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PEMBANGUNAN KAEDAH ’SHOCK-CAPTURING’

MENGGUNAKAN PENDEKATAN SISTEM TERTIB PERTAMA

BERENTROPI TEKAL UNTUK PERSAMAAN NAVIER-STOKES

ABSTRAK

melalui Simulasi Bendalir Dinamik (CFD). Simulasi ini menggunakan teknik bc-

rangka seperti skim menangkap kejutan, yang mana dengannya ketidakselanjaran

boleh diramalkan dengan baik. Walau bagaimanapun, masih terdapat beberapa

masalah di mana kaedah sedia ada tidak mampu untuk menghasilkan keputu-

dengan kos pengkomputeran yang mahal tidak menjamin keputusan yang boleh

dipercayai sepenuhnya, manakala skim kos rendah memberi tumpuan kepada ke-

cekapan pengiraan dengan mengorbankan ketepatan. Walau bagaimanapun, kese-

imbangan yang baik antara kedua-duanya boleh didapati dengan fluks berentropi

konsisten. Sungguhpun fluks ini agak tepat dan agak cekap, tetapi ia masih boleh

diperbaiki, terutamanya dalam mengendalikan aspek kelikatan dan pemindahau

haba yang secara semulajadi bersifat parabola. Untuk memenuhi keperluan terse-

but, satu penyelesaian telah dibangunkan dengan pendekatan sistem hiperbola

peringkat pertama. Dalam tesis ini, idea-idea ketepatan entropi dan sistem tertib

pertama telah disintesis untuk mewujudkan satu skim baru yang mendapat faedah

daripada kedua-dua falsafah. Kaedah ini diuji dengan persamaan Burgers, dan

xii

Disebabkan faktor praktikal, gelombang kejutan biasanya dikaji secara berangka

san yang diingini, sebagai contoh fenomena ’carbuncle’. Skim berkejituan tinggi

kemudian diperluaskan kepada sistem persamaan Navier-Stokes, dengan meng­

gunakan kes-kes ujian standard seperti kejutan malar, kejutan berkembang, dan 

masalah Sod. Keputusan yang didapati menunjukkan bahawa skim ini dapat



memberikan hasil yang setanding dengan skim entropi konsisten sedia ada; ini

memberikan peluang untuk penambah-baikan jika ianya diperhalusi. Konsep ini

berpotensi untuk dilanjutkan kepada tiga dimensi supaya faedah sebenar skim ini

boleh diterokai sepenuhnya.

xiii



DEVELOPMENT OF A SHOCK-CAPTURING METHOD USING

AN ENTROPY-CONSISTENT FIRST ORDER SYSTEMS

APPROACH FOR THE NAVIER-STOKES EQUATIONS

ABSTRACT

For practical reasons, shock waves are usually studied numerically through Com-

can be reasonably predicted. However, there remain a number of problems where

buncle phenomenon. High-order accurate schemes with high computational costs

efficiency of

calculation at the expense of accuracy. Incidentally, a good balance between the

two can be found in the entropy consistent flux approach. This method is fairly

accurate and relatively efficient, but it

in handling terms of viscosity and heat transfer that are parabolic in nature. To

of both philosophies. The method is firstly tested with Burgers’ equation as the

governing equation, and then extended to the Navier-Stokes system of equations

using standard test cases. Results herein show that the scheme is able to provide

xiv

resolve these terms, a possible solution comes in the form of the first order hy­

perbolic system approach. In this thesis, the ideas of entropy-consistency and the 

first-order system are synthesized to create a new scheme that enjoys the benefits

existing methods fall short of delivering the desired results, for example the car-

enue for its further refinement. A distinct possibility is to extend this concept to 

three dimensions so that the true benefit of the scheme can be fully explored.

can still be improved upon, particularly

do not guarantee reliable results, whilst low-cost schemes focus on

comparable results to existing entropy-consistent schemes which present an av-

putational Fluid Dynamics (CFD) simulations. These simulations employ numer­

ical techniques such as the shock capturing scheme, with which discontinuities



CHAPTER 1

INTRODUCTION

Simulating the Shockwave1.1

In the natural world, movement of any kind is usually thought of being smooth

and continuous, such as the trickling of water in a stream or the fluttering of leaves

blowing in the wind. However, at the high end of speed, there exist phenomena

shockwave, a propagating wave of disturbance across which flow parameters such

supersonic transportation and projectiles, studying flow discontinuities has t urned

from purely an academic interest to a more practical perspective (Anderson, 2004).

A complete, understanding of shockwave is required in order to design vehicles and

vehicular components that can operate safely and efficiently under its influence.

In the bigger picture, discontinuities of flow is applicable to

subjects with far reaching significance. For example in the study of detonations,

transfer capability as in the wave disk engine. In the realm of astrophysics and

magnetohydrodynamics, different kinds of shockwave are observed in association

with phenomena such as the formation of stars and collision between galactic

entities.

pirically;

1

as density, pressure, and temperature vary abruptly. With the advent of modern

However, the shockwave itself is a notoriously demanding challenge to study em-

a major obstacle in the examination of the shockwave is the difficulty

knocking in internal combustion engines, or even to harness the shockwave energy

a working knowledge is needed to predict the effects of explosives, to prevent

a broad range of

resources and effort it would take to build a wind tunnel or any other set-up

of recreating it in a controlled environment. One could imagine the enormous

in which sudden changes and discontinuities can occur. Amongst them is the



merical methods are classified into the major categories of finite difference, finite

point difference, residual-distribution, spectral, and panel method. Amongst all

the available methods, the most widely used is arguably the finite volume method

of discretization.

In the finite volume method,

volume is divided into a discrete number of cells that form

passes through the domain (and most probably changes) according to how the

cell will affect all other cells in the wake of the direction of flow. In order for

the information to make sense, it is required that any changes that occur inside

the domain to be coherent in terms of its physics, and this is achieved by way

of enforcing conservation laws. As information travels from cell to cell along the

series of Riemann problems. Thus, the set of solution equations that perform

such calculations are often deemed as Riemann solvers (Toro, 1999), and the

2

that is powerful enough to generate high wind velocities, while at the same time 

reliably operate under the extreme con-having measurement equipment that can

ditions. Considering this fact, scientists and researchers often turn to the tried 

and tested alternative of Computational Fluid Dynamics (CFD). CFD is a field 

of knowledge in which fluid flow problems are resolved numerically using model 

equations that represent the governing laws of conservation. Instead of solving 

these equations analytically, approximations are iteratively calculated to simulate

domain, we can track the changes from the domain inlet to its outlet, and recover

a grid. Information

we define a flow domain, or a control volume, in

boundaries and initial conditions are set up, and a change that occur across a

and predict the solution as closely to real-world results as possible. These nu-

the data transferred between cells, in the same manner as if we are solving a

which we study the particular physical phenomenon of interest. This control



A special category of solution

be found in the

The benefit of such a scheme is that the flux function would be able to pick

turn a rarefaction shock into a fan,

physical shock profile, then the scheme is acknowledged to be entropy consistent.

Entropy consistency is achieved through entropy control,

numerical schemes to either generate or limit diffusion in the solution. One of the

ways to do this is through physical viscosity, as introduced by Tadinor (1987).

Alternatively, control could also be acquired by employing concepts of entropy

conservation, entropy stability, and entropy production, resulting in an entropy

consistent flux, (Ismail and Roe, 2009). In any case, the control of entropy is

indeed an important facet of the shock capturing method, with an active field of

research continuing for the foreseeable future.

Advancements in Numerical Analysis1.2

3

capturing schemes (Hirsch, 2000). Within the discussion of shock capturing, one 

of the most important class of methods is the entropy conservative scheme, where 

the conservation law of flow is supported by an additional constraint that follows

equations themselves are called flux functions.

methods have the ability to perform calculations and remain numerically stable 

even when discontinuities are encountered; these methods are designated as shock

up the physically relevant solutions from those that

rarefaction shock. When the flux is producing just the right amount of entropy to

or to diffuse a total discontinuity into a more

a strategy utilized in

accurately as the method allows, in a manner that is as

arc unphysical, such as the

the second law of thermodynamics. An example of this can 

research that have been presented in the Ph.D. thesis by Ismail (2006).

computationally cheap

as possible. Some schemes, particularly those with high order of accuracy, con-

The goal of a numerical scheme is always to provide solutions and predictions as



get the job done quickly, cheaply, and reliably. These affordable schemes may not

necessarily be less accurate than the more sophisticated ones given the particular

problem to be solved. An example of a reliable low-cost scheme is found in Roe

vation and consistency to obtain physically relevant solutions in the presence of

shock. The value in using this approach is not only in its relative accuracy and

solid physical interpre­

tations and not just heuristics or improvisations.

Having said that, the whole concept of entropy consistency is yet to be fully

by synthesizing it with other approaches. One particular niche of interest is the

an equation into its equivalent set of first-order expressions, with the intention of

getting every term in the governing law to have a hyperbolic characteristic. This

4

governing law of flow, as introduced initially in Nishikawa (2007) and other sub­

sequent works. The main idea for this method is to resolve higher order terms of

would enable the use of one unified discretization strategy for the whole equation, 

which would in turn ensure uniform order of accuracy for each component. This

new approach of using first-order hyperbolic system of equations to construct the

cost-effectiveness, but also in the fact that it is based on

(unpublished) and Ismail and Roe (2009), using the concept of entropy conscr-

centrate on getting a close representation of the physical behavior of flow whilst 

sacrificing the speed of iterative convergence. In today’s world of parallel proces­

sors and high-powered computing, this may not be such a bad choice, but the 

issue is usually more about the amount of time and resources that, one is willing 

to spend to get the desired result. Hence, there is still a need for schemes that can

method is typically used in system dynamics and control (Kitamura et al., 2009). 

The biggest benefit of reconstructing higher order equations into first order sys-

tinually looking for ways to refine the technique, through optimizations or even

explored, and is yet in the developmental stages. Thus, its proponents arc con-



terns is the reduced amount of iterations required for convergence. Calculations

iterative efficiency. As evidenced by the result, the hyperbolic first order system

approach promises a substantial benefit in the reduction of computational cost as

the mesh of the simulated flow domain becomes more refined. This result can be

having it incorporated into the realm of shock capturing.

Motivation and Problem Statement1.3

It is a known fact that even the state of the art softwares that solve Navier-Stokcs

and other flow equations are known to have issues of accuracy. Furthermore, most

accurate solvers incur high costs in terms of computing power and time. Those

by acquiring more understanding in the fundamental nature of the flow phenom­

ena, and also in the behavior of the numerical schemes themselves. Despite the

continuous advances, there are still a lot of gains to be made in the improvement

of shock capturing, even at its most basic level. With this angle in mind, the

intent of this research is not to create something that exceeds the capability of

consider the possibility of building a good basis for

CFD solver. From amongst a host of other options, we see two major avenues

5

is shown in Figure 1.1.

In this figure, the aforementioned first-order system of flux functions (FOS) is 

compared to the well-established discontinuous Galerkin method in terms of its

advantage of doing

number of equations during the course of one iteration. A demonstration of this

of first order equations

so could more than offset the requirement of solving a larger

seen as a good motivation to explore the potential of this method, particularly in

are usually simpler than second order ones, and thus the

challenges are being slowly overcome with ongoing researches in the CFD field,

a future multi-dimensional

any modern CFD codes available out there, but merely to take a step back and



600000

0, 300

of development: firstly in the topic of entropy consistency, and secondly in the

approach of using first order hyperbolic equations.

herent strategy that would enable us to construct a new numerical scheme; to our

knowledge this endeavor has never been undertaken before. The flux functions

should ideally be able to extract the advantages of the first-order system, and

reinforce it with the sound physical basis of the entropy consistent flux formula­

tion. Achieving this will require

reconstruction of the existing methods in terms of its numerical discretization. It

is acknowledged that the task of combining the two concepts is in itself a big chal­

lenge, but

accurate fluxes.
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Figure 1.1: The amount of iteration required to reduce the variable residuals by 
five orders of magnitude according to node count for the first order system flux 
(FOS), the discontinuous galerkin method at Re = 1000 (Galerkinl), and the 
discontinuous galerkin method at Re = 100 (Galcrkin2).
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Research Objective, Methodology and Scope1.4

This research is centered around two main objectives:

cepts of entropy consistency and the first order hyperbolic system of equa­

tions.

• To study the effects of utilizing physical viscosity instead of the artificial

numerical viscosity in creating diffusion for the numerical scheme.

For the purpose of fulfilling first objective, the plan is to create an entropy con-

continuc with development of the first-order entropy consistent flux functions for

the Navier-Stokes system of equations in one-dimension. From there, the Navier-

Stokes system fluxes can be extended to t.wo-diinension. Meanwhile, to satisfy

the second objective, the newly created Burgers’ system flux will be compared

Navier-Stokes system flux will

be contrasted with the existing entropy-consistent fluxes and experimental data

to ascertain its characteristics.

For its contribution to knowledge, this thesis offers an advancement in the field

of the shock-capturing numerical method by way of:

• An understanding of how the concept of entropy consistency can be extended

to linear hyperbolic systems.

• New flux functions based on the Burgers’ equation and the Navier-Stokes

equation that

7

sistent first-order system of flux functions, initially based on

a proof of concept. Should the flux prove to be viable solution, the research will

are entropy consistent and fully hyperbolic in nature.

with the available exact solutions. Also, the new

• To develop entropy consistent flux functions based on combining the con-

Burgers’ equation as



• Extensions of these fluxes to higher-order accuracy and multi-dimensional

two equation models, namely the

Burgers’ equation and the Navier-Stokes equation discretized using the finite vol-

and considerations regarding turbulence is minimal, so as to concentrate on the

actual behavior of the developed fluxes without bringing up the separate issue

characteristic in the model equation, whilst heat transfer is not focused upon.

The fluxes are developed for one and two dimensions, with accuracy of only up to

second-order. Since the formulation of the equation model utilizes relatively new

concepts, the work concentrates on lower order accuracy to ensure its practicality

before higher-orders can be considered. This is also the reason the development

of the fluxes is concentrated on one dimension, with some result also shown for

two dimensions to demonstrate their viability. Since the fluxes

developed to be shock-capturing, flow regimes for one dimension is concentrated

velocity flows at limited Reynolds number.

Thesis Organization1.5

Chapter 2 will discuss the history and current state of progress for the t wo main

concepts in question which are entropy consistency and linear hyperbolic systems.

Then in Chapter 3, a numerical scheme is developed based on the Advection-

where the Euler and Navier-Stokes equations are discussed. A one- dimensional

8

ume method. Fluid flow is assumed to be compressible, and moving at the tran-

problems that could pave the way for practical use.

As mentioned earlier, the study will focus on

arc specifically

on high velocity, while the two dimensional simulations also touch upon moderate

sonic and supersonic regions. Therefore, flow will have laminar characteristics

of turbulence modelling. Furthermore, the study focuses more on the viscous



these equations, and is then extended to

compiled in Chapter 5, and their merits are discussed therein. Finally, the study

is concluded in Chapter 6, and the possibilities for future continuation of this

work is highlighted.

9

flux function is developed based on

two dimensions. Next, the results of simulations using these flux functions are



CHAPTER 2

LITERATURE REVIEW

Entropy Consistency2.1

Given that complexities in Fluid Dynamics prevent most problems of flow from

being solved analytically, it makes sense that the numerical alternatives to getting

vastly simpler equation models. These models

fundamental behavior of the flow variables as they change across the pre-defined

equation:

(2-la)

(2-lb)ut + aux = 0

along

type of partial differential equation (PDE); this is as opposed to the parabolic

type that is diffusive in nature, or the elliptic PDE with solutions that are typ­

ically smooth functions in steady state. The partial differential equation can be

numerically evaluated by choosing from amongst several classes of methods, the

established classes of which include the finite difference (Courant et al., 1952; Lax,

1954; Friedrich, 1954; Lax and Wendroff, 1960; MacCormack, 2003), finite element

fen, 1993). One could easily come up with a valid justification for picking any of

10

(Reed and Hill, 1973; Patera, 1984; Babuska and Guo, 1992; Mos et al., 1999), 

and finite volume (Godunov, 1959; Van Leer, 1979; Harten, 1983a; Liou and Stcf-

the solutions are usually based on

a particular trajectory, and thus is qualitatively classified

are stripped down versions of the full flow equations, and carry with it only the

As suggested by its name, this equation models the propagation of fluid or waves

as a hyperbolic

domain. One example of a widely used model equation is the linear advection

du du
dl + ate=0 or

du
dx



flux function.

problems, lienee solution methods

eque, 2002). The Godunov flux solves these Riemann problems exactly, whilst

others arc approximate or linearized solvers (Roe, 1981; Einfeldt, 1988: Nishikawa

this method contains a significant weakness in that it is not entropy stable (Barth,

1999), the concept of which will be discussed shortly.

When applied numerically, conservation laws do not always convey faithfully all

information throughout the process of getting to the solution. Some of these infor­

mation might be lost due to truncation, approximation, or a host of other sources

that are unintended effects of discretization. Consequently, additional constraints

constraint is the second law of thermodynamics, in which the entropy of the system

undergoing an irreversible process must always increase. When translated into the

lished through the judicious application of the artificially introduced numerical

viscosity, as was initially recognized by Neumann and Richtmayer (1950).

11

and Kitamura, 2008). Over the years, the Godunov-type methods has been consid­

ered as having the strongest possible physical basis (Roe, unpublished). However,

these methods, but in compressible flow applications, the finite volume method 

remains the sensible choice for being conservative, flexible (allowing unstructured

numerical sense, the entropy must be controlled so that the scheme would produce 

results that reflect a positive entropy generation. Entropy control can be estab-

that distinguish the limits between adjacent cells) in the form of a 

Evaluating these flux functions is conceptually akin to solving multiple Riemann

are called Riemann solvers (Toro, 1999; LeV-

are required to shore up the inconsistencies of the numerical scheme. One such

meshes), and robust.

In finite volume discretization, an array of control volumes, or cells, is defined 

throughout the flow domain, and changes in the behavior of the flow can be de­

scribed by the interaction of the fluid at the interface (which are the boundaries



function. As an example, consider the Roe scheme (Roe, 1981), one of the most

widely used approximate Riemann solvers available due to its ability to produce

nearly identical result to the exact Riemann solver. As good as the solver is, it

still flawed in that it captures shocks and rarefaction indiscriminately. To rem­

edy this, the solver is usually coupled with

introduced by (Harten and Hyman, 1983).

While adding correction terms may be practical depending on the situation, nu­

merical schemes could be made more fundamentally sound by directly incorpo­

rating entropy conservation into the fundamental conservation equations of mass,

momentum, and energy. Tadmor (1984) sought to achieve this via the addition

of numerical viscosity. The work shows how an increased level of numerical vis­

cosity would make a difference scheme converge towards the one weak solution of

the approximated conservation equation that is unique and physically relevant.

this very conclusion.

The work is continued in Tadmor (1987), where entropy is conserved at the lo­

cal level, and entropy generation is enforced whenever discontinuities occur. The

characteristic of producing entropy across shocks qualifies a scheme for the des-

12

Schemes such as Godunov’s, Lax-Freidrichs (Lax, 1954; Friedrich, 1954), and El- 

schemes (Osher, 1984) were studied for comparison, the results of which support

an entropy fix, for example the one

The nature of discrete equations, particularly those of the finite volume scheme, 

one of whichis such that they can give rise to multiple unique solutions, only 

is physically representative of the flow. Using entropy control could enable one 

to pick out the physically relevant solution from amongst the non-physical ones, 

such as in differentiating between shocks and the un-physical rarefaction, as dis­

cussed in Lax (1954). When entropy control is tuned correctly, a shock will retain 

its discontinuous profile, whilst a rarefaction would be reduced to a continuous



entropy-admissible scheme. Specifically,

the entropy stability requirement is prescribed in the form of an inequality of the

entropy pair U and F:

(2.2)

regions, but is computationally expensive and would result in huge oscillations

when discontinuities are encountered. The result shows that the scheme might

suffer from insufficient numerical viscosity, meaning that there is still a lack of

entropy generation in the flux function. However, adding more numerical viscosity

is not a simple matter,

profile that is too diffused. Thus, the question remains regarding the exact amount

of entropy generation needed.

and heat conduction to dissipate entropy, eliminating the need for any additional

numerical diffusion. The scheme uses an entropy conservative flux from the Eider

equations and centered difference source terms, the combination of which approx­

imate the Navier-Stokes equations in an entropy stable manner. Results demon­

strate that this concept works well in terms of reduced oscillations around shock

and contact discontinuities, but the scheme requires a very fine grid to achieve it.

Alternatively, Ismail (2006) used both vorticity capturing and entropy control

contends that the latter plays a more important part to combat the anomalies

compared to the former. To achieve entropy control, the entropy conservation law

13

an entropy fix

was directly incorporated into the flux function. This method involves combining 

Roe’s entropy conserving flux with Roe’s entropy stable dissipative flux that uses 

a modified averaged formulation. The flux is then augmented with

As an attempt to answer this, Tadmor and Zhong (2006) used physical viscosity

ignation of being an entropy-stable or

The scheme developed in Tadmor (1987) exactly conserves entropy in smooth

as excessive amounts would invariably lead to a shock

dU dF n 
ot Ox

as means to eliminate shockwave anomalies, especially carbuncles. The thesis

dU
dt



(2.3a)

(2.3b)

(2.3c)

(2.3d)fp —
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that generate enough entropy production to ensure monotonicity.

Furthering this concept are works of Roe (unpublished) and Ismail and Roe (2009), 

where captured discontinuities were regulated using artificial terms of stability and 

production as introduced in Ismail (2006). For Burger’s equation, the flux is:

entropy fix by Harten and Hyman (1983).

The aim of this entropy-consistent flux, tested in

where the square brackets [ ] is the difference function, which in this instance [iz] = 

Ur — ur. Eq. (2.3) denotes the flux interface * which is shared by two adjacent 

cell values denoted by the subscripts L and R representing the left and right cells

to efficiently provide a

f — fc — fs ~ fp
fc = ^(^1 + URUL + Wj?)

fs = ^l«L + ^7?IM

IM IM
12

respectively. The term fc represents the entropy-conserved flux (Tadmor (1987), 

Roe (unpublished)). Coupling fc with fs represents an entropy stable flux as 

in Tadmor (2003) and the references therein. The third term fp represents the 

production term. Recall that Eq. (2.3a) is also known as the original Roe-flux 

from Roe (1981) with an

a one dimensional setting, is 

completely stable solution that would hopefully remain 

that way in multi-dimensions to combat unwanted occurrences, particularly the 

carbuncle phenomenon. The key to achieving stability is to provide just enough 

dissipation to the flux to damp the oscillations around the shock, without making 

it too diffusive. Alternatives of generating dissipation, such as using central dif­

ference schemes, could produce relatively similar results, but they would require 

finer grid resolution or higher orders of accuracy to make them work. Therefore,



entropy consistency remains the most viable path in terms of producing relatively

accurate low-cost schemes.

First Order Systems2.2

Many physical occurrences of scientific interest are mathematically describable

through hyperbolic partial differential equations. Among the typical examples

include the wave equation, the hyperbolic heat conduction equation and the

This type of equation may contain source termsMaxwell-Cattaneo equation.

sidered ’stiff’ if its solution is numerically unstable,

scale as compared to other terms in the equation, to the point that it requires an

extremely small time step. The stiffness is characterized by its relaxation time

which describes its decay or rate of return to equilibrium. Important applications

of the stiff hyperbolic system is in the realm of gas dynamics, chemical-kinetics and

other advection problems that include interaction between the flow constituents

(LeVeque and Yee, 1988; Yu and Chang, 1997; Donat et al., 2009).

Evon before the advent of such applications, there already exist numerical met hods

that directly resolve second or higher-order partial different ial equations. An early

example of this approach is found in the hyperbolic system of conservation laws

by Lax (1957), followed by more conventional ones (Jin and Levermore, 1996;

representing it as a first order system, which

first order differential equations (Van Leer, 2001; Evans, 2010).
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Whichever the method chosen, the difficult part is still in dealing with stiff source

are series of simultaneously related

or operates at a faster lime

could also choose to solve hyperbolic PDEs such as the wave equation by firstly

Lowrie and Morel, 2000). However, instead of using conventional methods, one

terms. This was demonstrated in Roe and Arora (1993), in which the method

on the right hand side, such as body forces or external effects; this term is con-



This method is tested by

modelling heat conduction using several schemes that employ the hyperbolic heat

equations relaxation system. The scheme that performed the best was the point

the inclusion of information from the grid point that lies between the character­

istics, which introduces a coupling between two families of waves. An important

finding of this paper is how the solution of the hyperbolic system relates to its

relaxation time. For small values of time as compared to the relaxation constant,

the solution will be highly discontinuous and invariably hyperbolic, whilst for

larger ratios, the jumps in the solution decay towards a parabolic feature.

Another important feature that must be considered in stiff hyperbolic systems is

asymptotic preservation, which indicates the behavior of a scheme approaching

limits such as discontinuities. A scheme is considered asymptotic preserving if its

discretization fully conserve the asymptotic properties of the continuous system

from which it is based on. In continuation of his previous work, Arora (1996)

extends the method of characteristics for hyperbolic systems to the finite volume

method. The method was found to successfully capture underresolved asymptotic

solutions for first-order accurate source term discretization.

However, asymptotic behavior cannot be captured correctly by hyperbolic systems

unless a fine spatial grid is used to resolve the small relaxation rate. In Jin and

Levermore (1996), the correct asymptotic behavior is built into the scheme by

systems with stiff relaxation. This idea of balance would prove to be important

hyperbolic systems put forth by Nishikawa.
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balance between the relaxation term and the spatial derivative term is achieved, 

eliminating the problem of inaccurate long-time solutions produced by hyperbolic

the introduction of a modified high-order Godunov method. With this scheme, a

in the concept of a new

implicit method. It is speculated that the success of this scheme is predicated on

of characteristics for dispersive waves was studied.



In his series of papers starting with (Nishikawa and Roe, 2004), a numerical scheme

with a uniform order of accuracy is developed using a first-order system approach

to solve for advection-diffusion problems. Existing schemes that combine different

computational strategies for advection and diffusion suffer from incompatibilities

which would reduce the order of accuracy for the solution to the lowest between its

component. To combat this issue, the new scheme was proposed as an alternative

components of the flux function.

Later, the same concept was then reintroduced to compute the diffusion equation:

(2.4)

with A steady-state solution is obtained in

first order

hyperbolic system:

v-t = "(Px + <?(/), (2.5a)

(2.5b)

qt = (u (2.5c)

The main idea is to focus on the steady state solution of the system, which is

dependent behavior is deemphasized by treating the time relaxation, T, as a free

To get to the diffusion scheme, the hyperbolic model is discretized by an advection

scheme, and the secondary equations are replaced by

17

parameter. In other words, the scheme maintains the accuracy of its solution by 

avoiding stiffness and giving up time accuracy.

equivalent to the diffusion equation at the same condition. Consequently, time­

featuring a new spatial discretization method that retains the accuracy for all

a direct approximation of

v being the diffusion coefficient.

(Nishikawa, 2007) by reformulating the equation in the setting of a

y q)/Tr

Pt = (wx - p}/Tr,



(2.6)ut + aux = vuxx

with a as the advection speed. This equation is dichotomized into an equivalent

system of:

(2.7a)ut + aux = vpx

Pl = (ux - p)/Tr (2.71.)

Improving from the previous work, the time relaxation, Try and the associated

to the same order of accuracy of the main variable.

The concept of resolving equations into their first order versions is consolidated

18

length scale, Lr are optimized to accelerate convergence towards steady state with 

0(h) time step. Another advantage provided by the method is uniform accuracy 

for all Reynolds numbers, meaning that the solution gradients can be maintained

developed. It was shown that the new strategy provides improved accuracy for 

diffusion problems that are time dependent as compared to conventional methods, 

when irregular triangular grid is used.

eliminate large errors, speeds up convergence, and improve consistency.

With the basic concepts established, the strategy is extended to construct a hyper­

bolic system that combines advection and diffusion (Nishikawa, 2010b). Consider 

the advection-diffusion equation:

the secondary variables p and q to the spatial derivative of the primary variable. 

This scheme is automatically equipped with a damping term which would help

the hyperbolic relaxation system 

for various discretization methods (Nishikawa, 2010a). Schemes based on meth­

ods including finite volume, discontinuous Galerkin, and residual distribution arc

with a generalized diffusion scheme based on



The work is expanded with an upwind finite volume scheme for a first-order hy­

perbolic Navier-Stokes system (Nishikawa, 2011a)

(2.8a)= 0

(2.8b)= 0

(2.8c)+ (i)x — o

with E and II representing energy and entalphy respectively. Conventional ap­

proach utilizes a two step strategy in which a hyperbolic discretization method

is used for the inviscid terms and a parabolic one for the viscous counterparts.

Instead of using this strategy, the proposed hyperbolic system is set up by adding

two equations to the three already defined:

(2.9a)= 0

(2.9b)= 0

(2.9c)

heats, and Pr is the Prandtl number. Consistent with the principal idea, the

terms of equation 2.9

uniform discretization method and eliminating the need for a parabolic treatment.

for the viscous terms.
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Pt + (p«)x
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in the momentum equation. The system is now entirely hyperbolic, allowing for a
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Current Developments2.3

servation and the first order hyperbolic system in a finite volume scheme. The

concept itself has already been touched upon in a hyperbolic Euler system at low

Mach numbers (Gustaffson, 1987; Wong et al., 2001), but the goal is to extend

alluded to in Chen

et al. (1994), where the limits of hyperbolic conservation laws with stiff relaxation

terms was studied for a 2 by 2 system. The system is readily equipped with a

However, the system used is not resolved into the first order, and

Another examination of hyperbolic systems with relaxation was done in Hittingcr

developed by the coupling of wave propagation and relaxation. This method is

applied to both linear and nonlinear systems that model

with relaxation. Even with very good results, it would seem that such methods

require considerably more computational cost than the one proposed in Nishikawa

(2011a). Bearing this in mind, a synthesis between the hyperbolic first order sys­

tem and the concept of entropy consistency is an attractive avenue to venture

pared to any other schemes available today. Furthermore, potential developments

promising in that they have yet to reach saturation and are still active fields of

research, as evidenced by the following new papers.

The latest work regarding entropy stable schemes is documented in the series of

papers by Fjordholm. Mishra, and Tadmor. These researchers mainly concentrate

20

no simulations

upon, since both concepts could be constructed to have a relatively low cost com-

were computed.

of both the first-order system approach and the entropy consistency condition are

it to include the full physical viscosity effect. This idea was

convex entropy pair, entropy dissipation is implied by a strict stability criterion.

(2000). Consequently, an accurate yet underresolvcd Gudonov type method was

One of the objectives of the thesis is to exploit the advantages of entropy con-

a hyperbolic system



developments in the field up to now, there are a number of fundamental issues still

unsolved, the biggest of which is how much entropy production is needed to achieve

consistency. Additionally, the question remains whether this concept of entropy

Fisher and Carpenter (2013). In the former, the multiple and varying conditions

for entropy was thoroughly described, providing us with a working understanding

of the limits of entropy construction. In the latter, entropy consistency was shown

to be applicable to the high-order accurate Weighted Essentially Non-Oscillatory

Scheme (WENO) scheme.

hyperbolic sys­

tems with works in Nishikawa (2012, 2013a,b). The earlier one focuses on source

term formulation in the form of divergence, enabling one to construct a uniform

same order of accuracy for both. On the other hand, the latter two papers provide

the method to construct advection and diffusion schemes

existing literature.
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cept of entropy consistency using the finite volume method. The key to achieve 

this lies in the selection of entropy variables that would map the the secondary 

variables of the system to the entropy domain using guidelines as established in

consistency can translate favorably in higher dimensional domains. Attempts to 

answer these problems have been forthcoming with the work of Bressan (2009) and

based on the hyperbolic system approach for up to third-order accuracy. These 

documents provide the framework for us to synthesize this approach with the con-

Concurrcntly, Nishikawa has also been continuing the research on

on entropy stability for shallow water equations (Fjordhohn et al., 2008), and for 

higher order accuracy schemes (Fjordhohn et al., 2011, 2013). Even with all the

scheme for the conservation equation and the source term, thereby ensuring the

detailed description on



CHAPTER 3

SCALAR EQUATIONS

tion,

schemes. Such equations are widely used in the study of transport phenomena,

serving as models of conservation laws that govern the evolving characteristics of

a variable of interest across time and space. These equations are usually simple

lutions available for comparison with the numerical schemes. Additionally, they

form the baseline for more complex systems such as the Euler and Navier-Stokes

equations. Before any level of complexity can be analyzed,

standing must be acquired in the fundamentals of transport phenomena, amongst

the most basic of which are mechanisms for advection and diffusion.

Advection and Diffusion3.1

the

advection-diffusion equation, a combination of the linear advection equation, which

is a hyperbolic PDE, and the diffusion equation, a parabolic PDE:

(3.1)ut. + aux = vuxx

0, and v is the viscosity

solution for this equation is available (LeVeque, 2002) in the form of:

u(x, t) = crfc
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x — at\ 2
dz (3.2)

Here, a is the advection speed having a quantity of a

crfc(x) = —7= 
v/TT

Both properties mentioned earlier can

to discretize, relatively easy to analyze, and equally importantly, have exact so-

be modelled simultaneously based on

a thorough under-

P = |aAa;(l “ «)> oc
c~2

coefficient; the equation reduces to linear advection as v approaches 0. An exact

Scalar equations, for example the linear advection equation, and Burgers’ equa- 

are usually considered a good starting point for constructing numerical



mated values for ux and Uf.

(3-3)utux

These values can then be used as input for practical difference schemes, the sim­

plest amongst which is the first order upwind method, also known as the Courant,

Issacson, and Rees (CIR) scheme (Courant et al., 1952). Substitution of data from

equation 3.3 into the inviscid version of equation 3.1 yields:

= u’/ - c(«? (3.4)

speed of the discretization. The value is usually set to a value less than 1. Despite

having the advantage of being very simple, the downside of the CIR scheme is

that it is prone to having smeared

evolution of time.

To formulate the finite volume form, consider the generalized scalar conservation
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the area in between the grid points, as shown in Figure 3.1. In both figures (a) 

and (b), the horizontal axis represents space whilst the vertical axis shows the

encountered (Toro, 1999). This first-order upwind method, as well as many other 

finite difference methods, can also be formulated in a manner called the finite

As a numerical model, the advection-diffusion equation can be discretized in a 

number of ways, for example using a Taylor series expansion to construct a finite 

difference scheme (Toro, 1999). A first-order expansion would produce approxi-

or spread solutions when discontinuities are

— ui-l
Ax

The coefficient c is widely known as

«?+1

<+1up

(Courant ct al., 1967), the ratio between the wave propagation speed a and the

volume scheme. Instead of assigning discrete values at each point of a grid as 

in finite difference, the finite volume method considers the averaged values over

— ?/n
__ ui

Ax

aAt 
c = — Ax



tn
urtlu?_,

Dt

(b)

equation:

(3.5)

Integrating over space and time:

u(x, tn)c\x
x

(3.6)

Approximating the time integrals to the average flux along x, the equation 3.6

can be restated in the form of:

(3-7)

Numerical methods of this form are called conservative schemes, since it is derived

from equations in conservation form with a ’telescopic’ construction method. Con-
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Figure 3.1: Grid representation of the finite volume method from (a) LeVcque 
(2002) and (b) Ismail and Roe (2009).
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but when working with discontinuities, it would be advantageous to select those

that satisfy the entropy condition:

(3-8)A(ul)

Here, A(u) is the characteristic speed of the conservation equation (for example,

the constant advection speed

die term is the speed of the discontinuity (Toro, 1999). The entropy condition

is an additional governing law that determines the admissability of a solution,

disallowing those that

by incorporating it directly into the flux function

In the following, a flux function with the entropy admissability feature built-in is

derived.

Burgers’ Equation3.1.1

Consider again the governing equation for advection and diffusion, cast in vector

form:

(3.9)
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servation is important when working with problems that involve discontinuities 

because the absence of smoothness prevent non-conservative methods from con­

verging to the correct solution (Hou and Lefloch, 1994). If constructed properly, 

would numerically approximate the physical flux of equation 3.5.

rarefaction shock. This condition can be enforced either in an ad-hoc manner, or

as proposed by Tadmor (1984).

are physically incorrect or entropy violating, such as the

the fluxes of /l±i

Different choices for these numerical fluxes lead to different conservative schemes,

a in the linear advection equation), and the mid-



A subset of tins is the Burgers’ equation, in which u and f are scalars:

(3.10)
X

this equation, a mapping from

Roe’s Entropy Conserving Flux3.1.2

In this thesis, the chosen method is an entropy conserving flux formulation initially

developed in Roe (unpublished), and further discussed in Ismail and Roe (2009).

The inviscid part of the equation is discretized using a semi-discrete finite volume

method, such that:

(3.11)

where Ax is the distance between two given finite volume interface, and f

be viewed from a residual distribution

approach thusly split into two parts:

(3.12a)

= r-fRflR (3.12b)

The variable h is the length of each cell, whereas the subscripts L and R denotes

the states on the left and right of the interface respectively. In this case, /* is

calculated at the border that separates the two cells. To establish conservation
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= fL - r

are the fluxes to be evaluated at each respective interface. Ina dual cell system as

shown in Figure 3.1(b), this equation can

from the entropy point of view, a convex entropy function t7(w) is introduced,

p

2

, d™L 
hL~dT

9ur 
dt

Ut + fx — VUxX)

To discretize an entropy consistent flux based on

the conserved variables to the corresponding entropy equation is sought. The

following describes a fundamentally sound method to do so.

i - A-



entropy flux F(U) satisfying

(3.13)

(3-14)Ut + Fx 0

(3.15)

entropy in the system depends on the changes to U multiplied by a coefficient that

represents its magnitude. This quantity represents the exact amount by which
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entropy is generated for the system when it undergoes an irreversible process.

from equation 3.13 replaces the variable u in

v, and an

Ut T T'.r — kvUXx

In any case, the entropy variable v

An entropy stability inequality can

dU
V ~ du’

dF = df
dU du(U)

be stated in terms of the entropy function as:

Entropy is conserved when equality is satisfied, but the entropy is more likely 

to increase (or decrease depending on the point of reference) within the system 

through physical or numerical means. Therefore, the entropy stability condition

along with its associated entropy variable 

the following:

in equation 3.14 enforces entropy generation that is the crux of the second law 

of thermodynamics. Having said that, the exact amount by which it increases or 

decreases for any given situation remain unresolved, and is one topic that has yet 

to be explored fully. A definition is introduced in (Fisher and Carpenter, 2013), 

but the authors of the work concede that a global entropy consistency condition 

is difficult to enforce. There is, however, another entropy condition that can be 

implemented locally to get a global entropy consistency established by Tadmor 

(2003). As an alternative to these methods, a new entropy equation is proposed 

here:

The term kvUxx hi equation 3.15 symbolizes the hypothesis that the increase of



equation 3.12 yielding:

= vL{fL-n (3.16a)

(3.16b)= vr(J* - fn)

of the two parts of equation 3.16:

(3-17)

(3.18a)

= F* - Ffi (3.18b)

The total entropy of the system would then be:

(3.19)

(3.20)
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where [v] = vR — v^. Similarly, the semi-discrete scheme representing the total 

entropy change predicted by the entropy conservation law of equation 3.14 is:

Based on the inequality of 3.14, it is given that the discrete fluxes in equation 3.17 

would always be less than

= Fjr - F*

Determining the change of entropy within each cell or element requires the sum

or equal to that of equation 3.19. Let’s firstly assume 

that entropy is conserved exactly, implying that:

+ hRUR) = Fl- Fr = -[F]

Q
+ 1irUr) = (vl/l ~ vr/k) + (vr — vL)f*

L

[F] = [vf] - [v]/*

= -M + M/*

h duL hL~&r
,, our
R~dT

, dUL
hL~

h 0Ur

n~oT



Equation 3.20 is then solved as is for f* which is the flux at the interface. Doing

so requires a choice of entropy function that is preferably convex to allow for

(3.21)

Substitute values from equation 3.21 into equation 3.20 and resolve for /*:

(3.22a)

(3.22b)

At this point, the identity property can be used where:

[ab] = a[6] + 6[a] (3.23)

*.

[2u](au*) — 2ua[u] + 2au[u] — cruftz] — cm[u] (3.24a)

(3.24b)

The term u can be any averaged quantity of it, for example, the simple arithmetic

average where:

(3.25)

at the interface is simply the average of its left, and right states. Let us repeat the
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W* = \vf] - [^] 
[2u](cm*) = [(2tz)(aw)] — [«u2]

one-to-one mapping. For the advection-diffusion in equation 3.1, where f — aw

U = u2,

This essentially means that for the advection-diffusion equation model, the flux

v = —— = 2u, du

1 /u = 2^ + UR)

Hence, the flux at the interface is essentially if:

F = an2

u* = u



(3.26)

Substitute values from equation 3.26 into equation 3.20 and resolve for /*:

(3.27a)

(3.27b)

Using the identity of equation 3.23, the entropy conserved flux for Burgers’ equa­

ls found to be

+ unuL + ?4) (3.28)

This flux formulation is applicable not only for scalars, but also for vectors. For the

both the advection-diffusion and the Burgers’ equation, their respective conserva­

tive fluxes would make up the advection part, whereas the diffusion is discretized

separately. To be able to perform the discretization of both parts simultaneously,

the equation itself would need to be cast in a different way, which will be discussed

later. Before that, we consider the broader case of entropy inequality in which

entropy is not necessarily conserved, but is required to always be generated.

Stability, Production, and Consistency3.1.3

A drawback to the entropy conserving flux is its instability when used as a stand­

alone function. The reason for this lies in the fact that the entropy of a system

irreversible process such as a shockwave. The entropy conservative flux cannot
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U = u~,

same process using the Burgers’ equation model instead, with f =

or stay at zero at the very least , when undergoing ancan only be generated,

tion, /*,

F = |«3 
o

cZt7 o 
v — -z— = 2u, du

fc =

Ku2”.
£

Mr = [«/i - if ] 
[2«](r) = [(2u)i«2] 2 3 

3“



u = |f) - (MJ- - («/)) (3.29)

Production is built into the flux in part through upwinding, leading to the entropy

consistent form recommended in Ismail and Roe (2009):

(3.30a)

(3.30b)

Using equation 3.29, the entropy generation thus becomes

(3.31)

given cell interface having left and right states, upwinding is done by adding in
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distinguish between positive and negative values, thus is unable to discriminately 

pick out only the ’entropy admissible’ solutions. Moreover, it is not guaranteed 

that each local entropy flux would always add up to the global entropy change. 

Foi' the physical law of entropy to remain true, the change of the discrete fluxes 

match to the fluxes in equation 3.19, and

In this equation, a is the arithmetic averaging of velocity at the interface having 

left and right cell values, whilst a is an analytically and empirically determined 

parameter by Ismail and Roe (2009). Notice how the production term is made up 

of components that

/*

are invariably positive. Considering its entropy conservative

- 1,._. . ir u\r

£ CL U

in equation 3.17 should at least be a

the difference between the two quantities must be accounted for in the form of 

the entropy production U as stated in Roe (unpublished):

v = -l(|«| + «IMI)^M2<o

nature, the fact that the entropy production would always have the correct sign 

means the flux definitely satisfies the entropy inequality of equation 3.14. At a

1
2

fc ~ o(l«l +
du
dv



the entropy stability function fs:

(3.32a)

(3.32b)

To complete the flux

pressed by fp:

(3.33a)fp —

(3.33b)

The flux function of f* with this configuration (also presented in equation 2.3)

represents the complete entropy consistent flux, the benchmark to which the other

fluxes derived in this thesis are compared. Furthermore, the flux is deemed entropy

consistent by virtue of producing enough entropy appropriate for the inviscid flux

formulation.

For the viscous Burgers’ equation with vuxx

formulation can be used, with the additional step of incorporating the viscosity

(3.34)

Again U 0, satisfying entropy inequality whilst realizing t he equation of 3.15.

32

!»/? ~ uL\{uR - uL} 
12

f = fc ~ fs ~ fp

numerical viscosity is defined together as:

on the right hand side, the same

as defined in 3.30, the production term is then added, ex-

fs = 2= 4 lu£ + un\(.UR - UL)

[u]2

U = + «[«])^M2 -
CL U

term into the entropy production portion of the flux. Thus, the physical and

1
2
1
2

u
L\x' '

V 

(2A.r)



Hyperbolic First Order Systems3.2

the discretization of the advection part of

Let usthe scalar law, and adding to it diffusion in the form of production.

now consider an alternative to this and other conventional methods through the

application of a first order, hyperbolic advection-diffusion system as developed by

Nishikawa (2007, 2010b):

(3.35a)

(3.35b)dt — (ux d)/Tr

In the system, u is the main variable that tracks velocity, whilst d can be viewed as

the secondary variable for diffusion. Tr is the relaxation

time that can be set to any positive value. This system can also be written in

vector form as:

(3.36)Uf + Au® = q

0u a — i/
(3.37)A =u = q =

-1/Tr -d/Trd 0

distribution method. This is different from the common practice of representing

advection, which is the hyperbolic part of the equation, as an upwind flux and

resolving diffusion by central-differencing. In the following, we will utilize a equa-

the Burgers’ equation, and incorporate within it

flux equations.
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ut + aux = vdx

the concept of entropy conservation using the finite volume method, to create new

the gradient variable or

tion systems approach based on

From here, the whole system can be discretized in a uniform manner to produce

So far, the approach has focused on

a pair of flux functions, as was demonstrated by Nishikawa using the residual



Burgers’ First Order System3.2.1

(3.3S)q = vuxx, x

We set up the first order system for this equation:

(3.39a)ut

(3.39b)dt = (A- - d)/Tr

(3.40)

The vectors are defined as:

0u
(3.41)f =u = q =

—u/Tr -d/Trd

entropy function that has some measure of ’’total energy” based on the primary

variable u and its auxiliary term d. We seek to control this ’’total energy” through

entropy pair (L/, F)
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Similar to the advection-diffusion equation, the viscous Burgers’ equation can be 

written in the form of a first-order system. Consider firstly the original form:

fx

same vein as the inviscid Burgers equation. To achieve this, we need to define an

the concept of entropy conservation, entropy stability and entropy consistency.

Based on the work of Hughes et al. (198G), we define an

In vector form, the. equation is expressly written as:

u2
~2~

zz2/2 — vd

ut + uux = ut + fx = q,

with d =

From this model, the aim is to obtain an entropy consistent flux function in the

x — vdx



satisfying

(3.42)

with U and F split into inviscid and viscous components

(3.43)

satisfying the entropy constraint given in equation 3.14. For inviscid flow(z> = 0),

this governing entropy equation will collapse into the original entropy equation

2u
(3.44)

2vd

discrete form that is originally derived in Barth (1999) and modified

to its current variation in Ismail and Roe (2009):

(3.45)

ponents, namely the eigenvalues A and eigenvectors R will be defined later via

be found in equation
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The total flux at the interface combines both the. inviscid flux f, and the viscous 

flux fv in a

Note that the quantities accented with the ’“ ’ symbol represent discrete averaged 

quantities. The first two terms, fj and fv are inviscid and viscous terms represent­

ing the symmetric part of the flux and the rest represents the asymmetric part.

This asymmetric part can also be identified as the dissipation matrix, whose job

for the inviscid Burgers’ equation. The entropy variables are now defined as:

equations 3.55 and 3.59, while the scaling parameter S can

9 9F = Fi + p” = - ±u,ul
O 1 7'

is to maintain the stability via proper entropy generation for the flux. Its corn-

dU c>f _ dF_ 
du du du

-RASRT[v]
2 1 J

U == + Uv

dU
~ du

= u2 + vd2,



(3.46)
0

* denote the averaged interface values to be determined. Here,where the accent

such that the fluxes satisfy both the total entropy conservation and the inequality

of equation 3.14. For these conditions to bo met, we shall make an assumption that

the relaxation time is finite and not problem dependent. Its value is set to Tr = 1.0

for the time being so as to keep calculations simple. Observe that total entropy

during the the discrete averaging of the fluxes. The loss will be accounted for by

the dissipation terms which includes both the physical and numerical diffusion.

The dissipation terms generate the proper sign and magnitude of total entropy

loss to obey the correct physics and at the same time ensure stability. To achieve

entropy conservation, recall how the scalar cell flux in equation 3.17 is equated

[vfr - |v ■ f] = -in (3.47)

Note that this is an under-determined equation hence there will be more than
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to the total flux of equation 3.19. The procedure is now applied to the system’s 

approach, by replacing the scalar variables with vectors:

two averaged quantities have been defined for the velocity (t/*, u.*). One possible 

approach to determine these averaged quantities is based on finding an averaging

f/ =

one set of solutions. However, only one set of solutions arc needed to explicitly

3.79. The discrete inviscid and viscous fluxes are arranged as:

-vd*

*2. 
Tr

conservation does not mean that the physical viscosity does not produce entropy 

u2 (it should) but rather that there is no loss of total ’energy’ as defined by Urrotu[



determine the averaged quantities. Equation 3.47, when expanded becomes

(3.48)

Using the identity [a6] = a[6] 4- b[a], the equation reduces to

(3.49)

By equating the terms in the first on the left hand side to the right hand side

parts:

— vd
fv = (3.50)

The total entropy production based on the flux discretization is:

U = (3.51)

be achieved via entropy

appropriate definition of the matrix constituents.
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|(«£ + izz,ur + u^)

0

* 
1

-I- 2v(u[d] + d[u)) — 2is[u]d* — 2v[d]u2 = ;j['“]('M

T
RASRT[v] < 0M

2

u 
Tr

7,2* 9
[2u]—------2zz[u]d* — 2iy[d]ii2 — [u3] + 2v[ud] + 2vud = — — [«3] + 2t'[ud]

q
— [u3]) + (2i/[ud] — 2i/[u]d* — 2iy[d]ii2) = — -[u3]

o

f,=

in a first order systems approach, the focus herein is only on ensuring the the 

discrete flux is at least entropy stable. Stability can

([«)«?•

= u and d*

1 + UL^R + «??)

of equation, the inviscid entropy conserved flux formulation is recovered, U 

^(U2l + ULUR + u/?)- And by choosing = u and d* = d, the whole equation 

cancels out thus obtaining entropy conserved fluxes for the inviscid and viscous

This ensures the entropy defined in equation 3.43 is decreasing since the product 

is a positive definite matrix. Note that there will also be entropy production 

generated by the source term of the auxiliary equation (d) which may not always 

be of the correct sign. However, as a first step of controlling the entropy production

1
3



3.2.2 Eigenvalues and Eigenvectors

Herein the components of the dissipation matrix is defined, starting with the

eigenvalues. Firstly, the Jacobian A is defined from the system flux f in equation

3.41:
u — v

(3.52)
-1/Tr 0

The eigenvalue A is introduced, the definition of which

lating the determinant of the Jacobian in the form set to:

u — A —v
det (3.53a)= 0

-A

(3.53b)

(3.53c)

A is found to have two real, unique solutions in:

A = (3.54)

A] 0
(3.55)

^20

(3.5G)
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-1/Tr

Hence the averaged eigenvalues for the system of equations 3.36 are:

can be obtained by calcu-

A2 = |(«5 -A, = i(«T +

4/7 x 
+9

representing the characteristic waves speeds for u, d. In terms of discrete variables, 

these eigenvalues can be stated as:

“2>2 +

(u - A)(—A) - = 0
j r

o VA - uX - — = 0
1 r

A = ^ 
du

> A1)2 = i(w ±

-(-u)± x/zz2-4(1)(-i//T^
2(1)

4//
Tr

4/7

Tr



Note that for v = 0, the eigenvalues reduces to just one nonzero quantity (Ai = rz)

xx
(3.57)[A] = A

yy

(3.58a)

(3.58b)x = Xy

This will lead to the right eigenvectors:

(3.59)R =
1 1

The eigenvalues defined here is not strictly unique, as more dissipation can be

introduced by augmenting them with additional terms.

ECS1, ECS2, and ECS33.2.3

We set the default eigenvalues for the dissipation matrix according to equation

3.55, and name the flux that utilizes these original terms as ECS1:

Ai 0
A/^csi = (3.60)

A?0

However, from the experience working with entropy consistent fluxes, we antici­

pate that there would be

which represents the pure transport of the inviscid Burgers equation.

We can then get the eigenvectors for the eigenvalues by setting Av = Au:

—Ai Tr —A2Tr

a need to add more dissipation to the system, leading
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ux — uy = Xx
1

~Tr



to the next definition. To increase the entropy and thus produce more diffusion,

be enhanced with additional terms, similar to the method

recommended by Ismail and Roe (2009):

Ai 4- X?| Ai | 0
^ECS2 = (3.61)

•^2 + Z^I-^210

The coefficient is defined as /3 = O.OOOl/i/, while ECS2 denotes the flux that

utilizes this set of eigenvalues. Another alternative is to add a different diffusion

term based on Au, designated

0
AFCS3 = (3.62)

A20

However, the ECS3 is deemed to be outside of the entropy consistency theme and

determined values that are chosen such that their combination will result in the

minimization of oscillations in the system.
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these eigenvalues can

as ECS3:

its results are not shown in the results section. All coefficients are empirically



Length Scale and Time Relaxation3.2.4

Using either Ai or A2, the relaxation time Tr which appears in previous equations

is defined as:

(3.63a)
u —

(3.63b)
u +

The value of Tr is proportional to

(high relaxation time). Here, the same definition as in Nishikawa (2010b) is used:

(3.64)+

where

(3.65)Re

To solve for Tr2, Aj is firstly simplified:

(3.66)

This is so that it can be used as a conjugate for the denominator of Tr:

R’P

(3.67)

41

Lr
^2

1
2tf

1
2

1
2

41/ 
u2Tr

41/ 
ifiTr

41/

2
Vi+^4+i

4i/

uTr

Lr

zz(l/?r)
:7T =

V

Re*

Rp

+ 77

X - u A1“2

^rl = T-
Aj P + 77

i-\A+

where Lr is a relaxation length scale that can be optimized based on the scheme.
L2

and hence would have a low but finite value 

to reflect proximity to equilibrium conditions for diffusion, as opposed to frozen

4i/
Tr

41/
Tr



1 -
(3.68)

1-(1 +

the left and right leads to:

(3.69)= 1 +

both sides are squared to eliminate the root:

(3.70)1 + +

From here the equation

(3.71)

(3.72)

velocity

and also viscosity.

However, to get to equation 3.50 from 3.46 in a manner that satisfies entropy

Tr = 1.0.
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1

2/7 
uLf

uTr
2L^

uLr + v

4p

U2Tr

4p 
u2Tr

4 m2 
u2Lp

p
= z; + Z2 =

Thus, in addition to the length scale, the relaxation time is dependent on

and finally Tr is defined as:

multiplying out terms gets us:

rearranging of expressions on

can be simplified into:

Since the Lr for a given problem is typically fixed and p

conservation and inequality, the simplest way is to set the relaxation time as

= 1+4-uLp

Au x 
u2Tr ’

commonly has a small value, the major determining factor for Tr is indeed u.

_ Lt
Tr = ------- ------u 4- p / L r

u
Lp



3.2.5 Ensuring Entropy Stability in the Dissipation Matrix

The dissipation matrix in the latter part of equation 3.45 is actually the diagonal­

ized eigenstructure of the Jacobian A for the system flux f as stated in equation

(3.73)

where
0

(3-74)A =
A?0

However, a downside of having the A matrix set up in the manner as shown in

equation 3.73 is that its sign cannot be guaranteed to always be correct. In order

for the flux function to be entropy stable, the matrix need to be modified into

this form:

(3.75)D = AS

and S must satisfy the differential relations as initially suggested by Barth (1999)

(3.7G)

Here, we define u as in equation 3.41, and v as in equation 3.44. The scaling

matrix can then be obtained by finding the inverse and the transpose of the
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R-1

A = RAR"1

du = SRrdv

A = RDRt,



eigenvectors in equation 3.59. After some manipulation:

-A2 du
(3.77a)

Ai dd

Sb —“2X]Tr du2/7
SRt[v] = (3.77b)

Sd —‘IX^'T'r dd2v

be found by simultaneously solving these equations:

= ~2(S'aAi 4- SfeA2) (3.78a)

— 2p(Sa + S^ (3.78b)

= —2(S’CA1 + SdX2} (3.78c)

— 2z/(S'c + Sd) (3.78d)

The scaling matrix can thus be resolved into:

S = (3.79)

has been added to the. denominators

to prevent the function from dividing by zero. Even though S is not a diagonal

matrix, its components will satisfy 3.76 all the same.
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1 
“77

1
77

1
Ai - A2

1
Ai - A2

A2
Ai - A2

1
Ai - A2

Ai

Ai — A2

Sa

Sc

through Sd can

A very small coefficient e = 1.0 x 10 10

^2+^ 
2p(Ai-A2)2+e 
____ A | 

2p(Ai-A2)2+e

_____Aj A2~j~i^ 
2m(Ai—A2)2+c

A2+i/ 
2//(A1-A2)2+e .

Comparing both sides of equation 3.76 and setting Tr — 1, the unknowns of Sa

R-'[u] =



Source Term3.2.6

The source term of the system flux

sented by:

(3.80a)

(3.80b)[—2d](—z/d*) = (—2d)(—z/d)

d* = (dR - dL) (3.80c)

(3.80d)fv = ~v(dR - dL~)

based on the

(u;; — 2uc + W£) (3.81)

uC is the velocity of the middle coll in a three cell sequence.

Flux Update3.2.7

The finite volume scheme for the Burgers’ system is completed with the flux

update, defined as:

_ —1) (3.82)

The entropy variables on the next time step is obtained from the flux difference

between the current and previous time steps. The schemes of ECS1 and ECS2

defined in this chapter is put through several tests to examine its effectiveness,

the results of which will be discussed in later chapters.
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f./
V

(Aa;)2

The alternative is to use a central difference physical viscosity, f;7,

as stated in equation 3.45, fv, can be repre-

Un"^l = Un —
A/U

Kd/v = lvdfv]

primary variable u instead of the secondary variable d:



CHAPTER 4

FROM EULER TO NAVIER-STOKES

In describing the behavior of fluids in motion, foundations that are established

with advection and diffusion are built up into something more and more com­

plex, as additional parameters are added into the framework. Fundamental fluid

tracked and observed, and the

summarized and generalized through rules of

conservation. Such rules, for example Bernoulli’s principle, Pascal’s law, and the

shallow water equations, are useful in a lot of ways, especially in that they provide

predictive information on the unknowns given enough data from known quantities.

As one strives to get a picture of what is actually happening in an ever-increasing

level of clarity, more of these rules would be required, which will eventually lead to

the Navier-Stokes equations. But before getting into the Navier-Stokes’, studies

often start with the simpler Euler equations. Consider the governing conservation

equation, similar to equation 3.5 in the previous chapter:

(4.1)

As opposed to the scalar quantities in the advection-diffusion or the Burgers’

equations, variables u and f in the Euler’s equations are vectors consisting of:

P

f = (4.2)u = pu

pE pull

Here, the density p, velocity tz, and pressure p are primitive variables from which

pu. Other

parameters of density, velocity, and pressure are

other variables arc constructed. For example, momentum is defined as
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dynamics of their interactions are

pu 

p + pu2



variables such as total energy E. and total enthalpy H are defined as:

(4.3)e =

the ratio of specific heats. Whilst this

problems simply do not have analytical solutions; they

tional constraints that could limit these errors and bring numerical results closer

to real-world solutions. An example of these constraints is the enforcement of the

second law of thermodynamics, also known

entropy is essentially a conceptual mechanism to ensure that for smooth flows, en­

tropy is conserved, whilst in discontinuities, physical entropy is always generated

(Lefloch et al., 2002). The manner in which these rules are governed is determined

by the principles of entropy conservation.

Entropy Consistency for the Euler Equations4.1

Entropy control can be achieved in many ways, but the most direct method is

by embedding it explicitly in the numerical scheme. To this end, Harten (1983b)

introduced the entropy function U and entropy variable v for the Euler equa-

conservation equation for entropy:

(4-4)
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P 
ph ~ 1)’

as entropy control. This ’control’ of

with e being the specific energy and 7 as

set of equations would be adequate to describe fluid flow analytically, most flow

almost automatically introduce errors into the solution, thus necessitating addi-

r-> «2
E = e -I- —,

tions; these expressions are

are solved through the

incorporated into the the governing laws to yield a

dU dF n 
„ + "7T— — 0(Jt dx

application of numerical techniques instead. However, computational methods

dF
dx



The entropy function in general is:

(4.5)S = In p — 7 In p = In (7 — l)(pS —U = -pg(S),

be obtained by calculating the

gradient of U with respect to the vector

^1
(4.6a)V2

^3

(4.6b)

Solving for each element in v results in:

(In (y - l)(pE - (4-7a)

= </(S)(-p) (4.7b)

-(7+ 1))
= -(7-1) (4.7c)

P
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g'(S) 
p

(py)

?p

pu-
2

2
—) — 7 In p

v = g'(S}(-p}

Consequently, the associated entropy variable can

u as shown in Roc (unpublished):

with g(S} being some suitable function and S the definition of physical entropy.

2
-) - 7 hi P)

<)p

dU
V “ du

d(pg(SY)
d{pu)

d(pn(S)) 
d(pK)

-<z(S) -
QX^(g(p»))

EJ \ ) d(pu')

pg d^pE)

g(S)
9'(S){p)

d 
d{pu)

d
df.pE)

( _ ^E-u2/^ 2
y(S)(p)+^7 ^pp p p

(7-l)»
p

7-1
p

p (g(S)
7^T1p'(5)

—pu



function that is extendable to the Navier-Stokes equations:

(4.8)U =

becoming:

(4.9)V =

With the entropy variables defined, they can

variables in equation 4.1:

(4.10)

turn and energy. The matrix A is a Jacobian which will be addressed subsequently.

Discrete Entropy Conservative Fluxes4.1.1

Entropy consistent flux derivation based on the finite volume formulation for

- fL - r (4.11a)

^7? (4.11b)

The difference is that the fluxes of f consist of vectors as opposed to scalar quanti-
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Euler’s equation is similar to that of the scalar equations established by Roe 

(unpublished) shown in 3.12:

pS 
7-1

By substitution into equation 4.6(b), this choice of U leads to v

now replace the original conservative

In equation 4.10, entropy is conserved along with the quantities of mass, moinen-

as possible, but Hughes et al. (1986) showed that there exist only one entropy

, 9ul hL~ar
dt

- H("2)
pu
p

p

vTt ip + Vu Auj: = 0

It would make sense to construct g(S) in a manner that would simplify v as much



ties. With everything else being equal, the entropy conservative flux must adhere

to a similar conversation equation as demonstrated in 3.20:

[vr]F = (v7’f] - [F] (4.12)

be represented by

(Ismail, 2006):

(4-13)

This results in the flux at the interface simplifying to:

|v]f* = [pu] (4.14)

found in Roe (unpublished). In the paper, the flux takes the form of:

fall/l + M/2 + M/3 “ W = 0 (4.15)

Define parameter vectors

(4.16)z2 = 23 = pp

Construct f* in the general form of equation 4.2, but with each of its constituents

evaluated as functions of the parameter vectors, derivations of which is available

in Ismail (2006):

F = (4-17)
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fl 

f2 

f3

For the chosen form of physical entropy t7, the term v7 f can

T v

-22^

^3+^2/*

■y+i /;777+22/2

There are a number of ways to interpret this relation, but a practical solution was



are ob­

tained from their values at the left and right cells at each interface:

(4.18)z = z

Quantities used to calculate the fluxes arc thus approximated by the averaged

states of the flow parameters, definitions of which

(4.19a)

II = (4.19b)P2 = a =+
27

Therefore f* can be described by the averaged variables as

f* = (4.20)

Entropy Production and the Dissipative Flux4.1.2

Having a conservative flux f* constructed in the manner shown by equation 4.20

is sound theoretically. However, the symmetric functions of the input states from

the left and right of the interface make fc similar to central difference schemes,

equation in the. previous chapter, is the incompatibility of this type of conservative

flux to the second law of thermodynamics, which states that entropy is always

generated whenever an irreversible process is encountered. The actual relationship
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i
27 - 1 ^3

27 21’

ZL + ZR
2

- — In
P = ^1^3 >

= fC

arc shown in Appendix A:

which arc numerically unstable in nature. Another issue as seen from the Burgers’

u = =,
21

7P2 
P

u2~ln 
z3
~ln 
Z1

23
Pl = —

21

For a given quantity z, its arithmetic mean z and logarithmic mean z^n

a2 
7-1

In = ZL ~ ZR 
ln(zL) - In(zR)

pu

Pl + pu2 

puH



of the entropy function and its flux should follow that of equation 3.14:

(4-21)

generation. One way to tackle these two problems is to add an upwinding term

that provides stability to the flux, and a production term to account for extra

be. countered by

tropy change of the system and the entropy change borne out by the conservative

flux:

V = |v]Tr - [vrf] + [F] (4.22)

This term can be incorporated into the flux through the upwinding term, thus

flux in

the general form of:

(4.23)Q = RAL

1 1 1

R = (4.24)u - a u u + a

H - ua II 4- ua
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enforcing both entropy stability and production simultaneously by using a

. Meanwhile, R can

introducing a diffusion term that can provide a dissipative influence to the flux.

Consider U (Ismail and Roe, 2009), which is the difference between the total en-

be defined by using averaged quantities as

entropy. For a system of equations, however, both issues can

The implication of this inequality is that equation 4.12, the basis of the conser­

vative flux, does not always hold true, since it does not account for any entropy

fc is the conservative flux and L is defined as the inverse of the right-eigenvector,

L = R-1

r = fc-lQ[u|,

dll dF 
—'—5— 0 at ax

du
dt



whilst the eigenvalues for the inviscid Jacobian, A. is:

|u - a| 0 0

(4-25)A = |u| 00

|ii 4- a|00

adjustment, similar to that in equation 3.76:

(4.26)

is a form of proper scaling that enables conversion to the former from the latter,

and can be resolved as:

0

S = (4.27)

0

Equation 4.26 highlights the main difference between the standard conservative

vative flux using the mapped entropy variables v. The use of entropy variables

ensure stability in the sense that the entropy of the system will always be gener­

ated, or at least remain zero. Thus the entropy stable version of equation 4.23 is
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^7 

0 0

0
(7~1)P

7

0

The use of entropy variables instead of conventional conservative variables neces­

sitate the application of the Merriam-Barth identity (Barth, 1999) with a slight

flux, which uses the standard conservative variables u, and the entropy conser-

The brackets around [v] should be interpreted as [v] = v/? — vjr,, a convention 

that applies similarly for [u] as well. R.^ is the transpose of R, while the matrix S

R—15u = SRTdv



similar to equation 3.75:

(4.28)

Equation 4.28 implies that the Jacobian A is approximated by the eigen-structure

which has been inserted within it the proper scaling. From the right-eigenvectors

and the finite volume discretization, a flux function can be defined to obtain a

bo further improved upon by adding

other physical characteristics would need to be included to the equation model,

such as body forces and energy losses. This has been achieved through direct

discretization of the Navier-Stokes equations, as in the various numerical schemes

currently available. As opposed to most schemes, the work in this thesis is an

alternative method by recasting the Navier-Stokes in the

form of a first-order hyperbolic system.

Conservation Laws for the Navier-Stokes Equations4.2

The Navier-Stokes equation describes the conservation of mass, momentum, and

energy similarly to the Euler equations, and additionally the losses attributed to

each of these parameters due to stresses from fluid viscosity and heat transfer. In

one dimension:

(4.29a)= 0

(4.29b)= 0

+ </) (4.29c)= 0+
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-RASR^^v 
2

d(p«) 
dx

dt 
O(pE) 

dt

r = fc- -Q[u] = fc -

numerical scheme. However, as shown in equation 4.28 the function is merely an

attempt to employ an

approximation for which the accuracy can

^4-
dt

d(pu2 + p + r)
+
d(pull — TU

dx

|a[v] = fc -

supplementary flow information. To got a more complete description of flow,

1
2



The variable t represents the viscous stress and q symbolizes the heat flux. The

definition for each variable is as follows:

e =

(4.30a)Q = P =

The newly introduced /z is the viscosity as defined by Sutherland’s law, involving

the free stream Reynolds number

and T, and the

be written in many ways, depending on the method of derivation or their intended

application. Consider the alternative of an equivalent first order system proposed

by Nishikawa (2011a), in which the higher order terms from the Navier-Stokes

auxiliary equation, with the heat flux omitted:

(4.31a)= 0

(4.31b)= 0

+ <z) (4.31c.)= 0

(4.31 d)= 0

The scaled viscosity pv and the relaxation time Tv are defined in the following

(4.32)

L is a length scale as defined in 3.64, whilst uv is the kinematic viscosity. In the
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T

Pv
Pv
Tv

3
T2

+ 
dr 
dt

d(pu) 
dt 

d(pV) 
dt

Tv

4 du
T=3^

L2

the free stream and ambient temperatures respectively Tqq

Sutherland constant C — 110.5[7<]. The three conservation equations in 4.29 can

values of the free stream Mach number

Pv
Uv —

P

4 
Pv = ^P 

o

equations are separated into an

^oo,

r-> w2
E = e + —,

/z dT
Pr(pf — 1) dx ’

P  P(l ~ 1) 
J 

p p
Moo 1 + C’/T'qo

/?Coo T + C!T^

dp d(pu) 
dt dx

d(pu? + p — r)
+ IhT
d(pull — TIL

dx 
du 
dx

with subscript v denoting the viscous stress:



form similar to equation 4.1, the system is represented by:

(4.33)

The matrix P is a local preconditioning for the viscous stress and heat (lux,

whilst matrix B contains the balance for those two secondary variables. Since

both matrices affect only the auxiliary equations in the system, equation 4.33 can

still be considered as conservative. Individually, the vectors

0P

— Tpu +u = v
PE pull — TU

0 —uT

00 0 01

0 0 1 0 0
(4.34)B =

0 0 0 01

0 0 0

For the purpose of constructing a numerical flux, the Jacobian matrix A is intro­

duced, where

(4.35)

As a matter of convenience, the Jacobian is split into the inviscid A, and its

These Jacobians contains eigenvalues and eigenvectors

(4.3G)

56

2L

A;; -- A^R-pLy

arc defined as:

configured as so:

viscous counterpart AtJ.

p-i

p-i

pu
9pu + p

nr

PA = P— = PA? + PAV 
du

du df „— + — = B at ax



00 0

|u| 00
(4-37)Af = A2,i A3)i

| u 4- a | 00 0

000 0

inviscid Jacobian are defined as

0111

u + a 0uu-a
(4.38)Rz = rl, i r2,i r3,z r4,t “

0II + uaII - ua

000

0 000

0 0 00
(4-39)

00 0 O-v

0 0 0

57

|zz — <z|

0

The components of this set of eigenvalues consist of averaged quantities identical 

to equation 4.25. It follows that the right eigenvectors corresponding to the

Ay ^2,v

The eigenvalue Az- can

^l,i ^4,i

be defined using averaged quantities as:

J*2
0

^4,v

Conversely, eigenvalues of the viscous Jacobian Ay are:



00 0

0 11
Rv =

u -u +1 0

0 0
(4.40)

(4-41)Cly —

(4.42)

Thus, the flux at the interface is described as:

(4.43)|PA|Au

However, the entropy consistent version of this system will use a slightly different

set-up for the Jacobian, based on equation 4.28
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(ly

ah

(Prg-l)/)
— «t>

1

Prn = V Ty

The Prandtl number Prn is defined by the wave speeds av and a/t:

as proposed in Ismail (200G).

3
PA=EA 

fc=l

r = hffi + W -1?-1 
•u X)

The left eigenvectors L? and Lu can be found by taking the inverse of the right 

eigenvectors R,/ and Ry respectively. With all the components defined, the full 

Jacobian in Nishikawa (2011a) is:

rl,v r2,v r3,v r4,v

whilst the associated viscous right eigenvectors are:



Entropy Consistent Fluxes for the First-Order System of Navier-4.3

Stokes Equations

For the purpose of creating a new flux function, the concept of entropy consistency

is combined with the Navier-Stokes first order system. This can be achieved by

modifying equation 4.43 into an entropy consistent expression for the interface

flux in the form of equation 4.28. Modifications include:

• The elimination of the term for heat flux and all its associated variables.

This is so that the effects of the viscous stress can be observed in isolation.

• An extended version for fc is constructed to replace ^[fy? + fyj,

• The original Jacobian of PA in equation 4.42 is converted into its entropy

stable equivalent.

The first step is to construct

can be extended to the Navier-Stokes equations Hughes et al. (1986), it is chosen

to represent the inviscid fluxes. On the other side, the viscous entropy functions

influence of heat transfer from the system, meaning that q = 0. Overall, those

Ui = - (4.44)

must be of the form of the viscous stresses (r) and the temperature gradients 

(q). For this paper, we concentrate on the effects of viscosity by eliminating the

• The conservative variables [u] are mapped to their associated set of entropy 

variables [v] via the introduction of the entropy function U.

entropy functions are defined as:

an entropy function which depends on both the

Uv = t2 + pu2—V 1 7-1
59



with its fluxes defined as

(4.45)Fi = Fv = — 21LT

Unlike the Burgers equation in which entropy is viewed as one parameter con­

sisting the summation of inviscid and viscous parts, the Navier-Stokes entropies

are two different entities that

due to the philosophy espoused by Nishikawa (2011a) and adopted in this paper

specifically for the Navier-Stokes model, which is to treat the inviscid and vis­

cous portions of the equations

systems. Thus, defining the function and the fluxes in this way means that each

type would only need to adhere to the entropy conditions of their own respective

constraint of the entropy pair theorem given in equation 3.8 from Hughes et al.

(1986). Following that, the entropy variables and its discrete fluxes are split into

two separate parts:

(4.46)v2- = vv = V

P™1

(4-47)Vf =

0
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systems, one for the inviscid (physical) and the other for the viscous part. Both 

Ui and Uv independently satisfy the entropy inequality of equation 3.13, and the

y—S 1
7=T 2

pit
P

P
0

QUi
5u ’

dUv 
du ’

puS

fi =

The inviscid variables are defined as:

as two individual, yet interconnected hyperbolic

1 pu2 
^■P

pi + /X^i)2 
piii JI

arc practically untied from each other. This is



The flux f consists of averaged quantities that

entropy is conserved. Similar to equation 4.12, entropy conservation requires

lvdTfi - [vz • = -[^-] (4.48)

Using the identity [v2 • f2] — [Fj] = [pu], this equation becomes

[v2]Tfj = [pu] (4.49)

The remaining averaged quantity for the flux of t is now determined, starting

with the viscous entropy variables and discrete fluxes:

0

2u
, fv = (4.50)v« =

0

2-r

As before, the entropy balance is enforced through the expression:

[vV]Tfu - [v„ • ft,] = -[Fy] (4.51a)

(4.51b)

(4.51c)
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By choosing the averaged quantities as given in Appendix A, the discrete inviscid 

fluxes conserve the inviscid part of entropy Uj as shown in Ismail and Roe (2009).

— [2u]r

are to be determined by ensuring

~r*u2

—u2

-T*

* - + [2ur’] + |2r^<4| = [2„r|

-Mr’ - + !^t^] = 0
J- V -tv



Using the identity [<z£>] — a[6] 4- 6[a], the equation expands to

(4.52)

and not to generate more of it, hence :

(4.53)U2 = u

to have better control over the

diffusion, since all of it would be confined to the dissipation expressions. To this

similar to the Burgers’ equation model:

(4.54)

The dissipation expression for PA presented here has been shown in Roe (unpub­

lished) to be more suitable for entropy consistency. Following equation 4.28:

F = f; - |Ri|A,S,|(Ri)T[vj] + f„ - |rw|A,,S„|(R,,)7'[v„] (4.55)

With the system flux fully defined, the entropy generation of the system can be

determined by analysis on each of its components. For the inviscid part:
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-[u]r

Zzv_
= 77-^ 

V

Conservation of the entropy flux would allow us

The intent here is to control the viscous numerical fluxes to conserve ’entropy’

* ~ = 0
V J-V

nr
PA = P-|- = PA2 + PAV

CzU

T*

= RjAlSJ(Ri)T + RvlA^SuKRi,)7,



(4.56a)

(4.56b)

(4.56c)

Meanwhile, for the viscous part:

(4.57a)

(4.57b)

(4.57c)

Since entropy is conserved for both the inviscid and viscous variables, entropy

production is generated exclusively from their respective dissipation matrices.

The fact that, the matrices are the negative of positive definite terms therefore

from their respective flux Jacobians, which is obtained by setting A = For

the viscous fluxes:
0 0 0 0

0 0 0 -1
(4.58)

0 —u

0 0
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p

p

TIL

P
u
P

= [vd7fi - [pu] - |[vi]T(Rz-|AiS2|R.r[vi])

= ~(RdAA|RT[vd2)

< 0

are diagonalized
df 
du'

Ay

guarantees that the entropy for the whole system would be a decreasing function.

These dissipation matrices (R/|Aj|R./ [v,]) and (Rzy|Ay|Ry [vv])

-- [Vy] fy [vy • fy] — [Fy] - (Ru|AySy|Ry [Vy])

Zu



00 0 0u — a 0 0 0

0 0 0 0u0 0 0
(4.59)5

00 00 0 u + a 0

0 0 0 0 0 0

The components of this set of eigenvalues consist of averaged quantities identical

1 1 01

u — a u u + a 0
(4.G0)Rz =

H - ua H + ua 0

0 00 0

The inviscid eigenvectors are also identical to the

Roe (2009), excluding the extra row and column of zero-vectors due to the presence

0 0 0

0 1 P P
Rzy — (4.61)

0 T + y/pU f ~ y/pU1

00 1 1

In the viscous set of eigenvectors, the averaged variables r and u are ’’entropy­

conserving” quantities derived from equation 4.53. Next, the scaling matrices S7-
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i

1
7p

A-i = A-v
1

Jp
0

corresponding to the viscous eigenvalues are:

are calculated to be:

one determined by Ismail and

to those defined in Ismail and Roe (2009). It follows that the associated right 

eigenvectors R? corresponding to the inviscid eigenvalues are:

The eigenvalues A7- and Ay

of the viscous transport equation. On the other hand, the right eigenvectors R.u



(4-62)

These matrices are obtained by solving their respective expressions, with S;- having

0 0

(4.63)
0

0 0

For Sy however, the first two rows of the viscous dissipation matrix will not affect

the overall dissipation since the first two eigenvalues are zero. Thus the viscous

rest are set to zeros) to satisfy the differential relations of equation 4.62 for the

viscous part of the system. This equation is expanded into:

1-u -T dp du i

0 0 0u dpu du2
(4.64a)du =

0 dpE dus

dr0 du^

—du2.0 0 01

2du0 01
, C»Vy =

0 0p

T - 1 2dr0 P 2dti4

(4.64b)
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1
2
1
2

4

£
0

il 
zVp
u

Zy/p

1
2x/p

1
2\/p

0
(7~1)P

7

0

du = SyR^dVy

s2- =

and Sy

9

2d(Sf)
0

a familiar form:

scaling matrix is computed such that only the last two rows are determined (the

R.71

can then be found based on equation 4.26 by setting:

- T 
r;

0 0

£ 0
0 0

R„‘

u2

R” jdu = SjRfdvj,



The entropy variable partial differential is thus:

-2

(4.65)

2cZu4 2cZu4

Using this dvv result, equation 4.62 can be further elaborated as:

u2cZ«l — udu2 + rZ«3 — rdu±

2(

-2x/p
(4.66)

Consider the Sv matrix having the form of:

0 0 0 0

0 0 0 0
(4.67a)

/<2 /<3 Ki

/<2 /<! /<4

we can start with the third
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~u2d^ ~ ^du2 

2u2d(±) + 2^cZ«2 

0

To obtain the components of Sy, 

and find its dot product with the term R^dvv:

dvv

Sv

row of the matrix

2 t<l(/U2~»24ui 
u'l

0

SvR^^Vv

U]dll2—U2dui

ui
2 /^n|d»2-»2rfui

* '
u\du2~u2du\

“i

o
U\ll2dll2—'U2U\dll\ x 

iiu]udu\
—adit] +dii2 i dii4

2^f> + 2

udu\—dii2 , du.t
2^7> +



0

0

2[(/<i + v^(K4 - K3))

The terms of dui, du2, and du.4 are grouped into three equations:

(4.69a)

(4.69b)

(4.69c)

These equations can be solved simultaneously to get the three unknowns of /<2,

Z<3, and A'4:

(4.70)

(4.71)

I<4 = (4.72)

Repeating the same process for the fourth

ponent for Sv:

/<1 = (4.73)

These set of equations can be checked to satisfy the relations of 4.64. Variables in

the terms of K\ — /<4 are simple arithmetic averaging of the left and right states

at each interface. Finally, with all its components defined, the flux at the interface

can be represented by the expression in equation 4.55.
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-p3/2(fZ 4- 1)
4

row of SyR^0v

+ (7\3 + A4)cZu4]
(4.68)

v to got the final com-

_ + (/<3 + A,i)rfui]
ll ll j

Ts it1u2(lu2-uluidui
A1

= 2[(J<2 + - A'2
2 VP tZ|

= 2[(/<2 + - A.l))^ - 1<2
2-x/p

i = 2(ZC3 + K4)

2[(/<2 + v/p(/<3 - 7<4)P^r/2(/“ 
u\

U\du2—U2du 
U1

r, p3/2(w+l)
/<2 =-------- ----------

(1+8_^)

3 4
u\p - 1)

8

2 
*'2^11

UlLy
2 

Zfl»2.

UUj



Second Order Accuracy4.4

The semi discrete nature of the entropy-consistent, fluxes discussed earlier allows

for a little flexibility in terms of options for extension to higher order accuracy.

The second order accurate EC1 and EC2 fluxes by Ismail and Roe (2009) (the

basis for the ECS fluxes in this thesis) utilizes the Hancock scheme, in which

the updates for space and time

of using such a scheme is that the accuracy is set to second order and cannot be

improved upon further. To get around this restriction, the higher order fluxes here

choice is the Runge-Kutta (RK) method, which divides each time step into smaller

increments or intervals and approximates the unknowns by weighted averaging of

(4.74)u

The term f(tn,un) and its variations represent the flux function at its respective

point tn in time. The Runge-Kutta method is actually more commonly known as a

fourth-order (RK4) scheme, and is extendable to even higher orders by increasing

the interval count, thus increasing the number of slope estimates between each

time step.

For spatial discretization, higher order accuracy is achieved by reconstructing the

left and right states of the interface fluxes. In the case of second-order accuracy,

this is simply done by means of linear interpolation. A bigger concern is to avoid

spurious oscillations due to the reconstruction, which is prevented through the

application of flux limiters. Here, two types of limiters are chosen, one of which

68

are done simultaneously. However, the downside

are updated separately for time and space. For time integration, the method of

slope estimates at each interval. Its second-order version (RK2) is also known as

n+1 = un + At/(£71 + + iAi/(tn,un))
£

the. midpoint method described in a predictor-corrector algorithm:



is the ’minmod’ limiter

<£mm(r) = max[O,min(l,r)]; (?•) = 1 (4-75)

<£sb(r) = 77iarr[O, min(2r, V),min(r, 2)]; (4-76)

Other available limiters could also be considered, but the two limiters chosen above

69

have already been proven to work well with entropy-consistent fluxes (Ismail, 

2006).

and the superbee limited (<£sb(r)), also available from Sweby (1984) defined as:

lini </>sb(r) = 2 
r—>oo

mm(?’)) available in Sweby (1984) defined as:

lim cpmm r—>oo



Extension to Two Dimensions4.5

two-dimensionalNishikawa (2011a) also derived

compressible Navier-Stokes equations. Consider the version in which the heat.

flux is neglected:

= 0+

= 0++

= 0++

+ +

Txy — Tyx — P

The newly introduced v is the, velocity in the. y-dircction, and is different, from

the previously defined v, which is the set. of entropy variables. In the first-order

system, the terms of equation 4.77(e)

equations:

(4.78a)

(4.78b)

(4.78c)
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dv\ 
dy)'

du 
dy

dv\ 
dx )'

Txx
Pv

(4.77d) 

dx) 

(4.77c)

_ T2 ,j
Pi/

d(pE) 
dt

(4.77b) 

d(pV2 +P~ Tyy) 
dy

d(pu) 
dx

d{pu2 + p- txx) 
dx

d(pu) 
dt

d(pv) 
dt

d(puH - TXXU - Txyv) 
dx

d(pUV - TXy) 
dx

d(pvll - Tyx 
dy

2
Tyy ~ %P

du
dx
du_
dy~
3 du
4 dy 4 dx

are replaced by their equivalent evolution

a first order system based on

d(pv)
dy

(4.77a)

d{puv - TyX)
dy

dt

de 
dy~

dTXx Pv (du
dt Ty

dlyy _ Pu_
dt Ty

dTXy _  Pl/
dt Ty

2 / du 
rxx “ 3^ di “

(4.77c)

u ~ Tyy") = Q

1 de
2d^
1 du  Tyy 
2dx

3 du
4 dx



In conservative form, the system is represented by:

(4-79)P

Similar to the one-dimensional system, P is a pre-conditioning matrix that is

included to balance the forces from the source term B. These vectors are defined

as:

0P pu

pu Txx

pv puv ~Txy

f=fi + fv =PE pull +u = 'Txy'V

0Txx — IL

-3v/±0Try

0Tyy

0pv

puv

~Tyy

g = g? + Sv = f)V 11 Txyu — TyyV

u/20

-3u/40

0 —v
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■u/2

~Txy

pu* + p

pv* -I- p

_i5u 0f 0g
TT 4” T-----= B
Ot ox Oy

0f
dx



0 0 01 0 0 0 0

0 0 1 0 0 00 0

0 0 0 0 0 0 01

B = (4.80)0 0 0 0 0 0 01

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

We introduce the Jacobian matrices, consisting of the inviscid At- and its viscous

(4.81)

individually. For the inviscid part of

a 7 by 7

0 1 0 0 0 0 0
2 (3 - 7)« -(7 ~ 7-1 0 0 0

0 0 0 0—uv V XL

— (7 — 0 0071Z

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

Naturally, the last three rows and columns consist of zeroes. On the other hand,
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2L 
lh>

0
(4.82)

Txy 
llv
Tyy 
flv

III 
llv

0 ZL

0

^((7-3)77-a

(7 — 1)77 — u

counterpart Av

A/,i =

f, its Jacobian A~f,i is the familiar looking set of Eulerian quantities in 

matrix:

as they relate to P:

2)

viscous parts of f and g with respect to u

are found by differentiating the inviscid andThe Jacobian matrices A2- and Au

p-i

-a2

5gPA = P— nx + au

77 — (7 — l)u2



0 0 0 0 0 00

0 0 0 0 0 0-1

0 0 00 0-1

(4.83)00 —u —v

0 0 0 0

0 00 0

0 0 00

0 01 0 0 0 0

0 0 0 0—ZLV V u
,2 (3 - 7> 0 0 07-1

Ag,i ~ 0 0 0'yv

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0
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-(7 - l)u

— (7 — l)tzv

0
(4.84)

1

-3
■477

0

Txy 
P

0
P 
-1 
P

0

(7 — 1)77 — v 

5((7-3)Z7-O' 
0

is defined as:

—

2)

0
UTxx+VTxy 

p
IL
p
3p
47J
—u
-277

the Jacobian for the viscous Ay v

Similar to that of f, the Jacobian for the inviscid part of g, Ar/y, is calculated by 

differentiating with respect to u:

-a2

II — (7 — l)u2



is:

0 0 00 0 0 0

0 0 0 0 00 -1

0 0 0 00 -1

(4.85)0 0 —v—u

0 0 00

0 0 0 0

0 0 00

Similar to the one-dimensional first order system, the two-dimensional counterpart

will have a flux function in the form of equation 4.28 and 4.55:

iR,A1Si(Ri)r[vj] + f„ - iR„A„S„(R„)7'(v„]
£

(4.8G)

To discretize the system, consider an arbitrarily shaped two-dimensional grid el-

y(Ax-)J + (A?j)2, (4-87)
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-1
P

-3
V
0

0
UTxy+VTyy

P
— V
~^P
3u
^P
V. 
P

~Txy 
P

0

f* =fc-

AZy =

— ~Tyy 
P 
1 

^P

0

Conversely, the Jacobian for the viscous A5iV

uAy + vAr 
ql = ——

The conservative flux fc and the accompanying viscous flux in 4.8G can be



Ax

r

ij

x

Figure 4.1: Grid representation of the finite volume method from Ismail (2006).

formulated as the sum of the respective components of f and g:

(4.88a)

0

0

0

(4.88b)

Mean variables were used for fp based on the formulation in equation 4.53.
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Upwind flux via entropy conservation approach4.5.1

To formulate an upwind flux for the Navier-Stokes equations, the eigenstructure

of the Jacobian is again separated into inviscid and viscous parts. The inviscid

Jacobian contains inviscid eigenvalues and eigenvectors, with the eigenvalues A,

defined as:

Az- — Ai)2- A2)Z- A3i A4ii ■^5,z ^6,i A7)i

tin o, 0 00 0 0 0

0 ^71 0 0 0 0 0

0 Un0 0 0 0 0

(4.89a)un + a 00 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

The variable un is defined as un = uxnx + Uyiiy. The right eigenvectors R,z-

corresponding to the inviscid Jacobian are defined as

(4.90a)Rz = r4,i r5,2 r6,i r7,i1*1,2 1*2,2 r3ii

0 0 0 01 11

u u + aU — a 0 0 0 0

0 v + a 0 0 0v — a

(4.90b)0 0 0

0 0 00 1

0 0 00 10 0

0 00 0 100
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77
0

H — qja

0

v

u2+v2 
2



^7,v

0 0 0 00 0 0

0 0 0 00 0 0

0 0 00 0 0

(4.91a)0 00 0 0 0

0 00 0 0

0 00 0 0

00 0 0 0 0

whilst the viscous right eigenvectors associated with Aj are:,v

0 0 00 0 01

0 000 1 1u

0 0 V

(4.92)001 v 4- v -u -

00 0

0 0 0

0 01
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Conversely, eigenvalues of the viscous Jacobian Al; are:

^2,u



0 0 01 0 0 0

0 0 u 0 0 1 1

0 0 v 1 1 0 0

(4.93)0 01 v - u + u -

0 01 0

0 0 0

0 0 0

For the purpose of obtaining an entropy consistent, flux similar to the one devel­

oped for one-dimensional Navier-Stokes, the Jacobian PA is replaced with the

shown previously in equations 4.26 and 4.62. The scaling matrix

Sj with averaged components is thus calculated to be:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 P 0 0 0 0

Sz = 0 £ 0 (4.94)0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

For Sv however, the first three rows of the viscous dissipation matrix will not affect

the overall dissipation since the first three eigenvalues arc zero. Thus the viscous

rest are set to zeros) to satisfy the differential relations of equation 4.62 for the
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viscous part of the system. This equation is expanded into:

1 0-u —v

0 0 0 0 1

0 01 0 0 0

(4.95a)0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0u v

(4.95b)0 1 0 0

0 01 u -

0 0 1

0 0 01 0

dp du\

dpu du2 2 du

dpu du3 2dv

du = dpE du^ 0

du$ 2cZ«5

du 6 2diiQ

du-j 2duq
(4.96)

Similar to the one-dimensional formulation of the viscous eigen-structure starting
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in equation 4.64, averaged values are used based on the definition from equation

4.53. The entropy variable partial differential is thus:

(4.97a)

2du5

2cIuq

2duy

(4.97b)

2 dug

2cIuq

2dui
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u\du2~U2du 
u'l 

u\du3—uadu
U1

0

<9vv

—Und(4j)----- l*du% — iZod(-U)-----\rdu?>
Z Uy Uy Z J ' U y Uy °

2w2</(i) + 2^du2
2u3d(^) + 2^du3

0

nu“yU2du2—U2Uidui ^ulusdus-u^uidui
~2



(4.98a)

(4.98b)
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(u2 4- v2)<Zui — udu2 — vdu^ + du$ — Txxdu§ — ^fXyduQ 

\du§ 4- duy 

du i

— ̂ dui + \du2 4- ^du§

— ̂ dui 4" ndu2 — ^du?, 

%dui 4- ydus 4- \j~^du§ 

$dui 4- %duz - y/JdiiQ

= Sv

- —1 R/>du =

Using this dvv result, equation 4.62 can be further elaborated as:

0

2du-j
2

-45) - 4>) + ) + 2W(“)
I*- 1 V* 1 A A

2d^ + - ^f,dul

2d^) ~ ^du^ + ~^du7

2rf(§) + \f^duQ
- 4du(i



Consider the Sy matrix having the form of:

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Sv = (4.99a)/<2 ^3 ^4 ^5 -^6 ^7

/<! /<3 1<2 I<7 ^6

K2 /<3 /<4 /<5 /<6 1<7

I<3 K2 /<5 /<4 /<7 I<G

SvB^dvv = 2K2du7 + 2Z<3 [

(4.100a)
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row of the matrix

The terms of duy through du.7 from the fourth row are grouped into their own

u^zt3du3 — u^uidui

3

u^U2du2 — u^Uidui

U1
_uidu3 - u3dui

■ + v---------- 2---------J

2 , 1 , .
4---- 7=005----- 7=du-7\

\/P VP
2 , 1 , .

----- 7=005 4---- 7= du 7
VP

yiduoi+Z<6[2MldM3
“1

_u\dii2 ~+ u----- = 2
“1

+/<4[2MlrfM2
U1

U1

+ + ^?[2

To obtain the components of Sv, we can start with the fourth 

and find its dot product with the term

2
/P 
2
/P

U]du3 — v3du\



equations:

(4.101a)

(4.101b)

(4.101c)

(4.101d)

(4.101e)

(4.101f)dziQ : 0 =

(4.101g)

From this set of equations, the variables can be solved thusly:

(4.102a)

(4.102b)

(4.102c)= 0

(4.102d)0 =

(4.102e)Kq = K7 = 0,

For the fifth row of the matrix, the computation would yield the same result for

all coefficients, with K2 and K4 being the only non-zero terms; however, K4 is in

the fifth column instead of the fourth. Moving on to the sixth row, their terms
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2
3 - -^(7<3u + /<4 + /<5) - 4(A'3v + Kg + K7) 

'll"

1 u IS udu\ : — - = K3—

$ = (/q - /<5)

/<, = k3 = 0

P- = (/<4 + /<5),

/<4 = f,
0 = + /<7),

p
- /<r)

1<2 =2 8

2+u.

Uj 1*1

= -^(/q + i<i) - S|(k6 + k7)
Uy Uy

du2-.\ = -K3^ + ^{K3u + /<4 + 7<5) = t(7<4 + /<5)
4 Uj p

du3:0 = -K3^ 4- ^(K3v + K6 + K7} = -_{Kg + K7} 
Uy Uy P

du4 : 0 = 0

du5 : = (K4 - J<5)

^-(Ko - K7)

du7 : 0 = 2K2 + - Ki)

U2

u
US
u



Sv~R^dvv = 2K2du7 4- 27<s[

+/<6 [2 (4.103a)

The terms of du\ through duq from the sixth

equations:

(4.104a)

(4.104 b)

(4.104 c)

(4.104d)

(4.104c)

(4.104f)duQ :

(4.104g)
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UyU^du^ — u^u^dui

4

du4 : 0 = 0
2

: 0 = - Ks)
VP

4=4(/f6-K7)

can stated as:

row are grouped into their own

dui : —- = A3
TE

cZ?i7 : 0 = 2Z<2 4---- t=(/<5 — 7Cj)
vP

_u\dzi2 — uodui4- u-----------y—-----

. . u\du2 — U2dui 
4l“ —

- — «2^1
512------------- 2“

U1

+ yj~^du6] + /<7[2

u^uodu2 — u3,u\du\

_uidu3 - u^dui
■ + v------------- 2----------- J

U1
2 , 1 , .

4---- y=du^----- —du?]
VP y/p
2 , 1 , ,----- 7=du^ 4---- 7=du7\ 

V(>
U]du3 — u^din

9 9
4- 1^3 - 4(/<3a + Ki + I<5) - 4(A'3v + + A't)

= + /<5) - + /<r)
U.J Uj

du2 : 0 = -I<2^ 4- ^I<3U 4- I<4 + = 4(7<4 4- 7<5)
Zl J ziy p

du3 : 1 = -I<3^ + ^(/<3t> + K6 + K7) = 4(/<e + K7) 
4 Uy Uy P

u^du^ — u^du\
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u
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u



be solved thusly:

(4.105a)

(/<6 - /<7) (4.105b)

«1 = 7<2 = 0 (4.105c)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

(4.106)0 0 0
70 0

0 0 0 0

0 0 0 0 0

Finally, with all its components defined, the flux at the interface can be repre­

sented by the expression as shown in equation 4.86.

Upwind flux via abbreviated system approach4.5.2

A couple of alternative approaches of constructing the flux were shown in Nishikawa

(2011b). Both methods segregate the inviscid and viscous portions of the flux into

separate systems just like in the previous subsection, with the inviscid part utiliz­

ing the well-established Roe method to obtain the solution updates. The major

difference, however, lies in the formulation of the viscous flux. The first alterna­

tive uses the a new gradient formula applied to the traditional concept of central
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1
2

0
/p 0

0

%

o

p_ 
24’

From these equations, the variables can

Calculations for the seventh row would yield the same values for Kq and /<7, but 

with their places interchanged. Therefore:

Sv 0 J
0 0

= K3 = I<4 = /<5 = 0 

j = i(/<6 + /<r),

I<6 ~ 24’



differencing to compute the viscous stresses and heat fluxes that form the numer­

ical viscous flux. This method is bound to be stable since central differencing is

already a well-understood concept, and only the prescribed gradient formula is the

new addition. The drawback is that the method requires a relatively larger stencil,

little more complicated.

The second proposition, from which

obtainable, is the entropy conservative flux approach as shown in the above. The

viscous flux has a similar form to the inviscid one and requires only data from

the immediate interface, which makes it highly attractive. Additionally, the flux

formulation is decidedly less cumbersome than the entropy conservative approach,

duo to the fact that the secondary variable of the viscous stresses is calculated

directly from the real-time values of the main variables, and not, through their

own time-updates. To get an idea of how the algorithm works, a flowchart has

been included in Appendix B.
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involving data from multiple neighboring cells which make variable calculations a

a comparable result to the first, method is



CHAPTER 5

RESULTS AND DISCUSSION

Introduction5.1

This chapter documents the combined results obtained from the methods devel­

oped in Chapter 3 and Chapter 4. These results include:

• One dimensional flux functions solving for Burgers’ equation. The system

• One dimensional flux functions solving for the Navier-Stokes equations. The

system flux is again bench-marked against the ES, EC1, and EC2 fluxes.

Stationary shock and Sod’s shock tube problem are investigated.

• Two dimensional flux functions for the Navier-Stokes equations. Case stud­

cylinder, and flow over and airfoil. Comparisons are made with other fluxes

and selected experimental results.

Burgers’ Equation5.2

Results of one dimensional flux functions solving for Burgers’ equation as shown in

Chapter 3 is presented herein. Results for stationary shock simulation is presented

first, followed by the those for the square wave initial condition.
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flux is compared with the established entropy-consistent (EC) flux for the 

simple test cases of steady shock and the. square wave initial condition.

ies are flow over a flat plate, flow over a forward facing step, flow over a



Stationary shock5.2.1

if x < 01,
u(.T,0) = (5.1)

if x 0-1,

The fluxes are then compared to the exact solution for Burgers’ equation at the

(5.2)

at lower viscosity ranges, but those

result shown here classified as low viscosity. In Figure 5.1(a), ECS1 exhibits big

oscillations, whilst ECS2 produces smaller oscillations for u both before the shock

across the shock occurs for ECS2, while small perturbations is seen from ECS1.

A probable reason for this phenomenon lies in how both the entropy production

term and the viscosity term affects the workings of the respective fluxes. For

ECS1, the minimal of additional production term that produces numerical en-

88

of 0.001, is found in Figure 5.1. The result of the entropy-consistent (EC) flux 

from Ismail and Roe (2009) is also included for comparison. Tests were also done

The entropy consistent flux with added viscosity was tested in a steady state 

stationary shock situation with the following initial conditions:

runs yield almost exactly similar results to

For these tests, 40 computational cells were used with non-reflecting boundary

corresponding particular value of viscosity being used, as found in Xu (2000) for 

a single value of viscosity, as well as Masatsuka (2009) for variable viscosities:

u = (1 — tanh —)
v 2p'

and afterwards. This result is reflected Figure 5.1(b), where big changes in d

conditions on the left and right sides of the domain. The CFL number was

that of v = 0.001. Therefore, other results are omitted for brevity, with the

set to 0.1. The result for ECS1 and ECS2 fluxes, with a viscosity coefficient



tropy, coupled with

severely lacking in entropy production. The plot of velocity difference confirms

this observation, since its magnitude of change is small compared to ECS2 and

the exact solution. In contrast, the production term in the ECS2 flux is provid­

viscosity being as low as it is. However, the amount of entropy produced is still

not enough to eliminate all oscillations, as seen in the magnitude of cl for ECS2

compared to the exact solution. As a consequence, the ECS1 flux manifests its

slightly less oscillatory solution for velocity with the physical viscosity source term

proving to be inconsequential for this particular case.

The test is then repeated, but

each flux function. The viscosity coefficient is set at

for the purpose of conciseness as medium viscosity, with the results shown in

Figure 5.2. The oscillations in both the ECS1 and ECS2 fluxes are now reduced,

compared to the previous case. For this case,

viscosity coefficient is large enough, enabling the viscosity term in the ECS1 flux to

produce adequate entropy without much help from the production term. However,

even when the production term is indeed present as is with the ECS2 flux, the

oscillations does not seem to have been eliminated completely. This may be due to

the fact that the secondary variable d, that stores the velocity difference which is

to calculate production, is not a ’real-time1 value. Instead, this variable is updated

based on the time-step before the current one, which means the production added

to the flux is limited to the requirement of the previous iteration. Hence, the

production may seem out of sync with the main variable update, a limitation for
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v — 0.01, which is classified

our conjecture is that the physical

a low coefficient value for viscosity, leads to a result that is

now the physical viscosity term is increased in

ing somewhat more entropy to the solution compared to ECS1, even with the

entropy inadequacy as oscillations, which is expected for an entropy conservative 

flux with minimal effect from its dissipation matrix, while the ECS2 provides a
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= 0.1. with results shown in

Figure 5.3. Observe that the oscillation have now disappeared, and both ECS1

and ECS2 fluxes match the exact solution fairly closely. Looking at the velocity

difference in Figure 5.3(b), which represents the entropy generation of the flux,

the entropy produced by the ECS fluxes far exceeds the amount as available from

the exact solution. Thus it can be said that at this setting, the viscosity term

has now dominated the flux function, to point where the solution ceases to be a

discontinuity and turns into a smooth function.

The square wave initial condition5.2.2

The entropy consistent flux with added viscosity was next tested with a square

-1,
(5.3)

1,

physical rarefaction shock, unlike the Roe flux and most other schemes without

entropy control.

the left and right sides of the domain. The

CFL number was set to 0.1. This low value was chosen due to the constraints

that is dictated by both the stability limit of advection-diffusion problem and

the nature of explicit semi discrete flux functions which works best using a low

CFL number. The flux function based on Burgers’ equation works well oven when

simulated at a CFL value of up to 0.8, but this may not be the case for the Navier-

Stokes based scheme. Therefore, to maintain uniformity, the CFL value is kept
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a two-equation system flux.

wave initial condition defined as:

reflecting boundary conditions on

We then increase the viscosity level further to v

u(x, 0) = <

For these tests, 40 computational cells were used with non-

The point of this test case is to see whether the fluxes can avoid capturing the non-

if 3

if |.t| < |
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at 0.1 unless stated otherwise. The exact solution for this initial condition can be

Navier-Stokes Equations5.3

Next is the results for the fluxes modelling the Navier-Stokes equations, as de­

scribed in Chapter 4. The one-dimensional flux is presented first, followed by

the two-dimensional solutions in the subsequent section. For the one-dimensional

case, the best of the first-order system flux is compared with its predecessors,

namely the Roe flux and the entropy consistent fluxes, in the cases of stationary

shock and Sod’s viscous shock tube problem.
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used in the simulation. As for the second shock occurrence in the domain, the 

ECS1 and ECS2 fluxes exhibit a similar pattern to the previous case, with the

without the entropy production term. These results could be improved by adding 

a physical viscosity term to the fluxes.

the plots, the ECS1 and ECS2 fluxes behave similarly to the EC flux around the 

rarefaction area, which matches the characteristic that we are looking for. The 

rarefaction fan for all three fluxes are less steep compared to the solution given 

by the exact Riemann solver in the solid line mostly due to the low CFL number

ECS1 flux being oscillatory around the shock and the ECS2 flux being the more 

diffusive of the two. The ECS2 plot is actually closely similar to the EC flux

found in Laney (1998).

Figures 5.4 (a) and (b) show the ECS1 and ECS2 results for the velocity u, at low 

viscosity (z/ — le — 10) and at high viscosity (j/ = 0.1). Results for two different 

viscosity conditions are shown since the term in ECS2 is dependent on v. The 

variable u is again compared with the EC flux and the exact solution. As seen in
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Ma = 7.0 Ma = 20.0

Stationai'y shock5.3.1

In the case of the stationary shock, the flow variables are initially set according to

the Rankine-Hugoniot jump condition, with the left and right states of the shock

labelled as (0) and (1) respectively:

W) 1

(5.4 a)1u0 = ui =

+

«) = ( (5.4b)+

(5.4c)

This initial condition is such that the shock is expected to occur somewhere at po­

sition x — 0; thus the domain of interest is positioned from x = —0.5, and extends

to x = 0.5. As in the previous case, a 40 cell setup was used, with non-reflecting

boundary conditions on the left and right. The test matrix is summarized in Table

5.1.

Results for this ECS scheme is shown, firstly for a Mach number of 1.5 in Figure

5.5. Here the ECS scheme is compared to the original Entropy Stable scheme (ES),
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Entropy Consistent Scheme 1 (EC1), and Entropy Consistent Scheme 2 (EC2), 

all from Ismail and Roe (2009). Four viscosity coefficient values of 1.0 x 10-7,

Table 5.1: Tests matrix for the steady shock problem 
Ma =1.5

1
. 7(7-1 )4/q

Variables 
zz — 1.0 x 10~7 
zz = 1.0 x 10~4 
z/ = 1.0 x 10~3 
zz = 1.0 x 10-2

1 
2/(A/0) 

7~ Ipi
+ 2

1

<z(Mp) 
. 7(7-1)47^

2

(7+l)M?
ff(M0) = - 2^1
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1.0 x 10 , were chosen to represent low to high

viscosity levels.

undershoot just before the shock.

This is expected since at very low viscosities, the effect of the source terms in the

system is almost non-existent and thus the scheme reduces to the entropy stable

Navier-Stokes scheme. With that result in mind, the viscosity value is increased

to v — 0.0001 as shown in Figure 5.5(b). It is seen that the result for ECS is still

closely similar to that of the ES flux for all Mach numbers shown, even with this

higher viscosity.

= 0.001, a slight

change in the pattern of the ECS flux can be observed, as shown in Figure 5.5(c).

Here it can be seen that an undershoot is still present for the result, of ECS, but

its magnitude is now slightly less than the ES flux. This shows the source term of

the high value of z/ = 0.01, results of which is shown in Figure 5.5(d). It appears

that the source term in the ECS scheme has a considerably larger diffusive effect

to the density profile at this viscosity as compared to the other three schemes

considered.

The same pattern can also be seen at Mach 7.0 in Figure 5.6, even though the ECS

scheme tends to produce a slightly non-monotone solution before the shock at this

Mach number. In the high Mach number case of Figure 5.7, the undershoot is

again reduced for ECS compared to ES, but

five cells. Additionally, the scheme becomes somewhat unstable in high

viscosity and high Mach number situations, as seen in Figures 5.6(d) and 5.7(d).

From the plots shown previously, it

99

ES scheme, particularly in the presence of an

r in the system is starting to take effect. The viscosity is then increased again to

now the undershoot is smeared over

four or

can be said that even with the hyperbolic

However if the viscosity coefficient is increased further to v

, and 1.0 x 10 2“4, 1.0 x 10~3
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produce monotone solutions, extra dissipation is needed specifically to the acoustic

waves, and this cannot be achieved using hyperbolic source terms exclusively, since

these terms affect all waves indiscriminately.

Figure 5.8 shows the second-order accurate results for the tested fluxes at selected

settings of either Ma — 1.5 or Ma = 20.0, and either v = le — 7 or v> = le — 2.

These results corroborate the observations made in the first-order cases, having

similar trends to that of their counterparts. In support of the density profiles,

found to vary according to the viscosity

coefficient and the free stream Mach number at the inlet.

Sod’s shock tube problem5.3.2

Next, the fluxes are compared in the

test of competency for shock capturing Riemann solvers. This scenario simulates

a shock tube having two compartments separated by a diaphragm, with the initial

condition for left and right states described in Table 5.2. At the start of the test,

the diaphragm is removed to allow for the interaction between the gases from the

left and right half of the tube. After a time interval of 0.0061 seconds, the results

for the test is recorded in terms of density, velocity, and pressure, shown in Figure

5.10 (a), (b), and (c) respectively.

From the moment the diaphragm is burst, three types of discontinuities will de­

velop. The first type is the rarefaction wave, which forms and propagates from

the right half of the tube toward the left. This wave can be characterized by the

downward slope between positions x = 2 to x = 6 in all three plots of the figure.
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case of Sod’s problem (Sod, 1078), a common

Figure 5.9 show the viscous stress plots for the same cases as the previous fig­

source terms used in the first-order system, the density profile still requires an

ure. The levels of t in these figures are

entropy fix in the same vein as those used in the EC1 and EC2 schemes. To
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The second discontinuity is the shockwave, which moves in the opposite direction

= 8 to x = 10 in the tube. Lastly,

the interaction between these two waves produces a third type called the contact

discontinuity, apparent only in the plot for density.

close agreement with all of the schemes it is compared to, namely the ES, EC1,

and EC2 fluxes. Just like its predecessors, the ECS flux is able to differentiate

graduated characteristic as compared to the steep drop of the shock. Furthermore,

the flux thus doos not exhibit any significant overshoots or oscillations in the region

of the shock. This test verifies that the Xavier-Stokes version of the first-order

system flux is at least entropy stable at second-order accuracy.

The Two Dimensional Case5.4

Finally, the Navier-Stokes fluxes are extended to two dimensions. Test, cases

for the two dimensional case include flow over a flat plate, flow over a forward

an examination of each different characteristic of the ECS flux in terms of its

solutions as compared to the other fluxes considered.

Flow over a flat plate5.4.1

The two-dimensional, entropy consistent first-order Navier-Stokes flux (ECS) is

problem is shown in Figure 5.11.

Ill

between rarefaction and shockwave, with the slope of the rarefaction having a more

standard boundary conditions were used. The grid showing the meshing for this

shock position lies in between positions x

The results in all three plots of the figure show that the new ECS flux is in

facing stop, flow over a cylinder, and flow over an airfoil. Each case represents

from the rarefaction. At the point in time in which the data is captured, the

firstly tested in the problem of flow over a semi-infinite flat plate, in which the
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Figure 5.11: Sample grid of the flat plate.

Figure 5.12(a) shows the Mach number contour of the flow simulation for a free

. Velocity data are then non-

dimensionalized and compared to the Blasius exact solution in 5.12(b), and the

solutions by the fluxes of EC1 and EC2 from Ismail and Roe (2009). For the ECS

flux, there appears to be a slight bump up in terms of velocity growth at the region

of 0 2, resulting in the non-linearity of the ECS plot profile in that area.ii

Meanwhile, the EC1 and EC2 solutions simulate that the flow would reach free

stream velocity value closer to the wall than the ECS flux and the Blasius solution;

exact solution, which is expected for artificially diffused fluxes. On the other

hand, the overall trend show that the ECS flux is able to capture the boundary

layer profile reasonably well, at least in the laminar region. It is significant to

note that this boundary layer result has been achieved without the use of any

special treatment to the near-wall region. Otherwise, the result, can be improved

112

by implementing one of many methods of boundary layer approximation.

this essentially means that these fluxes predict a thinner boundary layer than the

0.8

cf 0 6

I 04
CL

stream Mach number of Ma = 0.3 and Reynolds number Re — 3000, which 

corresponds to a viscosity coefficient of 1.4 x 10-4
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Figure 5.13: Sample grid of the forward facing step.

Flow over a forward facing step5.4.2

The ECS flux is then tested using the problem of a Mach 3 flow over a forward

facing stop in a channel of infinite width. This problem was introduced by Colella

proving ground for shock

capturing schemes ever since. A sample grid of this test case is shown in Figure

5.13. The major challenge of simulating flow for this problem is the existence of

several intersecting shocks.

From Figure 5.14. it is seen that the ECS flux produced a qualitative result, that

of the initial shock is closer to being parallel to the step as compared to the

other entropy consistent fluxes, and the oblique shocks downstream are thinner

and more defined. This shows that the ECS flux is less diffusive that the other

fluxes compared here, and less susceptible to the problem of smearing in the shock

profile. Whilst the EC1 and EC2 fluxes have been shown to produce acceptable

compared to the PPMLR scheme in Colella

and Woodward (1984), the ECS flux represents further improvement with regards

to this test case from its predecessors.
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results in Rosian and Ismail (2012) as

and Woodward (1984), and has been widely used as a

is closer to the Roe flux than to the EC1 and the EC2 fluxes. The location
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Flow over a cylinder5.4.3

The evaluation of two-dimensional Navier-Stokes solution is continued with sim-

dimension. This test is notoriously difficult for flux functions that are based on

the inviscid flow formulation, or any numerical methods for that matter, and the

lytical calculations is available in a systematically organized book by Zdravkovich

(1997). Some of the flow characteristic that usually occur under select conditions

in this problem require special treatment that is beyond the scope of this the­

sis. Therefore, the aim of the ECS flux for this particular test is not to compete

with sophisticated high-order schemes that utilize turbulence models in terms of

flow accuracy. Rather, this test case could hopefully illustrate the difference be­

tween the ECS flux and it predecessor the entropy consistent flux of Ismail and

the inviscid Euler equations. The initial condition for this

problem is defined in Table 5.3.

A few test grids were created in order to perform the grid independence test, as

shown in Figure 5.15. From amongst these, three mesh configurations have been

selected to demonstrate the independence of results from the possible variance
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Density
Velocity (x)
Velocity (y)
Pressure
Temperature
Viscosity

1.4 
0.006 ~ 
0.0
1.0
400 
0.00021

1.4 
0.2 
0.0 
1.0 
400
2.1 x 10

Roe (2009), based on

ulations of flow over a circular cylinder of assumed infinite length in the third

problem is still extensively studied today after over a century of investigation (Ra- 

jani et al., 2009). A compendium of data from experiments, simulations, and ana-

________ Table 5.3: Initial conditions for flow over 
Parameter Case: Low Ma Case: Medium Ma

a cylinder_______
Case: High Ma

1.4
1.5
0.0
1.0
400
2.1 x IO-4



due to the grid size. The first

Table 5.4.3 summarizes the L-l, L-2, and L-infinity norms for the variable residuals

of the considered fluxes from first and second-order simulations. The numbers

. The

norms of the first two cases are relatively similar to one another be it for the first

reduction in grid intervals, the marginal difference between the norms of different

mesh sizes become less and less significant the finer the mosh becomes. However,

the stretch factor associated with each mesh is also an important parameter to

be considered. In the third case, even though the node count is the same as the

second case, a stretch factor that is too high would bring about an adverse effect

towards the ability of the flux to converge towards a stable solution. This may be

due to the high skewness of the stretched grid, which would distort the result of

the conserved variables.

In Figure 5.16, the EC1 flux in (a) is compared with the system flux in (b) for

the case of flow at Mach number 0.3. At first glance, the results for both fluxes

look very similar to each other, but under closer scrutiny, one particular difference

stands out. In subfigures (c) and (d), a zoomed-in view of the near wall region

118

third mesh has the same node count as in (b), but the stretch has been increased 

to 5.0. This means that the mesh closer to the center has a finer resolution, getting 

progressively coarser as it gets to the outer region.

or the second order results. Even though the norms generally decrease with the

reported are obtained after 30000 iterations, and are at a scale of 10 7

one in 5.15(a) is the grid deemed as the coarse 

mesh with a node count of 160 around the perimeter of the cylinder, and 80 nodes 

of equal distance between each other from the cylinder wall to the domain outer 

boundary. The second one in 5.15(b) also has 160 nodes around the cylinder 

edge and 160 nodes in the radial direction; the nodes heading outwards from the 

cylinder are spaced such that they have a growth or stretch factor of 3.7. The
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Flux

Mass

X-Momentum

Y-Momentum

Energy

a

is provided, to show how the boundary layer of the flow is characterized by each

flux. In the near wall region, the EC1 flux displays the boundary effect only at

the cell immediately adjacent to the wall, with the velocity almost immediately

increasing close to the free stream condition the next cells up. Conversely, the

ECS flux displays a more gradual increase in velocity as we move outwards from

the cylinder wall, consistent with the boundary layer result demonstrated in the

flat plate simulation.

of flow at Reynolds number 40 in (a), and at Reynolds number 2000 in (b).

These values correspond to a x-velocity values of 0.03 and 0.3 respectively for set

constants of density and viscosity coefficient. Conversely for sub-figures (c) and

(d), results for the same cases are shown as produced by the commercial software

Fluent. Results from Fluent are obtained using laminar settings for the same grid

The plots show
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1st
1.0268
1.0379
1.0626
1.0000
1.1000
1.0667
1.0567
1.1266
1.0982
1.0000
1.0000
1.1000

1st
1.0268
1.0379
1.0626
1.0000
1.1000
1.0499
1.0499
1.1000
1.0805
1.0000
1.0000
1.1000

1st
1.0268
1.0379
1.0626
1.0000
1.1000
1.0499
1.0379
1.1000
1.0769
1.0000
1.0000
1.0921

Table 5.4: Comparison of Ll, L2 and infinity norms between different 
grid sizes for the ECS flux a 

Grid 
Stretch 
Order 

Ll 
L2 

Ljnf 
Ll 
L2 

Ljnf 
Ll 
L2 

Ljnf 
Ll 
L2 

Ljnf

setup as the ECS case, without any turbulence model added on.

In Figure 5.17, x-axis velocity contours for the system flux is shown for the case

a slight discrepancy between ECS and Fluent at Re = 40, but

Numbers reported are at a scale of 1 x 10-7

161 x 160 
5.0_

2nd 
6.1745 
7.6002 
16.941 
6.4967 
8.2327 
30.443 
6.6731 
8.1970 
19.688 
15.122 
18.382 
38.086

81 x 160
1.0____

2nd
4.3084 
4.8533 
10.254 
3.4890 
4.5630 
32.424 
2.7186 
3.9692 
11.234 
10.967 
12.333 
24.366

161 x 160
3.7

2nd 
3.2503 
4.0045 
10.846 
3.4636 
4.3622 
20.243 
3.4813 
4.2243 
9.9909 
8.0496 
9.7409 
20.554
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separation did not occur for the ECS flux in the case of Re = 40, and also why

the separation is less pronounced for ECS in Re = 2000 compared to Fluent. The
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in simulating complex flow behavior such as

the laminar assumption, and even with

absence of a heat component in the flux means that the dissipation in the flow

is less than it should be, making the simulation results appear less developed. 

Additionally, the ECS flux has not yet been augmented by turbulence models 

that would obviously help in getting a better result especially in the wake region. 

In Figure 5.18(a), the pressure coefficient (Cp) distribution along the top half of 

the cylinder wall is shown for the ECS flux at Re = 40 in comparison with available 

experimental data from Grove at Re = 40, Thom at Re = 40, and Dennis-Chang 

at Re = 100, all compiled in Droge (2007) for the laminar to transition region 

of free flow. On the other side in 5.18(b), the Cp distribution from the ECS flux 

at Re = 2000 is compared with data from Dennis-Chang at Re = 100 and from 

Norberg at Re = 3900, both also available in Droge (2007), and Werle-Gallon at 

Re = 2000, extracted from Werle and Gallon (1972). It can be seen that overall,

one, the ECS flux is developed based on

the added viscosity term, the scheme cannot yet be considered as a full Navier- 

Stokes flux as it lacks additional terms accounting for thermal diffusion and heat 

transfer. This lack of thermal diffusion is probably the main reason why flow

a good agreement between the two at Re = 2000. Having said that, the Fluent 

results do not show a significant difference between the two Reynolds numbers 

cases. In theory, flow separation does indeed occur even at Re = 40, but the 

wake behind the cylinder is not expected to be as developed as the Fluent result 

shown here. However, at Re = 2000, the flow is supposed to be on the verge 

of turbulence, with a qualitative profile closer to the one shown by Fluent as 

opposed to the ECS flux. This result demonstrates the limitation of the ECS flux 

the case of flow over a cylinder. For
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Figure 5.18: Pressure data for the ECS flux showing pressure coefficient (Cp) dis­
tribution at (a) Re = 40 , and (b) Re = 2000, compared to available experimental 
data.
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significant margin at Re = 2000. These characteristics are suspected to be due to

the same reasons as discussed above.

In Figure 5.19, Mach number contours

respectively at Mach number 3.0. Results show that even with the diffusive nature

of the viscosity term, the ECS flux still maintain

consistent with the established EC1 flux. Therefore wo can say that the ECS flux

maintains the shock capturing capability of its predecessors the Roe, EC1, and

EC2 fluxes, whilst having an added advantage of being able to reasonably predict

the near wall regions of the flow.

Flow over an airfoil5.4.4

Last but not least, the two-dimensional Navier-Stokes system flux is tested in the

nodes around the profile of the airfoil and 160 nodes between the airfoil surface

to the outer boundary. The nodes around the airfoil

Figure 5.21 shows the Mach number profile of flow
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problem of flow over a NACA0012 airfoil. The profile of this airfoil, along with the 

mesh of the flow domain in its vicinity is shown in figure 5.20. This mesh has 161

the ECS flux prediction of the pressure coefficient is within the acceptable range of 

values as compared to experimental results. However, the minima of the Cp curve 

produced by the ECS flux is consistently situated further back of the cylinder as 

compared to the experimental results. Additionally, the ECS flux overestimates

over the NACA0012 airfoil at

the pressure levels at the back of the cylinder, minimally at Re = 200, and by a

are shown for the EC1 and ECS fluxes

are evenly spaced, whilst 

the spacing of nodes starting at the object surface grows outwards gradually at 

a factor of 5. Other configurations were also tested, but this mesh was found to 

give the best balance between grid independency and iteration speed. Free stream 

Reynolds number is Re = 9.7 x 104 for all cases unless stated otherwise.

a bow shock profile that is
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Figure 5.20: Mesh of NACA0012 airfoil using quadrilateral cells.

and (c) respectively. Figure 5.22 also shows the Mach number profile of flow over

the NACA0012 airfoil at

and the system flux in (a), (b), and (c) respectively. However, in these figures

the view has been zoomed in close to the walls of the airfoil to show the flow

behavior of each flux near solid bodies. This is followed by Figure 5.23, which

shows the Mach number profile of flow over the NACA0012 airfoil at subsonic

a supersonic Mach value of 1.5 for the Roe flux, EC1 flux and the system flux in
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the NACA0012 airfoil at a transonic Mach number region of 0.9 for the Roe flux, 

EC1 flux and the system flux in (a), (b). and (c) respectively. Last but not least, 

Figure 5.25 shows the Mach number profile of flow over the NACA0012 airfoil at

Mach number of 0.63 for the Roe flux, EC1 flux and the system flux in (a), (b), 

and (c) respectively. Next, Figure 5.24 shows the Mach number profile of flow over

a Mach number of 0.2 for the Roe flux, EC1 flux and the system flux in (a), (b),

a low Mach number of 0.2 for the Roe flux, EC1 flux



slightly improved flow prediction at the aft of the airfoil as compared to the other

boundary layer profile in the near wall region in Figure 5.22. In terms of pres-

overestimate the pressure coefficient at the fore of the airfoil, but underestimates

curring at the trailing edge. However, this result is still within acceptable limits,

and is already expected based on the results of earlier test cases.

Summary5.5

A number of test cases has been done in one and two dimensions to demonstrate

the performance of the ECS flux compared to both other established fluxes and

also select experimental results. It has been shown that the ECS flux is generally

able to produce acceptable results, and in some cases such as the one-dimensional

simulations, good to excellent results. This is despite the fact that the ECS flux

is still not a fully fledged Navicr-Stokes scheme.
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sure, Figure 5.25(d) shows the pressure coefficient distribution of flow over the 

NACA0012 airfoil the system flux at Re = 9.7 x IO4. The low Reynolds number

Cp around the airfoil

Cp from the point of x/C = 0.15 all the way to the aft, with the largest error oc-

(a), (b), and (c) respectively.

From the series of plots, it can be seen that the ECS flux is able to produce a

fluxes. Furthermore, the ECS flux is able to provide a slightly more developed

as compared to the experimental result. The flux seem to

result shows that the ECS flux is able to provide a good representation of the
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Figure 5.21: Flow over airfoil at Mach numbers 0.2 for fluxes of (a) Roe, (b) ECI, 
and (c) ECS.
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Figure 5.24: Flow over airfoil at Mach numbers 0.9 for fluxes of (a) Roe, (b) EC1, 
and (c) ECS.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

The work encapsulated in this thesis centers around the development of a new

approach in constructing flux functions for the purpose of simulating high speed

fluid flow, particularly in the presence of discontinuities and shock. The approach

builds on the efforts of past researchers who developed discrete conservation equa­

tions that are tied to the concept of entropy control and its consistency with the

second law of thermodynamics. Previously, the mechanism for control is in the

form of carefully designed numerical entropy production, based on numerous em­

pirical observations. Despite the excellent results obtainable from these entropy­

consistent functions, a knowledge gap still remains in the fact that any entropy

production term is essentially artificial in nature, and is not. strongly linked to the

actual physics of flow. Hence, a more natural means is sought, with the prime

candidate being the insertion of a viscosity component in the inviscid based model

which would naturally provide diffusion and the generation of entropy.

Coincidentally, a new development in the field of source terms, of which viscosity

is an example, has been made recently. Viscosity is parabolic in nature, and is

traditionally treated differently from the advection part of conservation equations

development provides a solution for

be stated in hyperbolic form and discretized in a uniform manner. This

141

this compatibility issue by resolving the higher-order source terms in a set of first- 

order equations. Thus, there would

that are fundamentally hyperbolic. The new

no longer be a need to utilize two different 

numerical schemes for the advection and diffusion parts of the governing laws; 

both can

approach provides an avenue for the concept of entropy control to be expanded



into the realm of viscosity, which

then used to construct en­

tropy conservative fluxes, and augmented with its diagonalized matrix of eigenvec­

tors that provide stability and consistency. The fluxes are divided into its inviscid

and viscous components; this is so that each component can be controlled indi­

vidually and conveniently. The concept was firstly applied to the linear Burgers’

equation, in which a new entropy pair has been chosen to include both inviscid

and viscous terms. The same strategy is then expanded into the Navier-Stokes

governing equations via the Euler equations. In this case, the hyperbolic dis­

cretization of viscosity terms is done separately from inviscid terms so that the

physical (or mathematical) entropy still remains a dominant feature for the overall

entropy-stability and entropy-consistency control. The additional entropy func­

tion for the viscous terms are created to ensure some form of entropy-stabillity is

also achieved for hyperbolic discretization of the physical viscosity. Subsequently,

the Navier-Stokes system is upgraded into its two-dimensional version. As such,

the creation of these fluxes complete the first objective of this research.

With the completion of the system fluxes, they are then put through several

tests to evaluate their performance. Overall, the new fluxes have been shown to
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would hopefully eliminate the need for any form

system into its entropy variables. These variables are

of artificial dissipation.

Therefore, a new concept that combined the philosophy of entropy consistency 

and the approach of using first-order hyperbolic systems into one scheme was de­

veloped. This method firstly maps the conservative variables of the hyperbolic

provide comparable results to older methods and experimental results for a range 

of viscosity levels at low Reynolds number. This satisfied the second objective 

of this research. However, the Navier-Stokes fluxes are still incomplete due to 

the omission of heat transfer effects. Due to their respective signs, the entropy



6.2 Future Work

To expand on the work in this thesis, a number of potential research avenues

has been identified. The most obvious of this is to extend the Navier-Stokes flux

previous finite-volume entropy consistent

schemes by others has shown that this extension is possible without a high degree

of difficulty. The three-dimensional configuration will allow the entropy-consistent

Additionally, a big milestone for us to achieve is to include heat transfer consider­

ations into the system flux. The framework for this has already been established

by Dr Nishikawa in his series of papers, but the key problem to solve now is to

find entropy pairs or other methods that would allow the heat transfer term itself

to remain entropy stable, thus ensuring stability and consistency for the whole

flux.

Last but not least, the long term goal for this endeavor would bo to generalize

catei- for turbulent flow applications.
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the flux so that it encompasses the whole flow regime. Currently, the entropy­

consistent system flux has only been proven to work well in inviscid or laminar

generation from heat transfer would oppose that of the rest of the system, affecting 

the entropy stability and consistency of the system as a whole. Thus, considerable 

work is still required to realize the full potential of this approach.

to the full three dimensions. Work on

system flux to be employed in real-world applications for practical use.

conditions of low Reynolds number. In the future, it is hoped that the system 

flux can be augmented with vorticity capturing and suitable turbulence models 

so that it can
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APPENDIX A

FLUX AVERAGING

(Entropy Conserving Flux)A.l

The entropy conserving flux f? from equation 4.55 satisfies

(A.l)

and is calculated based

(A.2)

firstly define positive definite quantities

(A.3)23 = PP

A.l, the quantities used in the flux are as follows

(A.4)P2 =

(A.5)
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pu

pu2 + pi 

pui-i

7 ~ 1 23
27 2]

The averaged quantities 
a^+an

2

To determine the averaged quantities, we

on averaged quantities of

and logarithmic mean as defined in the next section. Based on equation

are composed from functions of arithmetic mean a =

z,=v?’ 22=\/F’

P

p = zi4n> p\ = —, 
z\

u2

vTff = [pu]

a2
II =-------

7 - 1

Jn
,ln 
Z1



(Logarithmic Mean)A.l

Let us define

(A.6)

We also define

(A.7)

Here, the quantity Z72.(^) is

(A.8)+ t

u = f * f

2. If (u < e)

F = 1.0 + u/3.0 + u * u/5.0 + u * u * zz/7.0

3. Else

F = <n(C)/2.0/(/)

thus
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+ aR 
2F

aL + aR C ~
C + 1

1 (1 - C)5 
5(l + O5

aR

To calculate the logarithmic mean we use the following subroutine:

7
7 + O(C9))! 1(1-0, 1(1 -o3

3(l + <)3

1. Set the following: C =

e = IO-2aln(L,R) =

aln(L,R) =

InK) = 2(t—4

J <+!’



APPENDIX B

ALGORITHM

(Flow Chart)13.1

152



Start

Read, Construct, and Check Grid Data

Compute Flux and Residuals for Full Solution

Update Variables
i

No

Yes

Write Final Data to File

End

Figure B.l: Flow chart of the solver algorithm.
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