣

+
𝜒

4𝜋 ข ข
𝜈Σ𝑓 𝜓 𝑑𝐸༜𝑑Ω༜

𝐸༣Ωว༣

 (2.7) 

under the assumption that boundary conditions are also time-independent.  

A fissile system is considered critical if it maintains a self-sustaining, time-

independent chain reaction without external neutron sources. The system is considered 
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supercritical or subcritical if the neutron population increases or decreases 

exponentially. The effective multiplication factor 𝑘eff  is defined as: 

 
𝑘eff =

Total number of neutrons born in the system

Total number of neutrons loss in the system
 (2.8) 

which characterizes the system, with 𝑘eff = 1 indicating criticality, 𝑘eff > 1 indicating 

supercriticality, and 𝑘eff < 1 indicating subcriticality. No general solution exists for 

Eq. (2.7) in supercritical or subcritical conditions since the equation is balanced in such 

a way that the net gain of neutrons is equal to the net loss of neutrons within the system. 

To address this issue, the 𝑣 in Eq. (2.7) is replaced by 𝑣  𝑘eff⁄ , resulting in: 

Ωว ⋅ ∇𝜓 + Σ𝑡𝜓 =
ข ข

Σ𝑠𝜓 𝑑𝐸༜𝑑Ω༜

𝐸༣Ωว༣

+
1

𝑘eff

𝜒

4𝜋 ข ข
𝜈Σ𝑓 𝜓 𝑑𝐸༜𝑑Ω༜

𝐸༣Ωว༣

 (2.9) 

This equation is known as the 𝑘-eigenvalue or criticality equation. By rewriting the 

equation into operator form, we obtain the following: 

 (L + T)𝜓 = S𝜓 +
1

𝑘eff
F𝜓  (2.10) 

where L represents the leakage operator, T represents the total absorption operator, S 

represents the in-scattering operator, and F  represents the fission multiplication 

operator. Rearranging the operator yields: 

 𝜓 =
1

𝑘eff
(L + T − S)−1F𝜓 =

1

𝑘eff
R𝜓  (2.11) 

where R = (L + T − S)−1F. Applying the F operator to both sides results in: 

 Ψ =
1

𝑘eff
RΨ (2.12) 

where Ψ = F𝜓  represents the fission source distribution. The general solution for the 

eigenvalue equation in Eq. (2.12) is given by: 

 
Ψ =

ิ
𝑎𝑖Ψ𝑖

∞

𝑖=0

 (2.13) 
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where each eigenfunction Ψ𝑖  corresponds to its eigenvalue 𝑘𝑖  and expansion 

coefficient 𝑎𝑖. It is impractical to solve for a general solution. Instead, the focus is on 

the fundamental values of a particular system, namely 𝑘0 and Ψ0, as 𝑘0 = 𝑘eff  for the 

system. Additionally, 𝑘0 represents the largest eigenvalue, satisfying: 

 𝑘0 > |𝑘1| > |𝑘2| > ⋯ (2.14) 

 

2.1.2 Standard Power Iteration 

Eq. (2.12) can be solved numerically using the standard power iteration method: 

 Ψ(𝑗+1) =
1

𝑘(𝑗)
RΨ(𝑗), 𝑗 = 0, 1, 2, … (2.15) 

In this method, the previous source distribution Ψ(𝑗) and the multiplication factor 𝑘(𝑗) 

in generation or cycle 𝑗 are used to determine the new cycle distribution Ψ(𝑗+1). To 

obtain the new 𝑘(𝑗+1), the following estimation can be employed: 

 
𝑘(𝑗+1) =

𝑁𝐹
(𝑗)

𝑁 (𝑗)
=

์RΨ(𝑗+1)
ํ

⟨RΨ(𝑗)⟩
=

์RΨ(𝑗+1)
ํ

𝑘(𝑗)⟨Ψ(𝑗+1)⟩
 (2.16) 

where 𝑁𝐹
(𝑗) is the total number of neutrons created by fission at 𝑗-th iteration, 𝑁 (𝑗) is 

the total number of neutrons starting at 𝑗-th iteration, and the ⟨⋅⟩ notation denotes the 

integration over all independent variables. It is important to note that an initial guess 

for 𝑘 and Ψ, namely 𝑘(0) and Ψ(0), must be provided for the standard power iteration 

method. The fundamental eigenfunction and eigenvalue can be obtained with an 

arbitrary initial guess due to the convergence behaviour of this method. To begin with, 

the recursive substation of Eq. (2.15) is performed: 

 Ψ(1) =
1

𝑘(0)
RΨ(0) 

Ψ(2) =
1

𝑘(1)
RΨ(1) =  

1

𝑘(0)𝑘(1)
 𝐑2Ψ(0) 

⋮  
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 Ψ(𝑗) =
1

∏ 𝑘(𝑚)𝑗−1

𝑚=0

𝐑𝑗Ψ(0) 
(2.17) 

By expressing Ψ(0) in terms of its eigenmodes: 

 
Ψ(0) =

ิ
𝑎𝑖Ψ𝑖

∞

𝑖=0

 (2.18) 

and substituting Eq. (2.18) into Eq. (2.17), we obtain: 

 
Ψ(𝑗) =

1

∏ 𝑘(𝑚)𝑗−1

𝑚=0

𝐑𝑗

ຑิ
𝑎𝑖Ψ𝑖

∞

𝑖=0
ຒ

=
ิ

𝑎𝑖

∏ 𝑘(𝑚)𝑗−1

𝑚=0

𝐑𝑗Ψ𝑖

∞

𝑖=0

 
(2.19) 

Similar to Eq. (2.12), for each eigenfunction,  

 Ψ𝑖 =
1

𝑘𝑖

𝐑Ψ𝑖    or    𝐑Ψ𝑖 = 𝑘𝑖Ψ𝑖 (2.20) 

Substituting Eq. (2.20) into Eq. (2.19) results in: 

 
Ψ(𝑗) =

ิ

𝑎𝑖

𝑏
𝑘𝑖

𝑗
Ψ𝑖

∞

𝑖=0

 
(2.21) 

where 𝑏 = ∏ 𝑘(𝑚)𝑛−1
𝑚=0 . Dividing Eq. (2.21) by 𝑘

0
𝑗  results in: 

 Ψ(𝑗)

𝑘
0

𝑗
=

𝑎0

𝑏
Ψ0 +

𝑎0

𝑏 ຑ

𝑘1

𝑘0ຒ

𝑗

Ψ0 +
𝑎0

𝑏 ຑ

𝑘2

𝑘0ຒ

𝑗

Ψ2 + ⋯ 
(2.22) 

Additionally, dividing Eq. (2.14) by 𝑘0 yields: 

 
1 >

ຢ

𝑘1

𝑘0ຢ
>

ຢ

𝑘2

𝑘0ຢ
> ⋯ (2.23) 

Eq. (2.22) suggests that if the iteration 𝑗  is sufficiently large, Ψ(𝑗)  will eventually 

converges to Ψ0 . The ratio |𝑘1  𝑘0⁄ |  represents the largest term in the series, as 

indicated by Eq. (2.23), implying that the convergence behaviour depends on the value 

of this ratio. This ratio is known as the dominance ratio (𝜌). The closer the 𝜌 value to 

unity, the slower the convergence to the fundamental eigenfunction. This situation is 

known as the high dominance ratio problem. Generally, a high dominance ratio system 
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may require hundreds or thousands of iterations to achieve convergence, while a low 

dominance ratio system may require tens to hundreds (Brown, 2009).  

2.2 Nuclear Criticality Calculation 

The nuclear criticality problem can be solved using deterministic or 

probabilistic methods. The deterministic method requires discretizing and solving the 

neutron transport equation for all variables, such as spatial, angular, and energy, in a 

deterministic manner (Lewis & Miller, 1984). However, this method encounters 

drawbacks in terms of computational memory, time, and accuracy when dealing with 

three-dimensional problems. On the other hand, with the availability of high-

performance computers today, the probabilistic method, also known as the Monte 

Carlo method, can address three-dimensional problems with continuous energy data 

without discretization errors. However, there are stochastic uncertainties associated 

with the Monte Carlo method. In this study, only the Monte Carlo method is deployed 

for all criticality calculations.  

2.2.1 The Monte Carlo Method 

The concept behind the Monte Carlo (MC) method is to derive an outcome 

from a known probability distribution using random sampling, with a specified number 

of particles to be sampled (Haghighat, 2021). A simple example illustrating the Monte 

Carlo method is estimating the value of 𝜋 (McClarren, 2018). Initially, a circle with a 

radius of one, centred at the origin, is inscribed within a square with a side length of 

two, as depicted in Figure 2.1. The ratio of the areas of these two shapes is given by:  

 Area of the circle
Area of the square

=
𝜋(1)2

2 × 2
=

𝜋

4
 (2.24) 
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Subsequently, a random point with coordinates (𝑥, 𝑦)  in the domain of [−1, 1)  is 

generated and placed within the square. By dropping a large number of points, the 

value of 𝜋 can be estimated from the ratio in Eq. (2.24) using the following formula: 

 𝜋 = 4 × 𝐶  𝑃⁄  (2.25) 

where 𝐶  represents the number of points dropped inside the circle and 𝑃  denotes the 

total number of dropping points. Note that the random points are generated from a 

uniform distribution in the interval of [−1, 1). As the random numbers are associated 

with stochastic uncertainty, the simulation must be repeated for multiple MC cycles to 

assess the uncertainty in terms of variance or standard deviation. The flow chart for 

the Monte Carlo calculation of 𝜋  value is presented in Figure 2.2. The first step 

involves determining the number of particles or points (𝑃 ) and the number of MC 

cycles (𝑆) to be simulated. The value of 𝑃  significantly affects the accuracy of the 

result, as a low value may introduce significant bias, as illustrated in Figure 2.1. 

Conversely, a higher value of 𝑆  can reduce the variance of the results. A 

pseudorandom number generator is utilized to generate the input points. The sequence 

 

Figure 2.1 The values of 𝜋 estimated by the Monte Carlo method under different 
numbers of points 𝑃 .  
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of pseudorandom numbers is initialized using a seed, enabling the replication of 

simulation results with the same seed. Although the randomness of the sequence may 

introduce nonuniform random bias, modern algorithms generate pseudorandom 

numbers that are sufficiently close to true randomness, which minimises this effect. 

Once all MC cycles are simulated, the mean and standard deviation of the estimated 

value of 𝜋 can be calculated.  
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Figure 2.2 The Monte Carlo calculation flowchart for estimating the value of 𝜋.  
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2.2.2 Monte Carlo Criticality Calculation 

For the nuclear criticality calculation, the Monte Carlo (MC) method does not 

directly solve the criticality equation. Instead, it simulates the trajectory of each 

neutron through a random walk from its birth until its termination. All events 

experienced by the neutron during its journey are recorded. The transport distance and 

the nature of neutron-nucleus interactions are determined by random sampling from 

known probability distributions, guided by physical quantities such as material density, 

material cross sections, and boundary conditions. These probability distributions are 

derived from experiments and stored in an evaluated nuclear data library. A high-

fidelity nuclear data library containing diverse materials is essential to ensure that each 

simulated neutron adheres to the probability distributions corresponding to actual 

events.  

A large number of neutron histories is necessary for the MC simulation to 

reduce bias in the 𝑘eff  and other interested tallies. Furthermore, a low number of 

neutron histories used in problems with a high dominance ratio may lead to the 

occurrence of neutron clustering phenomena (Dumonteil et al., 2014), which can 

impact the convergence of the fission source (Nowak et al., 2016). Expert 

recommendation indicates that a minimum of 10,000 neutron histories is required for 

all calculations (Brown, 2011). In addition, for large and complex geometry problems, 

such as 3D reactors or storage vaults, it is preferable to use 100,000 or more histories 

(Brown, 2011).  

Another source of bias in the simulation results arises from an inaccurate initial 

guess of the source distribution. While the MC iteration method will eventually 

converge the initial distribution to the true distribution, it is crucial to determine 
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whether the number of inactive MC cycle is sufficient for achieving convergence. The 

number of inactive cycles depends on the dominance ratio of the problem, the number 

of neutron histories per cycle, and the initial source distribution. Suppose the initial 

source guess does not encompass the most important region of the problem and an 

insufficient number of histories are used. In that case, the dominance ratio of the 

problem may increase. These two factors make it more challenging for neutrons to 

propagate towards the true distribution. Hence, the advice from the expert is to employ 

a uniform distribution as the initial source distribution in all fissionable regions of the 

problems (Brown, 2011). Furthermore, the number of inactive cycles can be 

determined by monitoring the convergence trend for around 100 MC cycles, using a 

moderate number of neutron histories per cycle, such as 1,000. However, this assumes 

that the convergence behaviour remains unchanged as the number of neutron histories 

increases. Results from the Massachusetts Institute of Technology (MIT) group 

(Kumar et al., 2020) indicate that as the number of neutron histories increases, the 

number of cycles required to reach stationarity also increases.  

2.3 Source Convergence Indicators 

An indicator is necessary to monitor the convergence trend of the fission source 

distribution in Monte Carlo (MC) criticality problems. Suppose the indicator is a 

function of the MC cycle. In that case, the number of inactive cycles or the 

convergence instance can be determined when it reaches a state of stationary or 

equilibrium. Moreover, certain problems exhibit slow convergence due to a high 

dominance ratio, thus requiring the indicator to accurately reflect the slow convergence 

trend. One early attempt at this slow converging problem is the sandwich method 

(Naito & Yang, 2004), which utilizes two 𝑘eff  as convergence indicators. By selecting 
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two suitable initial source distributions, one with a higher value of 𝑘eff  and the other 

with a lower value of 𝑘eff , the convergence can be assessed by monitoring the 

monotonically increasing and decreasing behaviours of these two 𝑘eff  values. When 

both values reach a stationary state, then 𝑘eff  is converged. However, this method was 

abandoned as it was discovered that 𝑘eff  converges faster than the source distribution 

(Ueki & Brown, 2003a). Monitoring the source distribution is challenging as it 

involves a complex function encompassing all source site information. Therefore, 

various indicators have been proposed from different approaches to represent the 

source distribution in a simpler manner, which can be divided into two categories: 

entropy-based indicators and mesh-free indicators.  

2.3.1 Entropy-Based Indicators 

Shannon Entropy 

Shannon entropy is the widely used indicator in most Monte Carlo (MC) codes 

as it had been adapted as the default source convergence indicator (Kulesza et al., 2022; 

Leppänen et al., 2015; Romano et al., 2015; Wang et al., 2015). This indicator is 

adopted from information theory, in which the randomness or disorder of the source 

distribution is measured (Cover & Thomas, 2005; Ueki & Brown, 2002, 2003b). Users 

are required to provide a meshing scheme to discretize the problem space. For each 

MC cycle 𝑗, Shannon entropy 𝐻  can be calculated as: 

 
𝐻 (𝑗) = −

ิ
𝑓𝑖

(𝑗)
log2 𝑓𝑖

(𝑗)
𝐵

𝑖=1

 (2.26) 

where 𝑓𝑖 is the neutron source fraction in meshing bin 𝑖 and 𝐵 is the total number of 

meshing bins. It is worth noting that the maximum value of Shannon entropy is log2 𝐵 

for a uniform distribution, while the minimum value is zero for a point distribution. 
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The advantage of Shannon entropy is that it condenses the complex neutron 

distribution into a scalar number for each MC cycle. The choice of meshing scheme is 

important as it significantly affects the values of Shannon entropy. However, selecting 

a meshing scheme relies on users’ experience with different cases (Kumar et al., 2020; 

Omar, 2021a; Ueki & Chapman, 2011). For instance, the default meshing scheme in 

the MCNP code divides the problem space into meshes containing an average of 20 

neutron histories per cycle (Kulesza et al., 2022). However, this requirement can 

impose a computational burden when a vast number of neutron histories are used. On 

the other hand, an extreme choice where each mesh contains only one neutron history 

fails to provide the convergence information for the source distribution using Shannon 

entropy (Cheatham & Brown, 2006; Shi, 2010). Another approach to the meshing 

scheme is to assign each meshing bin to a different region based on the problem’s 

geometrical configuration. However, this approach does not guarantee accurate 

convergence results when a large number of neutron histories per mesh are used (Guo 

et al., 2022; Kumar et al., 2020). Hence, the meshing scheme should be chosen 

carefully to avoid the wrong determination of source convergence.  

Undersampling the neutron population induces neutron clustering, in which 

neutrons cluster together due to cycle-to-cycle correlations of the fission sources 

(Dumonteil et al., 2014). Shannon entropy cannot detect the spatial fluctuations of the 

neutron population resulting from neutron clustering. Therefore, a higher-order spatial 

moment entropy function has been proposed (Nowak et al., 2016). The entropy 

function is generalized using Legendre polynomials as follows:  

 𝑆𝑢,𝑣,𝑤
∗ = −

ิ
𝐿𝑢(𝑋𝑖)𝐿𝑣ฝ𝑌𝑗พ𝐿𝑤(𝑍𝑘)𝑓𝑖,𝑗,𝑘 log2ฝ𝑓𝑖,𝑗,𝑘พ

𝑖,𝑗,𝑘

 (2.27) 

where 𝐿𝑞(𝑇 ) represents the Legendre polynomials of order 𝑞  with argument 𝑇  and 

(𝑋𝑖, 𝑌𝑗 , 𝑍𝑘) denotes the 𝑥, 𝑦, or 𝑧-coordinates of the centres of cell 𝑖, 𝑗, 𝑘, normalized 
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to the interval [-1, 1]. By setting (𝑢, 𝑣, 𝑤) = (1, 0, 0), the local fluctuations along the 𝑥-

axis can be monitored using this higher spatial moment entropy. The same applies to 

𝑆0,1,0
∗  and 𝑆0,0,1

∗ , which monitor local fluctuations along 𝑦- and 𝑧-axes. However, the 

impact of neutron clustering on source convergence is still debatable (Mickus & Dufek, 

2021).  

Progressive Relative Entropy (PRE) 

The alternative version of entropy is progressive relative entropy (PRE), which 

has been proposed as a convergence diagnostic tool for fission sources (Ueki, 2008b, 

2009; Ueki & Brown, 2005). PRE measures the deviation of a source distribution 𝑆(𝑗) 

from a reference distribution 𝑆(𝑟), defined as: 

 PRE(𝑗) ≡ 𝐷๡𝑆(𝑟) ∥ 0.5 × ฝ𝑆(𝑟) + 𝑆(𝑗)
พ๢

+ 𝐷๡𝑆(𝑗) ∥ 0.5 × ฝ𝑆(𝑟) + 𝑆(𝑗)
พ๢ (2.28) 

Here, 𝐷ฝ𝑆(𝑟) ∥ 𝑆(𝑗)
พ represents the relative entropy of 𝑆(𝑟) with respect to 𝑆(𝑗):  

 
𝐷ฝ𝑆(𝑟) ∥ 𝑆(𝑗)

พ ≡
ิ

𝑆𝑖
(𝑟)

log2
ເ

𝑆𝑖
(𝑟)

𝑆(𝑗)ແ

𝐵

𝑖=1

 (2.29) 

where 𝑗 is the current MC cycle, 𝑟 is the reference MC cycle (usually the first cycle), 

𝑆𝑖 is the neutron source fraction in meshing bin 𝑖, and 𝐵 is the total number of meshing 

bins. The formulation of PRE ensures a monotonically increasing trend as the MC 

cycles progress. This property allows using on-the-fly convergence diagnostic tools 

such as the Wilcoxon rank sum test to determine the number of inactive cycles. 

However, similar to Shannon entropy, PRE is also strongly influenced by the 

refinement of the meshing scheme, thus it faces the same limitations.  
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Summary 

In a nutshell, the entropy method requires the discretization of the problem 

space to demonstrate source convergence. Space discretization is crucial in 

determining the entropy method’s efficiency and accuracy (Kumar et al., 2020; Nowak 

et al., 2016). Therefore, various mesh-free methods have been proposed to ease the 

cognitive effort in detecting MC simulation convergence.  

2.3.2 Mesh-Free Indicators 

Source Centre of Mass 

The centre of mass of the neutron source has been proposed to diagnose source 

convergence without employing a meshing scheme (Haghighat, 2021; Wenner, 2010). 

This method utilizes a single indicator ฮ𝑅༅⃗ ฮ to represent the source distribution in the 

𝑗-th MC cycle:  
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 (2.30) 

where 𝑖 denotes the neutron index, 𝑚 represents the neutron mass, 𝑀 = ∑ 𝑚𝑖
𝑁
𝑖=1  is the 

total mass of all neutrons, 𝑁  indicates the total number of neutrons, and (𝑥, 𝑦, 𝑧) 

denotes the magnitude of the vector components from the geometric centre of the 

model to the 𝑖-th neutron. However, this indicator encounters an issue when the model 

and initial source distribution are symmetric. In such cases, the centre of mass will 

fluctuate around the geometric centre from the initial MC cycle, failing to illustrate the 

change in source distribution (Guo et al., 2022; Kumar et al., 2020). Besides that, 

undersampling caused by vacuum boundary conditions may yield inaccurate results 

(Haghighat, 2021). On the other hand, the components of the centre of mass along each 

axis have been used to compare with the higher spatial moment expansion of Shannon 
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entropy, aiding in the illustration of local fluctuations in the neutron population due to 

neutron clustering (Nowak et al., 2016).  

Nice-Centre Distance Sum (NCDS) 

The nine centre-distances sum (NCDS) method addresses the limitations of the 

centre of mass in the case of a symmetric initial source and problem by introducing 

nine geometric centres at different locations (Ueki & Chapman, 2011). In a 3D 

problem, the geometry centre of all neutrons is calculated, and then this centre is served 

as the intersection point for three perpendicular axis planes: the 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥 planes. 

These planes divide the entire problem space into eight subspaces. The geometric 

centre of source particles within each of the eight subspaces is then computed. The 

distances between the nine centres in 𝑗-th MC cycle and the nine centres in the first 

cycle are combined into a single indicator 𝐷, the NCDS, as follows:  
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  (2.31) 

where 𝑖 represents the centre index and ฝ𝑥(𝑘), 𝑦(𝑘), 𝑧(𝑘)
พ denotes the coordinates of 

each centre in the 𝑘-th MC cycle. Note that for 1D and 2D problems, the NCDS 

reduces to a sum of three centre-distances or five three centre-distances, respectively. 

However, the accuracy of this indicator is doubted for certain special symmetric 

geometries with specific initial source distributions (Guo et al., 2022; Kim et al., 2014). 

Additionally, automated meshing can be computationally expensive, and 

implementation of the algorithms may require significant programming efforts (Omar, 

2021a).  

 


