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FORMULASI KAEDAH PENGESANAN KONVERGENSI TAPAK
PEMBELAHAN NUKLEAR FIDELITI TINGGI DALAM PENILAIAN

KESELAMATAN REAKTOR MONTE CARLO

ABSTRAK

Simulasi pengangkutan neutron Monte Carlo (MC) merupakan alat pengiraan
yang digunakan secara luas untuk menilai keselamatan pelbagai teknologi nuklear,
termasuk reaktor nuklear. Semasa simulasi tersebut, tekaan awal taburan sumber
neutron diperlukan, dan apabila beberapa kitaran MC disimulasikan, ia akan menumpu
kepada taburan sebenar secara beransuran. Hasil daripada beberapa kitaran awal
dibuang, dan hasil daripada kitaran seterusnya dikumpul untuk mendapatkan
keputusan yang bermakna secara statistik. Oleh itu, pengenalpastian trend penumpuan
dengan tepat adalah penting untuk mengelakkan pengumpulan ralat yang berpunca
daripada tekaan awal. Teknik diagnostik penumpuan tradisional bergantung kepada
pendiskretan geometri masalah, dan prestasi serta ketepatannya sering dipengaruhi
oleh skema jejaring yang dipilih. Dalam penyelidikan ini, penunjuk diagnostik
penumpuan yang bebas jejaring dan baharu, namanya pekali mod asas Fourier (FFMC),
dirumus dan diperhalusi. Kaedah FFMC menggunakan pengembangan siri Fourier
pada tapak pembelahan, dan aruhan matematik menunjukkan mod asas bagi pekali
Fourier mempamerkan penumpuan yang paling perlahan apabila taburan sumber
neutron menumpu. Pelaksanaan kaedah FFMC dengan algoritma MC piawai adalah
mudah. Untuk menangani kelemahan kaedah FFMC, kebolehgunaan FFMC dikaji
dalam konteks model reaktor homogen mudah. Penambahbaikan ini membawa kepada

pembangunan pekali satu dimensi, yang dirujuk sebagai 1D-FFMC. Cadangan

Xii



kepungan yang berbatasan untuk 1D-FFMC ialah peliputan kawasan fisi yang tepat.
Tujuannya untuk memastikan perwakilan sistem yang tepat. Kesahihan kaedah 1D-
FFMC diujikan dengan membandingkannya dengan penunjuk jarak Wasserstein (WD)
yang baharu dalam masalah penanda aras simpanan papan dam dan model penuh 3D
BEAVRS. Kedua-dua penunjuk menunjukkan persetujuan yang tinggi dari segi hasil
penumpuan, dengan kaedah 1D-FFMC menunjukkan kecekapan pengiraan yang

dipertingkatkan, sekurang-kurangnya 17% lebih cepat daripada kaedah WD.
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FORMULATION OF A HIGH-FIDELITY NUCLEAR FISSION SITES
CONVERGENCE DETECTION METHOD IN MONTE CARLO REACTOR

SAFETY ASSESSMENTS

ABSTRACT

Monte Carlo (MC) neutron transport simulation is a widely used computational
tool for assessing the safety of various nuclear technologies, including nuclear reactors.
During the simulation, an initial guess of the neutron source distribution is required,
and as several MC cycles are simulated, it converges to the true distribution. The
outcomes from the initial cycles are discarded, and the outcomes from the subsequent
cycles are accumulated to obtain a statistically meaningful result. Therefore, accurately
identifying the convergence trend is crucial to prevent error accumulation from the
initial guess. Traditional convergence diagnostic techniques rely on discretizing the
problem geometry, and the selected meshing scheme heavily influences their
performance and accuracy. This research formulated and refined a novel mesh-free
convergence diagnostic indicator called Fourier fundamental mode coefficient
(FFMC). The FFMC method utilizes the Fourier series expansion on the fission sites,
and the mathematical induction shows that the fundamental mode of the Fourier
coefficient exhibits the slowest convergence as the neutron source distribution
converges. Implementing the FFMC method with a standard MC algorithm is
straightforward. The limitations of the FFMC method are assessed and refined in the
context of a simple homogenous reactor model. This refinement leads to one-
dimensional coefficients, referred to as 1D-FFMC. Regarding the bounding enclosure

for 1D-FFMC, it is recommended to enclose the fissile region exactly, ensuring an
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accurate neutron source distribution representation. The validity of the 1D-FFMC
method is verified by comparing it with the stage-of-the-arts Wasserstein distance
(WD) indicator using the checkerboard storage of fuel assemblies benchmark problem
and the 3D BEAVRS full core model. Both indicators exhibit high agreement in terms
of convergence results, with the 1D-FFMC method demonstrating enhanced

computational efficiency, being at least 17% faster than the WD method.
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CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, the energy consumption by the current population is tremendous
due to modernization and digitalization. As we advance towards the Fourth Industrial
Revolution or the Age of Imagination, electrical energy becomes crucial for new-age
technologies such as the Internet of Things, artificial intelligence, cloud computing,
and other related domains. Electricity is generated from various primary energy
sources, including fossil fuels, mineral fuels, biomass, solar energy, wind energy,
geothermal energy, and others. However, using conventional energy sources such as
fossil fuels, including coal, oil, and gas, negatively impacts our environment and
society. For instance, burning fossil fuels releases carbon dioxide, contributing to the
greenhouse effect. Thus, there is a demand for a shift towards using green energy to
ensure the sustainability of human activities. Among other green energy sources,
nuclear energy emerges as a potential substitute for fossil fuels. Due to the enormous
energy released per unit of fuel through fission or fusion reactions, nuclear reactions
are preferred to chemical burning reactions. Currently, only fission reactors are
commercially available, while fusion reactors are still in the research stage. It is crucial
to ensure the safety of fission reactors, as a failure in the safety assessment of fission
reactors could result in a disaster, as seen in the Fukushima and Chernobyl accidents.
The safety of a nuclear power system can be assessed through experiments or
computational simulation. Computational simulation is preferred over experiments
due to its flexibility to scale up and its low cost of operation. The reliability of the

simulation depends on the accuracy and consistency of the numerical methods used.



The neutron transport equation describes the behaviour of the nuclear reactor core, and
solving it reveals the stability of the nuclear reactor. The equation can be solved using
two numerical methods: the deterministic method and the Monte Carlo method. The
Monte Carlo simulation is currently preferred due to the availability of high-

performance computing and its capability to simulate various complex geometries.

1.2 Problem Statement

In Monte Carlo (MC) neutron transport simulation, the neutron distribution
inside a fissile system can be obtained from an initial guess distribution by simulating
each neutron from its birth to its termination. The initial guess neutron distribution
consists of N locations, where N represents the input parameter for the number of
simulated neutrons. Each location serves as the starting point, from which the neutron
begins its random transport within the fissile system until its termination location.
During the transport, the neutron may undergo various reactions such as scattering,
capture, or fission events, which depend on a set of random numbers and the cross
sections of the materials. Once all neutrons have been simulated, an MC cycle or
generation is considered complete. The termination locations resulting from the fission
event are assigned as the birth locations for the subsequent MC cycle. These locations
are known as the fission sites. The number of fission sites in the next cycle may differ
from the number of simulated neutrons, so the fission site count is normalized to N.
This normalization is performed to prevent an exponential increase or decrease in the
number of neutrons, which could lead to premature termination of the simulation. As
more cycles are simulated, the neutron distribution fluctuates and eventually converges
to a stationary or equilibrium state. Tally quantities such as power distribution and

reaction rates can only be accumulated once equilibrium has been achieved to avoid



errors arising from the initial guess. The iteration process is divided into inactive cycles
for the purpose of convergence and active cycles for the tally of quantities of interest.
False convergence detection in nuclear systems could lead to a catastrophic nuclear
accident. Hence, it is crucial to improve the reliability of the convergence method to

avoid critical errors in assessing the safety of a fissile system.

To ensure the safety of a nuclear system, the convergence of neutron
distribution must be realized before collecting the tallied results, ensuring that the
results are free from contamination due to an incorrect estimation of the initial
distribution (Kumar et al., 2020; Srivastava et al., 2020; Yamamoto & Sakamoto,
2020). The conventional approach to address this challenge involves using an indicator
to characterize the change in the distribution across successive MC cycles. However,
the traditional convergence indicator is less precise and computationally expensive as
it requires discretizing the problem space into a mesh comprising small bins. The
fluctuations of the neutron source distribution are averaged by the summation over
each mesh, which is likely to overlook any local changes in a smaller region (Kumar
et al., 2020; Nowak et al., 2016). Moreover, the choice of the space discretization
scheme is subjective, with different problems requiring different schemes, making the
diagnosis of stationarity more challenging (Kumar et al., 2020; Omar, 2021a; Ueki &
Chapman, 2011). Also, an excessively high or low discretization may fail to reveal
details changes in the neutron source distribution (Brown et al., 2007; Cheatham &
Brown, 2006). Therefore, a novel method is required to overcome the limitations of
conventional approach by eliminating the need for space discretization. This proposed
method must undergo validation with various reactor models and offers advantages in
terms of implementation, computational efficiency, and adaptability to various reactor

geometries.



1.3 Objectives

The general objective of this research is to formulate a mesh-free or no spatial
discretization mathematical technique for detecting the convergence of fission sites in
Monte Carlo simulation for nuclear reactor safety assessment. Two sub-objectives that

contribute to the achievement of the main objective are listed as follows:

1. The first sub-objective aims to model the nuclear reactors and use the

models to validate the proposed method.

2. The second sub-objective aims to propose a simplified solution which
enhances ease of implementation, computational efficiency, and

adaptability to various reactor geometries.

1.4 Scope and Limitations

In this study, we utilized the OpenMC code (Romano et al., 2015) for all Monte
Carlo (MC) neutron transport simulations. We expect that other MC codes would lead
to the same conclusions as this study. These simulations include three models: a simple
homogeneous reactor model, a checkerboard benchmark problem, and a 3D full core
reactor model. For the simple homogenous reactor model, we generated the multigroup
cross section library by specifying the cross sections for various neutron-nuclear
interactions. For the benchmark problem and the full core reactor model, we used
continuous energy nuclear data from the ENDF/B-VIIL.O library for the target

materials. Similar conclusions are expected when using other nuclear libraries.

Furthermore, OpenMC employs survival biasing as a variance reduction
technique. Survival biasing is applied with a weight cutoff and Russian roulette. The

weight of a neutron is adjusted by two parameters, w, and w,. After a collision, if the



neutron’s weight w is less than w,, it is killed with a probability of 1 — waw,. If it
survives, its weight is set to w,. In OpenMC, the cutoff weight is set as w, = 0.25 and
w, = 1.0. It should be noted that different MC codes may use different variance

reduction techniques, which should not pose any major issue.

Additionally, Python was used to calculate the Pearson coefficients and
evaluate performance during validation. All simulations and calculations in this study
were conducted on a Windows Subsystem for Linux (WSL) laptop equipped with an
Intel Core 17-7700HQ CPU, utilizing 8 parallel processes. This computational capacity
allowed for simulations of up to 1 million neutron histories per MC cycle with an
appropriate simulation duration. It is important to acknowledge that the results of
performance assessment may differ based on the choice of programming languages,

operating systems, and computational hardware used in the study.

This research introduces a novel method for source convergence detection,
characterized by its high efficiency and ease of implementation within standard MC
codes. The nuclear community, particularly the Malaysian Nuclear Agency, can
benefit from cost savings by avoiding licensing fees for MC codes and high-
performance computing. This method greatly integrates with the free and open-source
code, OpenMC, while requiring fewer computing resources compared to other
available methods. However, the primary challenge in disseminating the ideas of this
project within the nuclear community is convincing them to adopt and test this method
for various nuclear problems and models. The community can be conservative, making
it challenging to persuade them to switch to a new method, as it may disrupt their

existing processes.



1.5 Thesis Outline

This thesis comprises five chapters: introduction, theory and literature review,
methodology, results and discussions, and conclusion. Chapter one provides the
background of the research, the problem statement, the research objectives, and the
thesis outline. Chapter two discusses the relevant theory for this research, specifically
the neutron transport equation and the Monte Carlo criticality calculation. This chapter
also summarizes the previous research that addressed the same research problem:
proposing new methods to determine the convergence of neutron source distribution.
Chapter three presents the formulation of a new convergence detection method based
on Fourier series expansion. The Fourier method is improved by dissociating it into
three one-dimensional indicators. Chapter four highlights the erroneous convergence
results of the proposed method for a simple homogeneous reactor model, emphasizing
the need for an improved indicator. The improved indicator is validated by a
benchmark problem and a real reactor model to establish its reliability and efficiency
in determining stationarity. Finally, chapter five summarizes the findings that address

the research problem and suggests perspectives to advance the research field.



CHAPTER 2

THEORY AND LITERATURE REVIEW

This chapter elucidates the theory behind this research, from the fundamental
principles to the novel concept. The neutron transport equation is initially derived
based on intuitive ideas, followed by its time-independent form, and further developed
into nuclear criticality calculation. The nuclear criticality problem can be addressed
using the Monte Carlo numerical method, which is explained in detail, from its
fundamental concept to its application to criticality calculation. Lastly, a review of the
previous methods proposed by several researchers for diagnosing the stationarity of

fission sources is outlined in the last section.

2.1 Neutron Transport Equation

In a fissile system, the behaviour of neutrons is governed by the neutron
transport equation or Boltzmann equation (Bell & Glasstone, 1970). This equation
describes the motions and interactions between neutrons and nuclei but neglects the
neutron-neutron interactions since the neutron density is negligible compared to the
density of the materials. The main idea is to obtain the neutron population inside a
specific system, treating the neutron population as a continuum. Initially, based on

intuition, the conservation equation states that:

d Z
d_ ndr = Q i dr
tJy 14 i (2.1)
N— — « ~ W
The substantial derivative of The sum of all sources and sinks
neutron population in a volume V' in that volume

where n = n(7, E, ﬁ, 1) represents the neutron density, Q; denotes any production or

absorption events of neutrons, and dr is a differential volume element. Also note that



n(?, E, fl,t) dr dE dQ represents the expected number of neutrons in a volume

element dr about 7, travelling in the cone of direction dQ about vector fl, with

energies between E and E + dE, at time ¢t. Next, the Reynolds transport theorem

i/nd1=/@dr+/n6-da (2.2)
dt /, ot s

Here, U = 0(E) denotes the neutron velocity with energy E and da is a differential

states that:

vector surface element of the surface .S. The left-hand side of Eq. (2.1) is replaced by

Eq. (2.2), and the surface integral in Eq. (2.2) is transferred to the right-hand, resulting

/V%dT:/V<ZQ,.) dr—/SnB-de (2.3)

Utilizing the Gauss divergence theorem, the surface integral is replaced by the volume

/V%df=/V<zi“Qi> dT—/I/V'(nU)dT (2.4)

{ Rate of change of }
neutron population in V'

in:

integral:

implying:

_ {Rate of production of } _ {Rate of absorption of }
neutrons in V' neutrons in V'

_ {Rate of leakage of }
neutrons from V'

(2.5)
In general, neutron production events can include in-scattering or fission events. In
contrast, neutron absorption events can involve any neutron loss events except leakage,

such as scattering, capture, or other disappearance reactions. It is convenient to use the



angular neutron flux y = q/(?, E.Q, t) to represent the neutron population by
substituting the neutron density n with y = nv, where v = v(E) is the neutron speed
with energy E. By omitting the volume integration in Eq. (2.4) and expressing the
production events and the total absorption events mathematically, we obtain the

following:

Low _ /A / Sy dE'dQ + l/A / VE sy dE'dQ — Sy - Q- Vy
v ot o JE 4z Jor JEr
(2.6)
where Xy dE'dQ' =X, (?,E’ - E, Q- ﬁ) w(?,E’,ﬁ’,t) dE'dQ’ represents
the expected number of in-scattered neutrons per unit length at the position 7
with energy E’ and travelling in the direction Q' that scatter into an energy
interval d E’ about E into a solid angle dQ’ about & at time 1,
Lys,w dE'dQ' = %f)v(E’) S, EYw (P E' Q1) dE'dQ’  represents  the
probable number of fission neutrons produced at 7 with energy with d E’ about
E within the cone of angles dQ’ about 9 per unit length travelled by neutron
with energies E’ at time f,
Yy =% E) q/(?, E, fl, t) represents the expected rate of absorption of neutrons at

¥ per unit energy per unit angle that is lost via any disappearance interactions

at time ¢, and

s

Q- Vy = Q- Vt//(?, E,Q, t) represents the neutron leakage term. The production and
absorption events in Eq. (2.6) are categorized into the fission (f), in-scattering (s), and
total loss reactions (¢) along with the specified macroscopic cross section X = X(7, E).
The macroscopic cross section is derived from the microscopic cross section o =
o (7, E) using £ = N0, where N, is the atom density of the interacting material, and

o 1s defined as the effective cross-sectional area per nucleus interacted by the neutrons,



which depends on the neutron position 7 and energy E. The fission event is associated
with two physical parameters: the fission spectrum y(FE) and the average number of
fission neutrons v(E’) produced in a fission event by a neutron with energy E’. Note
that y(E) dE represents the probability that a fission neutron will have an energy

interval d E about E.

Solving Eq. (2.6) for y via analytic method is challenging and requires
additional assumptions, such as applying Fick’s law to simplify the equation. Since Eq.
(2.6) is a partial differential equation, it is necessary to specify the initial and boundary
conditions. Common boundary conditions include vacuum, reflective, white, and
periodic conditions. When neutrons reach the vacuum boundary, they are permanently
lost. The reflective boundary instructs neutrons to return as a mirror image, while the
white boundary instructs neutrons to return isotropically. Neutrons crossing the
periodic boundary will reappear at the opposite boundary, as both boundaries are part
of a periodic lattice structure. Furthermore, y must be a real, finite, and non-negative

function to maintain its physical interpretation.
2.1.1 Time-Independent Form and Multiplication Factor

Typically, numerical methods are employed to solve the time-independent
form of the neutron transport equation (Lewis & Miller, 1984). In this form, Eq. (2.6)

simplifies to:

ﬁ-vw+z,w=/ /Zsl// dE’dQ’+l/ /vzfq/ dE'dQ (2.7)
o JE Ar Jor J g

under the assumption that boundary conditions are also time-independent.

A fissile system is considered critical if it maintains a self-sustaining, time-

independent chain reaction without external neutron sources. The system is considered
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supercritical or subcritical if the neutron population increases or decreases
exponentially. The effective multiplication factor kg 1s defined as:

Total number of neutrons born in the system

eff = - (2.8)
Total number of neutrons loss in the system

which characterizes the system, with k. = 1 indicating criticality, k. > 1 indicating
supercriticality, and k. < 1 indicating subcriticality. No general solution exists for
Eq. (2.7) in supercritical or subcritical conditions since the equation is balanced in such
a way that the net gain of neutrons is equal to the net loss of neutrons within the system.

To address this issue, the v in Eq. (2.7) is replaced by v/ k.4, resulting in:

ﬁ-w+z,w=/ /Zsl// dE’dQ’+ii/ /vqu/ dE'dQ' (2.9)
o' JE! keff47f o JE

This equation is known as the k-eigenvalue or criticality equation. By rewriting the

equation into operator form, we obtain the following:

(L +T)y = Sy +——Fy (2.10)
keff

where L represents the leakage operator, T represents the total absorption operator, S
represents the in-scattering operator, and F represents the fission multiplication

operator. Rearranging the operator yields:

w=—(L+T-S) "Fy =Ry @.11)
kgt Ketr

where R = (L 4+ T — S)~!F. Applying the F operator to both sides results in:

yp- 1 Ry (2.12)

kg

where W = Fy represents the fission source distribution. The general solution for the

eigenvalue equation in Eq. (2.12) is given by:

(69
Y= Z a¥, (2.13)
i=0
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where each eigenfunction ¥, corresponds to its eigenvalue k; and expansion
coefficient g;. It is impractical to solve for a general solution. Instead, the focus is on
the fundamental values of a particular system, namely k( and ¥, as ky = kg for the
system. Additionally, k represents the largest eigenvalue, satisfying:

ko > ki| > |ky| > - (2.14)
2.1.2 Standard Power Iteration

Eq. (2.12) can be solved numerically using the standard power iteration method:

WU+ — ﬁR‘PU), j=0,1,2,... (2.15)

In this method, the previous source distribution ¥V and the multiplication factor k"’

in generation or cycle j are used to determine the new cycle distribution YU+, To

obtain the new kU+D, the following estimation can be employed:

NY(RPUHDY  (RPUHD)

R+ = F _
NG~ (RYD)  kO(PU+D)

(2.16)

where N ;_j) is the total number of neutrons created by fission at j-th iteration, NV is
the total number of neutrons starting at j-th iteration, and the (-) notation denotes the
integration over all independent variables. It is important to note that an initial guess
for k and ¥, namely K and ¥, must be provided for the standard power iteration
method. The fundamental eigenfunction and eigenvalue can be obtained with an
arbitrary initial guess due to the convergence behaviour of this method. To begin with,

the recursive substation of Eq. (2.15) is performed:

1

M — L pyo
P =G RY
@_ 1 g 1 pogo
Y = SRV = s R
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1 Rip©

pl) —
ji—1
[T _ k™ (2.17)

By expressing ¥ in terms of its eigenmodes:

[eo]
PO = aW, (2.18)
i=0

and substituting Eq. (2.18) into Eq. (2.17), we obtain:

N0 S S <iai‘1’i> _ E“LRJ“P,.

[ km  \= ) § D (2.19)
Similar to Eq. (2.12), for each eigenfunction,
Wy = kliR\P,. or RY, = k¥, (.20
Substituting Eq. (2.20) into Eq. (2.19) results in:
pU) = i Yy,
per ! (2.21)

where b = H;;IO k' Dividing Eq. (2.21) by k(j) results in:

P ag a (ki)' a (k)
K 0 0 (2.22)

Additionally, dividing Eq. (2.14) by k yields:

k,
ko

k
el (2.23)
kg

1> >

Eq. (2.22) suggests that if the iteration j is sufficiently large, ¥V will eventually
converges to W,. The ratio |k;/ky| represents the largest term in the series, as
indicated by Eq. (2.23), implying that the convergence behaviour depends on the value
of this ratio. This ratio is known as the dominance ratio (p). The closer the p value to
unity, the slower the convergence to the fundamental eigenfunction. This situation is

known as the high dominance ratio problem. Generally, a high dominance ratio system

13



may require hundreds or thousands of iterations to achieve convergence, while a low

dominance ratio system may require tens to hundreds (Brown, 2009).

2.2 Nuclear Criticality Calculation

The nuclear criticality problem can be solved using deterministic or
probabilistic methods. The deterministic method requires discretizing and solving the
neutron transport equation for all variables, such as spatial, angular, and energy, in a
deterministic manner (Lewis & Miller, 1984). However, this method encounters
drawbacks in terms of computational memory, time, and accuracy when dealing with
three-dimensional problems. On the other hand, with the availability of high-
performance computers today, the probabilistic method, also known as the Monte
Carlo method, can address three-dimensional problems with continuous energy data
without discretization errors. However, there are stochastic uncertainties associated
with the Monte Carlo method. In this study, only the Monte Carlo method is deployed

for all criticality calculations.
2.2.1 The Monte Carlo Method

The concept behind the Monte Carlo (MC) method is to derive an outcome
from a known probability distribution using random sampling, with a specified number
of particles to be sampled (Haghighat, 2021). A simple example illustrating the Monte
Carlo method is estimating the value of # (McClarren, 2018). Initially, a circle with a
radius of one, centred at the origin, is inscribed within a square with a side length of

two, as depicted in Figure 2.1. The ratio of the areas of these two shapes is given by:

Area of the circle _ 7(1)? _ 7 (2.24)

Area of the square 2x2 4
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Figure 2.1 The values of z estimated by the Monte Carlo method under different
numbers of points P.

Subsequently, a random point with coordinates (x, y) in the domain of [—1,1) is
generated and placed within the square. By dropping a large number of points, the
value of 7 can be estimated from the ratio in Eq. (2.24) using the following formula:
r=4xC/P (2.25)
where C represents the number of points dropped inside the circle and P denotes the
total number of dropping points. Note that the random points are generated from a
uniform distribution in the interval of [—1, 1). As the random numbers are associated
with stochastic uncertainty, the simulation must be repeated for multiple MC cycles to
assess the uncertainty in terms of variance or standard deviation. The flow chart for
the Monte Carlo calculation of z value is presented in Figure 2.2. The first step
involves determining the number of particles or points (P) and the number of MC
cycles (5) to be simulated. The value of P significantly affects the accuracy of the
result, as a low value may introduce significant bias, as illustrated in Figure 2.1.
Conversely, a higher value of S can reduce the variance of the results. A

pseudorandom number generator is utilized to generate the input points. The sequence
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of pseudorandom numbers is initialized using a seed, enabling the replication of
simulation results with the same seed. Although the randomness of the sequence may
introduce nonuniform random bias, modern algorithms generate pseudorandom
numbers that are sufficiently close to true randomness, which minimises this effect.
Once all MC cycles are simulated, the mean and standard deviation of the estimated

value of 7 can be calculated.
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Read the inputs:
1. Number of dropping points, P
2.Number of simulation cycles, S

'

SetS'=SandP' =P

|

SetS'=S"—-1
Initiate number of points inside the circle, C = 0

'

Generate 2 sets of P randoms number for locations x and y:
{x1,%3, -, xp} and {y1,y2, -, yp} € [-1,1)

'

Drop a point P with its location (Xpr, ypr)
SetP'=P' -1

A 4

Calculate the value of i for current cycle j by

4 C
=4 %=
T P

Yes

Calculate the mean value of r and its standard deviation by

_ . d - (Z”jz/s)_ﬁz
”=§Z”f' wm=J s-1
Jj=0

|
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Report the results in the form of T + o5

\. J

Figure 2.2 The Monte Carlo calculation flowchart for estimating the value of x.
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2.2.2 Monte Carlo Criticality Calculation

For the nuclear criticality calculation, the Monte Carlo (MC) method does not
directly solve the criticality equation. Instead, it simulates the trajectory of each
neutron through a random walk from its birth until its termination. All events
experienced by the neutron during its journey are recorded. The transport distance and
the nature of neutron-nucleus interactions are determined by random sampling from
known probability distributions, guided by physical quantities such as material density,
material cross sections, and boundary conditions. These probability distributions are
derived from experiments and stored in an evaluated nuclear data library. A high-
fidelity nuclear data library containing diverse materials is essential to ensure that each
simulated neutron adheres to the probability distributions corresponding to actual

events.

A large number of neutron histories is necessary for the MC simulation to
reduce bias in the k. and other interested tallies. Furthermore, a low number of
neutron histories used in problems with a high dominance ratio may lead to the
occurrence of neutron clustering phenomena (Dumonteil et al., 2014), which can
impact the convergence of the fission source (Nowak et al., 2016). Expert
recommendation indicates that a minimum of 10,000 neutron histories is required for
all calculations (Brown, 2011). In addition, for large and complex geometry problems,
such as 3D reactors or storage vaults, it is preferable to use 100,000 or more histories

(Brown, 2011).

Another source of bias in the simulation results arises from an inaccurate initial
guess of the source distribution. While the MC iteration method will eventually

converge the initial distribution to the true distribution, it is crucial to determine
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whether the number of inactive MC cycle is sufficient for achieving convergence. The
number of inactive cycles depends on the dominance ratio of the problem, the number
of neutron histories per cycle, and the initial source distribution. Suppose the initial
source guess does not encompass the most important region of the problem and an
insufficient number of histories are used. In that case, the dominance ratio of the
problem may increase. These two factors make it more challenging for neutrons to
propagate towards the true distribution. Hence, the advice from the expert is to employ
a uniform distribution as the initial source distribution in all fissionable regions of the
problems (Brown, 2011). Furthermore, the number of inactive cycles can be
determined by monitoring the convergence trend for around 100 MC cycles, using a
moderate number of neutron histories per cycle, such as 1,000. However, this assumes
that the convergence behaviour remains unchanged as the number of neutron histories
increases. Results from the Massachusetts Institute of Technology (MIT) group
(Kumar et al., 2020) indicate that as the number of neutron histories increases, the

number of cycles required to reach stationarity also increases.

2.3 Source Convergence Indicators

An indicator is necessary to monitor the convergence trend of the fission source
distribution in Monte Carlo (MC) criticality problems. Suppose the indicator is a
function of the MC cycle. In that case, the number of inactive cycles or the
convergence instance can be determined when it reaches a state of stationary or
equilibrium. Moreover, certain problems exhibit slow convergence due to a high
dominance ratio, thus requiring the indicator to accurately reflect the slow convergence
trend. One early attempt at this slow converging problem is the sandwich method

(Naito & Yang, 2004), which utilizes two k. as convergence indicators. By selecting

19



two suitable initial source distributions, one with a higher value of k¢ and the other
with a lower value of k., the convergence can be assessed by monitoring the
monotonically increasing and decreasing behaviours of these two k. values. When
both values reach a stationary state, then k¢ is converged. However, this method was
abandoned as it was discovered that k¢ converges faster than the source distribution
(Ueki & Brown, 2003a). Monitoring the source distribution is challenging as it
involves a complex function encompassing all source site information. Therefore,
various indicators have been proposed from different approaches to represent the
source distribution in a simpler manner, which can be divided into two categories:

entropy-based indicators and mesh-free indicators.
2.3.1 Entropy-Based Indicators

Shannon Entropy

Shannon entropy is the widely used indicator in most Monte Carlo (MC) codes
as it had been adapted as the default source convergence indicator (Kulesza et al., 2022;
Leppénen et al., 2015; Romano et al., 2015; Wang et al., 2015). This indicator is
adopted from information theory, in which the randomness or disorder of the source
distribution is measured (Cover & Thomas, 2005; Ueki & Brown, 2002, 2003b). Users
are required to provide a meshing scheme to discretize the problem space. For each

MC cycle j, Shannon entropy H can be calculated as:

B
i=1

where f; is the neutron source fraction in meshing bin i and B is the total number of
meshing bins. It is worth noting that the maximum value of Shannon entropy is log, B

for a uniform distribution, while the minimum value is zero for a point distribution.
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The advantage of Shannon entropy is that it condenses the complex neutron
distribution into a scalar number for each MC cycle. The choice of meshing scheme is
important as it significantly affects the values of Shannon entropy. However, selecting
a meshing scheme relies on users’ experience with different cases (Kumar et al., 2020;
Omar, 2021a; Ueki & Chapman, 2011). For instance, the default meshing scheme in
the MCNP code divides the problem space into meshes containing an average of 20
neutron histories per cycle (Kulesza et al., 2022). However, this requirement can
impose a computational burden when a vast number of neutron histories are used. On
the other hand, an extreme choice where each mesh contains only one neutron history
fails to provide the convergence information for the source distribution using Shannon
entropy (Cheatham & Brown, 2006; Shi, 2010). Another approach to the meshing
scheme is to assign each meshing bin to a different region based on the problem’s
geometrical configuration. However, this approach does not guarantee accurate
convergence results when a large number of neutron histories per mesh are used (Guo
et al.,, 2022; Kumar et al., 2020). Hence, the meshing scheme should be chosen

carefully to avoid the wrong determination of source convergence.

Undersampling the neutron population induces neutron clustering, in which
neutrons cluster together due to cycle-to-cycle correlations of the fission sources
(Dumonteil et al., 2014). Shannon entropy cannot detect the spatial fluctuations of the
neutron population resulting from neutron clustering. Therefore, a higher-order spatial
moment entropy function has been proposed (Nowak et al., 2016). The entropy

function is generalized using Legendre polynomials as follows:

S:,v,w =- Z Lu(Xi)LU(Yj)Lw(Zk)fi,j,k lOgZ(fi,j,k> (2.27)
ijk

where L (T) represents the Legendre polynomials of order g with argument 7" and

(X, Y, Z ) denotes the x, y, or z-coordinates of the centres of cell i, j, k, normalized
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to the interval [-1, 1]. By setting (u, v, w) = (1,0, 0), the local fluctuations along the x-
axis can be monitored using this higher spatial moment entropy. The same applies to
So.1.0and S |, which monitor local fluctuations along y- and z-axes. However, the

impact of neutron clustering on source convergence is still debatable (Mickus & Dufek,

2021).

Progressive Relative Entropy (PRE)

The alternative version of entropy is progressive relative entropy (PRE), which

has been proposed as a convergence diagnostic tool for fission sources (Ueki, 2008b,
2009; Ueki & Brown, 2005). PRE measures the deviation of a source distribution N2

from a reference distribution S ), defined as:
PREV) = D(S(’) 10.5x (SO + SU>)>
+D(SP 105 (50 +59)) (2.28)

Here, D(S™ || SY) represents the relative entropy of S with respect to SY:

e s
D(s(r) I S(J)) = Z Si(r) log, <$> (2.29)
o~

1

where j is the current MC cycle, r is the reference MC cycle (usually the first cycle),
S; 1s the neutron source fraction in meshing bin i, and B is the total number of meshing
bins. The formulation of PRE ensures a monotonically increasing trend as the MC
cycles progress. This property allows using on-the-fly convergence diagnostic tools
such as the Wilcoxon rank sum test to determine the number of inactive cycles.
However, similar to Shannon entropy, PRE is also strongly influenced by the

refinement of the meshing scheme, thus it faces the same limitations.
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Summary

In a nutshell, the entropy method requires the discretization of the problem
space to demonstrate source convergence. Space discretization is crucial in
determining the entropy method’s efficiency and accuracy (Kumar et al., 2020; Nowak
et al., 2016). Therefore, various mesh-free methods have been proposed to ease the

cognitive effort in detecting MC simulation convergence.
2.3.2 Mesh-Free Indicators

Source Centre of Mass

The centre of mass of the neutron source has been proposed to diagnose source
convergence without employing a meshing scheme (Haghighat, 2021; Wenner, 2010).
This method utilizes a single indicator |I_i| to represent the source distribution in the

Jj-th MC cycle:

N
RO =3 myfx 437 + 22 (2.30)
i=1

where i denotes the neutron index, m represents the neutron mass, M = Zf\i m; 1s the
total mass of all neutrons, N indicates the total number of neutrons, and (x, y, z)
denotes the magnitude of the vector components from the geometric centre of the
model to the i-th neutron. However, this indicator encounters an issue when the model
and initial source distribution are symmetric. In such cases, the centre of mass will
fluctuate around the geometric centre from the initial MC cycle, failing to illustrate the
change in source distribution (Guo et al., 2022; Kumar et al., 2020). Besides that,
undersampling caused by vacuum boundary conditions may yield inaccurate results
(Haghighat, 2021). On the other hand, the components of the centre of mass along each

axis have been used to compare with the higher spatial moment expansion of Shannon
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entropy, aiding in the illustration of local fluctuations in the neutron population due to

neutron clustering (Nowak et al., 2016).

Nice-Centre Distance Sum (NCDS)

The nine centre-distances sum (NCDS) method addresses the limitations of the
centre of mass in the case of a symmetric initial source and problem by introducing
nine geometric centres at different locations (Ueki & Chapman, 2011). In a 3D
problem, the geometry centre of all neutrons is calculated, and then this centre is served
as the intersection point for three perpendicular axis planes: the xy, yz, and zx planes.
These planes divide the entire problem space into eight subspaces. The geometric
centre of source particles within each of the eight subspaces is then computed. The
distances between the nine centres in j-th MC cycle and the nine centres in the first

cycle are combined into a single indicator D, the NCDS, as follows:

9 9
(=1 _ (-1 _ G _(M)? G (D)2 G) ()2
DUzt = Rl = () (o ) e (3

(2.31)

where i represents the centre index and (x(k), y(k), z(k)) denotes the coordinates of
each centre in the k-th MC cycle. Note that for 1D and 2D problems, the NCDS
reduces to a sum of three centre-distances or five three centre-distances, respectively.
However, the accuracy of this indicator is doubted for certain special symmetric
geometries with specific initial source distributions (Guo et al., 2022; Kim et al., 2014).
Additionally, automated meshing can be computationally expensive, and
implementation of the algorithms may require significant programming efforts (Omar,

2021a).
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