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MODEL PENILAIAN RISIKO UNTUK PELAKSANAAN TEKNOLOGI

DIGITAL TWIN DALAM INDUSTRI PEMBINAAN CHINA

ABSTRAK

Industri pembinaan di China telah dikritik kerana kadar penggunaan
pendigitalan yang perlahan, sementara teknologi Digital Twin (DT) diiktiraf sebagai
penyelesaian yang berpotensi. Namun, pelaksanaan DT hadir dengan pelbagai risiko
yang melibatkan peluang dan ancaman. Selain itu, terdapat jurang ketara dalam
penilaian risiko khususnya untuk pelaksanaan DT dalam sektor pembinaan di China.
Untuk mengisi jurang ini, penyelidikan ini bertujuan untuk membangunkan model
penilaian risiko (RAM) yang berkesan untuk menilai risiko yang berkaitan, dengan
matlamat untuk meningkatkan kejayaan pelaksanaan DT dalam pembinaan. Pertama,
penyelidikan ini menjalankan kajian literatur yang komprehensif untuk mengenal pasti
potensi risiko yang berkaitan dengan amalan DT dalam industri pembinaan. Kedua,
temu bual separa berstruktur dan Kaedah Fuzzy Delphi dijalankan untuk
memperhalusi risiko-risiko tersebut. Ketiga, bagi menilai risiko ini dengan lebih baik,
penyelidikan ini membangunkan RAM General Cybernetic Best-Worst Method (G-
Cy-BWM) untuk mengenal pasti dan menilai faktor risiko penting (RF) yang berkaitan
dengan amalan DT dalam sektor pembinaan. Kaedah membuat keputusan multikriteria
(MCDM) digunakan, melibatkan 36 pakar yang berkelayakan dalam pelbagai fasa
penyelidikan ini. Hasilnya, sejumlah 32 RF kritikal, termasuk 23 peluang dan 9
ancaman, telah dikenal pasti dan diutamakan berdasarkan wajaran saling bergantung
yang dikira menggunakan RAM yang dibangunkan. Secara khusus, peluang-peluang
ini dikategorikan kepada empat kumpulan: Ekonomi (4), Teknikal(3), Pemantauan &

Keselamatan (7), dan Pengurusan (8). Begitu juga, ancaman dikategorikan kepada:

Xiv



Ekonomi (3), Teknikal (3), Dasar & Pengurusan (3). Peluang dan ancaman yang paling
ketara ialah 'Peningkatan dalam pemboleh digital utama' dan 'Peningkatan kos sumber
manusia' masing-masing. Sebagai tambahan, kategori Ekononi di kenal pasti sebagai
yang paling penting untuk kedua-dua peluang dan ancaman, menekankan keperluan
untuk perancangan ekonomi strategik bagi memanfaatkan peluang dan mengurangkan
potensi ancaman dalam konteks RAM yang dibangunkan. Walau bagaimanapun, RAM
yang dibangunkan tidak termaasuk strategi mitigasi untuk risiko ketara yang dikenal
pasti. Oleh itu, terdapat keperluan untuk mencadangkan strategi rawatan terhadap
risiko yang ketara dalam penyelidikan masa depan. Analisis sensitiviti mengesahkan
kekukuhan RAM yang dibangunkan dan kebolehgunaannya disahkan melalui
perbincangan kumpulan fokus. RAM yang dibangunkan dalam penyelidikan ini dapat
memudahkan pihak berkepentingan projek pembinaan dalam melaksanakan DT
dengan kadar kejayaan yang lebih tinggi dan membolehkan pengamal menilai risiko

yang disesuaikan dalam bidang masing-masing.
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A RISK ASSESSMENT MODEL FOR THE IMPLEMENTATION OF

DIGITAL TWIN TECHNOLOGY IN CHINA’s CONSTRUCTION INDUSTRY

ABSTRACT

The Chinese construction industry has been criticized for its slow adoption of
digitization, while Digital Twin (DT) technology is recognized as a potential solution.
However, the implementation of DT comes with various risks, encompassing both
opportunities and threats. Moreover, there is a notable gap in risk assessment specific
to DT implementation within the Chinese construction sector. To fill this gap, this
research is aiming at developing an effective risk assessment model (RAM) for
evaluating associated risks, with the goal of enhancing the successful implementation
of DT in construction. First, this research conducted a comprehensive literature review
to identify potential risks associated with the practice of DT in the construction
industry. Second, semi-structured interviews and the Fuzzy Delphi Method are carried
out to refine the risks. Third, to better evaluate these risks, this research develops a
General Cybernetic Best-Worst Method (G-Cy-BWM) RAM to identify and assess the
significant risk factors (RFs) associated with the practice of DT within the construction
sector. The multicriteria decision-making (MCDM) methods are adopted and a total of
36 qualified experts are involved in different phases of this research. As a result, a total
of 32 critical RFs, including 23 opportunities and 9 threats, are identified and
prioritized based on their interdependent weights calculated using the developed RAM.
Specifically, opportunities are categorized into four groups: Economic (4),
Technical(3), Monitoring & Safety (7), and Management (8). Similarly, threats are
categorized into: Economic (3), Technical (3), Policy &Management (3).

Consequently, the most significant opportunity and threat are ‘Enhancement in key

xvi



digital enablers’ and ‘Increase of cost on human resource’ respectively. Moreover, for
both opportunities and threats, Economic is the most significant category. This
highlights the necessity for strategic economic planning to effectively capitalize on
opportunities and mitigate potential threats in the context of the developed RAM.
However, The developed RAM lacks mitigation strategies for the identified notable
risks. In this case, there is a need for the proposal of treatment suggestions towards the
significant risks in the RAM in future research. A sensitivity analysis validates the
solidity of the developed RAM and its applicability is validated through a focus group
discussion. The developed RAM in this research facilitates construction project
stakeholders in implementing DT with a higher success rate and enables practitioners

to analyze customized risks in their respective fields.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The construction industry plays a significant role in contributing to the economic
growth of countries around the globe. According to Nnaemeka et al. (2021), the global
construction market is anticipated to grow by 85%, reaching $15.5 trillion by 2030.
However, this industry has long been plagued by fragmentation issues, such as
information silos, isolated stakeholders, and decentralized on-site labor, due to the
slow adoption of digitization (Kor et al., 2022; Lee et al., 2021; Rampini & Re Cecconi,
2022; Teisserenc & Sepasgozar, 2022; Zhao & Taib, 2022). Nonetheless, the advent of
various technologies is reshaping the execution of construction projects. One notable
technology in this regard is Building Information Modelling (BIM), which has
improved collaboration by providing a centralized platform for information sharing,

change management, and conflict resolution (Durdyev et al., 2022; Han et al., 2022).

However, it should be noted that BIM has limitations in offering dynamic data of
the physical objects and handling large volumes of data (Tuhaise et al., 2023). In
contrast, Digital Twin (DT) technology enables dynamic bidirectional data exchange,
thereby representing the dynamic status and characteristics of construction sites during
the project lifespan (Opoku et al., 2022; Tuhaise et al., 2023). Specifically, this real-
time bidirectional data exchange of DT offers significant benefits to the construction
industry, including enhanced safety monitoring, improved productivity, reduced costs,
and timely decision-making (Malhotra & Mehta, 2022). Therefore, DT has received

and is expected to get more attention within the construction sector.

There are multiple definitions of DT across different contexts. In 2003, Michael
1



Grieves initially defined DT as a virtual model that represents the physical products
(Madubuike et al., 2022a). National Aeronautics and Space Administration (NASA)
proposed a more comprehensive definition in 2012, which involves integrating multi-
physics, multiscale, and probabilistic simulation to create an objective representation
using the best available physical models (Angjeliu et al., 2020). Subsequently, to
develop a more widely applicable DT concept in other fields, Tao et al. (2019)
proposed a DT model with five-dimension, which includes physical objects, virtual

representations, connections, data, and services.

Within the construction industry, the definition of DT lacks a universally accepted
definition. However, numerous researchers are actively working towards proposing a
definition of DT specifically tailored to the construction field (Sacks, Brilakis, et al.,
2020). To illustrate, Kor et al. (2021) put forth a definition for DT in construction as a
comprehensive engineering model capable of monitoring construction products
through multi-site monitoring systems, utilizing data flow and unique capabilities.
Similarly, Inrahim Yitman et al. (2021) extended the DT concept to define
Construction Digital Twin (CDT) as a system that monitors complex construction
procedures based on the DT functions. This includes anomaly detection, and

behavioral learning, and predicts the actions and functions of the physical twin.

According to Jiang et al. (2021) and Tao et al. (2019), it is significant for DT to
deliver a specific service. In this case, a comprehensive five-level taxonomy to
encompass the diverse levels of services that DT can provide is proposed including
descriptive, informative, predictive, comprehensive, and autonomous twin (Hertz,
2023; Seaton et al., 2022). In level 1 (descriptive), the DT is a digital representation

that, using computer-aided engineering (CAE), incorporates simulation of the physical



entities and serves as a descriptive DT for further development. In level 2 (informative),
the DT evolves by incorporating predictions from CAE-based simulations and time-
series analysis. This level emphasizes the integration of data-driven insights into the

DT framework for generating insights.

In level 3 (predictive), the DT encompasses a digital representation that enables
the fusion of the sensor data and a comprehensive data model. This integration enables
real-time monitoring and analysis, facilitating a more accurate understanding of the
asset’s behavior. Level 4 (comprehensive) DT represents an advanced stage where
sensor data and human knowledge are encoded and integrated within the DT. By
leveraging various sources of information, level 4 DT offers enhanced predictive
capabilities and a deeper understanding of the performance of the assets. Finally, at
level 5 (autonomous), the DT achieves its highest level of sophistication with digital
technologies to reduce its reliance on human intervention. In general, the five-level DT
complexity concept serves as a guiding paradigm, offering valuable directions for the

progressive evolution of DT practice from level 1 (descriptive) to level 5 (autonomous).

1.2 Background

Given the persistent challenges in China’s construction industry, such as low
productivity, fragmentation, poor industry image, and low predictability (Opoku et al.,
2021), DT has garnered significant attention as one of the most potential technologies
applicable throughout the entire lifespan of construction projects (Boje et al., 2020).
Research focusing on how DT addresses these issues in the construction sector has
gained momentum recently (Ozturk, 2021; Ryzhakova et al., 2022; Sacks et al., 2020).
Concurrently, the capabilities of DT have evolved alongside the development of

enabling technologies like Artificial Intelligence (AI), machine learning (ML),



blockchain, and the Internet of Things (IoT) (Opoku et al., 2022). For instance, Zhao
et al. (2022) proposed that integrating DT with ML algorithms offers a viable approach
to predicting building status during the Operation and Maintenance (O&M) phase.
Opoku et al. (2021) also emphasized that DT has a high potential to transform the
construction industry but highlighted the scarcity of practical implementations.
Specifically, DT is potentially capable of delivering significant opportunities to the
construction industry, including improved visualization, enhanced collaboration, cost
reduction, increased safety, enhanced quality control, and accelerated construction
process (Madubuike et al., 2022b; Radzi et al., 2019; Visartsakul & Damrianant, 2023).
Therefore, as supposed by Ammar et al. (2022), further improvement and broad

adoption of DT within China’s construction industry are crucial.

1.3 Problem Statement

Although DT is a promising technology offering numerous benefits to the
construction industry, its application in this field brings inherent risks because of the
complexity of the construction projects (Madubuike et al., 2022b; Pham et al., 2023).
The risks of implementing DT throughout the lifespan of construction projects are
expected to be interconnected (Lei et al., 2023), for example, the seamless data
integration in DTs from various sources could also lead to inconsistencies and
inaccuracies that affect decision-making. Also, for instance, the ability to modify DT
models in response to the dynamic information can introduce variability in project
planning and execution, potentially leading to discrepancies between the digital
visualization and its physical correspondence. Therefore, the flexible functions of DT
notably amplify uncertainty during its practical implementation. Moreover,
construction projects are prone to long lifespans, complex sites, multiple stakeholders,

and numerous engineering risks (Alaloul et al., 2020).
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Furthermore, once risks are identified, they should undergo an assessment
(Tabatabaee, et al., 2022). Proactive risk assessment aids construction project
managers in gaining a deeper understanding of the risks, facilitating the successful
adoption of DT technology. On one hand, risk assessment can effectively alleviate the
threats in the practice of DT in the construction industry. On the other hand, risk
assessment allows industry professionals to take advantage of DT to its full potential,
thus maximizing the opportunities associated with DT. Given various risks,
inappropriate risk assessment may lead to many negative outcomes or even project
failure — consequences that would trigger a series of problems like cost overruns,

prolonged timelines, and compromised quality and safety standards (Sunil et al., 2017).

Currently, there is lack of studies comprehensively exploring the risks related to
DT practice in the construction industry. Hence, a deficiency in awareness among
construction practitioners regarding the existence and importance of risks in DT
implementation leads to reduced effectiveness in achieving objectives within
construction projects. At the same time, in China, construction companies lack
dedicated risk management teams, and risk assessment is always absent in construction
projects(Leung et al., 2024). Therefore, RAM is required in China’s construction

industry.

Three gaps exist in the literature that this research tends to fill are: (1) there is a
lack of a comprehensive study, to the best of the author’s knowledge (Wang et al.,
2024), that has examined the risks—both opportunities and threats—involved in
adopting DT in the construction industry. (2) risk factors (RFs) are interrelated, while
there is no study focused on the priority of risks in implementing DT considering both

the interrelations and their intensity among the risk factors. (3) There is no RAM



capable of evaluating the risks of DT practice within China’s construction industry. In
this case, it is quite necessary to construct a RAM that can identify and assess the risks
of the practice of DT to enhance the probability of implementing DT in the

construction industry successfully.

1.4 Research Questions

To fill the abovementioned gaps and address the stated problem, the main research
questions are put forward:
1: What are the risks related to DT implementation in China’s construction industry?
2: What are the most critical risks related to the practice of DT in China’s construction
industry?
3: Given the interrelations among risks, how can practitioners effectively assess such
risks in their real-life projects?
4: Is the developed RAM for DT implementation valid and practical in China’s

construction industry?

1.5 Research Aim and Objectives
The aim of this research is to provide a holistic understanding and a practical
approach for the assessment of the risks related to DT practice in the China’s
construction industry and to develop a RAM for evaluating the risks of implementing
DT. To achieve the aim of this research, subsequent objectives have been determined:
1. To investigate the risks affecting the implementation of DT in China’s construction
industry.
2. To identify the most significant risks of implementing DT in China’s construction
industry.

3. To develop a RAM capable of considering the interdependencies and intensities of



the risks affecting the implementation of DT in China’s construction industry.

4. To evaluate the application of the developed RAM in China’s construction industry.

1.6 Research Scope

According to the Project Management Institute (PMI), risk management comprises:
identify risks, analyze risks, response to risks, and monitor and control risks (PMBOK,
2021). This research specifically targets the risk assessment phase, which is comprised
with risk identification and risk analysis, of the PMI risk management approach,
aiming at evaluating risks associated with the practice of DT within the Chinese
construction industry. Acknowledging the scarcity of DT implementation in the
China’s construction industry, this study extends beyond traditional building
engineering to encompass infrastructure engineering sectors such as bridge
engineering and tunnel engineering. This broader scope ensures a more comprehensive
data collection, facilitating a more thorough understanding of the risks across various
parts of the construction industry (as suggested by Gieskes et al. (2000)). Therefore,
not only the RFs, but also the involved experts for this study consist of qualified
practitioners from the abovementioned industries. Because DT is an emerging
technology, urban centers are more prone to hosting DT-related projects. In this case,
the targeted geographical regions are the most developed cities in China, namely
Beijing, Shanghai, Shenzhen, and Guangzhou (Yin & Song, 2023). Furthermore, this
research specifically concentrates on the implementation risks associated with DT in
China’s construction projects throughout the whole lifecycle. Notably, the identified

risks include both positive (opportunity) and negative (threat) aspects.

1.7 Research Significance

The practice of DT in China’s construction industry has a high potential to improve



the efficiency of projects in the construction industry. However, the intricacy of the
construction projects may lead to numerous risks in the practice of DT. Therefore, the
successful implementation of DT in China’s construction industry demands a thorough
comprehension of the associated risks and the development of an effective RAM. This
research holds great significance in addressing the critical need for several aspects.
Firstly, through thoroughly identifying and assessing the risks associated with DT
implementation, this study fills the existing gap in literature and is able to provide
invaluable insights and practical guidance to industry stakeholders. Secondly, by
focusing on the identified critical RFs, stakeholders can adopt effective measures to
address the specific risks posed by DT practice. Thirdly, the development of a robust
RAM capable of considering the interdependencies and intensities of risks associated
with DT implementation represents a significant methodological contribution.
Therefore, this RAM enhances the accuracy and reliability of risk evaluations in the
implementation of DT in China’s construction industry. Finally, the evaluation of the
developed RAM in China’s construction industry provides practical validation of its
effectiveness and applicability. The validation not only demonstrates the utility of the
proposed model but also offers valuable insights into its implementation in real case,

facilitating its adoption by industry practitioners and decision-makers.

1.8 Thesis Outline

The subsequent chapters are structured in the following manner: Chapter 2
illustrates a comprehensive literature review of construction industry in China, DT’s
concept and implementation, risk management in the construction industry, and RFs
of DT practice in the literature. Chapter 3 explains the whole framework and core
methods of the thesis, including literature review, semi-structured interview, fuzzy

Delphi method, a general cybernetic Best-worst method. It also discusses the novelty
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of the developed G-Cy-BWM risk assessment model. To fulfill research questions,
Chapter 4 shows the results and discussions of the literature review, semi-structured
interview, and fuzzy Delphi method. First, it illustrates the identified risk factors from
the literature review. Subsequently, the refined critical risk factors using semi-
structured interviews and the fuzzy Delphi method are also reported. Also, this chapter
illustrates the prioritization of the core RFs using the general cybernetic Best-worst
method, which involves the interdependencies and their strength among the RFs. A
risk assessment model is developed based on the above methods. Chapter 5 mainly
talks about the conclusions, limitations, implications, and recommendations for the

research that could be done in the future.



CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

This chapter provides an in-depth exploration of Digital Twin in the construction
industry through comprehensive literature review. Information and Communication
Technology (ICT) encompasses technologies that enable access to information via
telecommunications (Clutterbuck, 2013). It has rapidly evolved with advancements in
communication technologies, such as computer technology, wireless networks, cell
phones, and other types of communication (Osterrieder et al., 2020). As a result, ICT
has emerged as the main driver for the development of the modern economy,
revolutionizing various fields (Du et al., 2020). The construction industry, being an
indispensable component of the economy, is no exception to this influence. ICT
introduces numerous opportunities for improving the construction process (Lu et al.,
2015). DT technology, which can realize dynamic convergence and cyber-physical
interoperation, is regarded as one of the key enablers of the ICT revolution (Jiang et

al., 2022).

The construction industry, in accordance with the manufacturing industry’s
exploration of ICT-enabled technologies in Industry 4.0, is also striving to identify and
leverage the benefits, known as Construction 4.0 (Schonbeck et al., 2020). It focuses
on improving the quality of “digital building” throughout all stages, including planning,
design, construction, operation, and maintenance stages (Walter, 2020). By digitizing
the entire project management process, virtual reality and real-time interaction can be
combined, increasing the efficiency of construction processes and ensuring the quality
of building products. To embrace Construction 4.0, construction enterprises must

leverage advanced digital technologies to manage key aspects of construction projects,
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including the construction process, construction site work cooperation, and building

lifecycle.

Digital twin (DT), recognized as the fourth wave of technological advancements
in Industry 4.0, is recognized as one of the key enablers of the ICT revolution.
(Madubuike et al., 2022b; Teisserenc & Sepasgozar, 2021). DT culminates in the
development of a digital model that mirrors the physical entity (Liu et al., 2021). The
opportunities of digitalization are vast, including improved project management
efficiency, enhanced product quality, reduced safety risks at construction sites, and
overall progress for the construction industry. However, despite being a key industry
in China’s economy, the construction industry is often considered outdated due to its
technological lag (Forcael et al., 2020; Kor et al., 2022). While the technical systems
in construction have improved over the past several industrial revolutions, they still
trail behind other industries. This has resulted in a growing technological gap between

the construction industry and other fields.

2.2 Digital Twin in the Construction Industry

The construction industry develops sluggishly due to poor digitization (Teisserenc
& Sepasgozar, 2021). According to Tahmasebinia et al. (2023), digitization involves
data management in digital format using the internet and software. Also, Ammar et al.
(2022) proposed that construction projects rely heavily on large volumes of data
originating from diverse sources. Therefore, data is crucial for the development of the
whole industry. With the emergence of innovative technologies such as IoT, big data
analytics, cloud computing, and Al, the concept of data and data-centric decision-
making is increasingly prevalent (Qi et al.,, 2021). Specifically, to make valued

decisions, the data quality is significant for decision-makers. Therefore, DT is regarded
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as a key facilitator for the digital revolution of the construction industry, enhancing the
digitization performance of the whole industry (Ammar et al., 2022). Therefore, DT’s

implementation in the construction industry should be further explored.

2.2.1 Definitions of DT in the Construction Industry

The definition of ‘twin’ was first mentioned by the National Aeronautics and Space
Administration (NASA) in the aerospace industry, specifically during the Apollo
project in the 1960s (Negri et al., 2017). NASA developed a model of space vehicles
on Earth that could simulate their conditions, essentially serving as replicas of the
prototypes (Rosen et al., 2015). Professor Michael Grieves first proposed the term
“digital twin” in 2003 within the field of product lifecycle management (Grieves,
2014). In 2012, NASA successfully utilized DT technology to create dynamic models
mirroring the real-time status of flying physical twins. These digital twins had access
to historical information and data, allowing them to make predictions regarding the
health and remaining lifespan of the vehicles (Glaessgen & Stargel, 2012). Siemens
applied DT technology in 2016, marking its integration into the development of the
manufacturing industry as the rise of Industry 4.0 (Qi et al., 2021). According to Tao
et al. (2019), DT has emerged as a core intelligent technology that can achieve smart
manufacturing and Industry 4.0. Academic research has also extensively addressed on
DT. In 2017, Tao Fei et al. (2017) proposed a 5-dimension Digital twin shop-floor
model, building upon the previous 3-dimension DT model. Figure 2.1 below depicts

some notable milestones related to DT.
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Whitepaper of DT

Was published Tao et al. provided
‘Digital Twin’ concept the 5-dimension
Was proposed by Grieves DTS framework
1970 2012

2003

The concept of “Twin’
was created by NASA

DT was applied by
Siemens in Industry )
DT was applied by NASA 40 Gartner listed DT as
for health monitoring of one of the top 10
the space vehicles technologies

Figure 2.1. Timeline of DT history (designed by the author, adopted from (Qi et
al., 2021))

Over the years, numerous definitions of DT have emerged with the continuous
evolution of DT-enabling technologies. These technologies encompass various aspects
such as sensing, data acquisition, modeling, data management methods, DT services,
and data connectivity since the 2000s (Hu et al., 2021; Qi et al., 2021). The initial
definition of DT was put forth by Michael Grieves in 2003, describing it as a “virtual
digital representation equivalent to physical products” (Grieves, 2014). However, the
concept of DT did not see significant development until 2012 when NASA proposed
a more comprehensive definition (Glaessgen & Stargel, 2012). In general, the
definition highlights DT as the integration of multi-physics, multiscale, probabilistic
simulation of an as-built object, employing the best available physical models to create
its corresponding twin (Angjeliu et al., 2020). This makes DT a popular research topic
in the aerospace field. Following NASA’s definition, Rios et al. (2015) expanded the
concept of DT to encompass other domains. Similarly, Rosen et al. (2015) put forward
a definition that DT is the mirroring of physical and virtual objects to assess the
behavior of the physical counterpart. During this phase, the definition of DT primarily
focused on explaining its purpose and the components involved (Madubuike et al.,

2022a).
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Thereafter, the definitions of DT were improved in the manufacturing industry.
Boschert & Rosen (2016) proposed a more concise definition, stating that DT
encompasses all useful data related to a physical product. However, this definition
lacked comprehensiveness as it did not address the purpose and components of DT. In
2017, Grieves and Vickers provided a more detailed definition, considering DT as a
system of digital information that represents a physical product. It can be seen as the
virtual counterpart of the manufactured object. This definition emphasizes how DT
enables researchers to gain a better understanding of their designs and enhances
control over end-product quality (Grieves & Vickers, 2016). Although this definition
is more specific to the product lifecycle management industry, it offers great detail.
Zhuang et al. (2018) defined DT within the field of smart manufacturing. They
described it as a virtual model in the virtual world that accurately maps its
corresponding physical counterpart and dynamically changes along with it in every
aspect. In product design engineering, Tao et al. (2019) defined DT as a complete
correspondence between physical objects and their digital representations,
incorporating physical, virtual, and interactive data between them.

The concept of DT is ill-defined in the AEC industry, lacking a universal definition
(Sacks, Brilakis, et al., 2020). However, several researchers have made efforts to
propose comprehensive definitions of DT specifically tailored to the construction
industry. Madni et al. (2019) defined DT as a virtual model of its physical twin that
continually evolves throughout its lifecycle to simulate maintenance, performance,
and health status. Building upon these concepts, Kor et al. (2021) put forward a
definition for DT in construction, characterizing it as a comprehensive engineering
model that utilizes multi-site monitoring systems, data flow, and unique capabilities to

monitor construction projects. Similarly, Alizadehsalehi & Yitmen (2021) extended the
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DT concept to a Construction Digital Twin, which encompasses real-time monitoring,
anomaly detection, behavioral learning, and the ability to predict the actions and
functions of the physical twin. These definitions primarily address the real-time
monitoring function of DT, which is particularly relevant for predictive maintenance
in construction projects. Notably, there is no general definition of DT applicable to all
industries since each industry has its own specific purposes and requirements when
utilizing DT technology. Table 2.1 illustrates several significant DT definitions within
the construction industry.

Table 2.1. Main concepts of DT within construction industry

Definitions Applied field
Reference

Madni et al. | A virtual instance of its physical corresponding, and it is | Construction

(2019) continually changing during its lifecycle to simulate the
physical one in maintenance, performance, and health status

Kor et al. | A comprehensive engineering model that can monitor the | Construction

(2022) construction product from multi-site-monitoring systems with
the help of data flow and unique abilities

Yitmen et al. | Construction digital twin (CDT) is the evolution of the DT | Construction

(2021) concept, and it is able to monitor complicated construction
procedures based on the basic functions of DT. A CDT is not
only a DT, it also has the ability to conduct anomaly detection
and behavioral learning. Most importantly, it can predict the
actions and functions of the physical twin

Sacks et al. | Aninnovative approach to managing construction products. It | Construction

(2020) utilizes data streams from diverse monitoring technologies
and employs Al to deliver precise information. This enables
proactive analysis and optimization of continuous processes
related to design, planning, and production.

Sepasgozar Current definitions of DTs emphasize: (1) the necessity for | Construction

(2021) precise digital representations that encompass the geometric
features and attributes of physical objects, (2) DTs should also
incorporate the logic and rules dictating the behavior of these
physical entities, (3) DTs are anticipated to encode data,
encompassing historical records, current states, and
predictions related to the corresponding physical entities.

Jasinski et al. | A concept applied across various fields, defined by the | Civil and

(2023) development of a virtual copy for an existing object. This | Bridge
virtual representation is typically based on a digital model and | Engineering
enables dynamic monitoring of the real-world counterpart.

Britain (2022) | Lifelike digital representations of physical assets, serving the | Built
purpose of monitoring and forecasting performance, = Environment
providing valuable insights, and facilitating interventions.

Boje et al. | The conception of DT is developed based on BIM, enhanced | Buildings and

(2020) by incorporating sensing capabilities, big data, and [oT from | Infrastructure
site to building operation

Jiang et al. | Characterized by virtual representations mirroring their | Civil

(2021) physical counterparts. Data transfer between the physical and | Engineering
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virtual worlds is necessary.
Naderi & | A virtual replica of a physical asset with bidirectional data | Infrastructure
Shojaei (2023a) | flow.

In summary, from the definitions of DT in Table 2.1, DT establishes a twin
relationship between the virtual and physical worlds, characterized by its capacity for
dynamic bidirectional data exchange (Jiang et al., 2021; Opoku et al., 2022). DT is
capable of creating digital representations that can be regularly updated using multiple
data sources, enabling predictions, optimization, monitoring, and improved decision-
making (Opoku et al., 2023). Based on the literature, this study proposed a definition
of DT tailored to the construction industry: A digital twin is a digital replica that
simulates and mirrors real-world entities or processes in a virtual environment. This
virtual representation is synchronized in real-time to maintain alignment with its
physical counterpart, capturing a high level of fidelity to enable comprehensive
analysis, monitoring, and optimization. Notably, the real-world entities could be both
entities (e.g., construction equipment and products, workers, construction sites, and
assets) and processes (e.g., design, construction, operation & management, and
demolition) in the construction projects. Virtual representation is a digital duplicate of
construction objects and processes, which includes various linked digital assets (e.g.,
digital models, images, documents, and videos) and supporting data (Seaton et al.,
2022). Synchronization, which enables the status of the DTs to be consistent with their
physical counterparts (McKee, 2023), is a key element that differentiates a digital twin
from other digital models. At the same time, synchronization is affected by both
frequency and fidelity, which determines the timing of updates and precision of the

virtual representation, respectively.
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2.2.2 Digital Twin Maturity Model in the Construction Industry

Several DT maturity models have been proposed in different domains. In the
manufacturing industry, Kritzinger et al. (2018) outlined three hierarchical tiers of DTs
based on the degree of data integration: digital model, digital shadow, and digital twin.
Building upon this framework, Liu et al. (2024) introduced two additional levels:
Cognitive DT and Federated DT. Another model specific to manufacturing was
developed by Hu et al. (2023), including Basic, Connection, Integration, Perception,
Interaction, and Autonomy. In the field of systems engineering, Madni et al. (2019)
proposed a 4-level model based on the sophistication of the virtual model: Pre-digital
Digital Twin, Digital twin, Adaptive Digital Twin, and Intelligent Digital Twin.
Similarly, Kumar et al. (2022) proposed a more comprehensive model including
Digital model, Digital twin, Adaptive digital twin, Technical and functional DT, and
Autonomous DT. In the Aerospace area, Medina et al. (2021) introduced a 4-level

maturity model comprising Monitoring, Diagnostic, Prediction, and Prescription.

In the construction industry, there are also several maturity models have been
developed. ARUP (2019) proposed a 5-level evolution model based on four metrics:
autonomy, intelligence, learning, and fidelity, which are expected to increase as the
DT progresses. According to the characteristics of each level, the five levels are named:
Linked, Feedback & Control, Predictive & Analytic, Learning, and Autonomous. Chen
et al. (2021) developed their 6-level model grounded in asset management maturity
stages: Unaware, Identifiable, Aware, Communicative, Interactive, Instructive &
Intelligent. Furthermore, models by Boje et al. (2020) and Naderi et al. (2023b)
emphasize technical advancements, while some models focus on functional
completeness. For instance, Wagg et al. (2020) proposed a 5-level model for asset

management: Supervisory, Operational, Simulation, Intelligent, and Autonomous
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Management. Similarly, Autodesk (2021) introduced a tailored 5-level model for the
Architecture, Engineering, and Construction (AEC) industry: Descriptive twin,
Informative twin, Predictive twin, Comprehensive twin, and Autonomous twin, which

was also adopted by Seaton et al. (2022). The different DT maturity models are listed

in Table 2.2.
Table 2.2. Digital twin maturity model in the literature.

Domain Reference Levels Name of the Levels
Liu et al. 04 Digital model, Digital shadow, Digital twin, Cognitive

General (2024) DT, Federated DT
Kumar et 15 Digital model, Digital twin, Adaptive digital twin,
al. (2022) Technical and functional DT, Autonomous DT
Hu et al. 16 Basic, Connection, Integration, Perception, Interaction,
(2023) Autonomy

Manufacturing Kritzinger
et al. 1~3  Digital model, Digital shadow, Digital twin
(2018)

Systems Madni et 14 Pre-digital twin, Digital Twin, Adaptive Digital Twin,

engineering  al. (2019) Intelligent Digital Twin
Medina et . . . - L

Aerospace al. (2021) 1~4  Monitoring, Diagnostic, Prediction, Prescription
ARUP 15 Linked, Feedback and Control, Predictive and Analytic,
(2019) Learning and Autonomous
Wagg et al. 1~5 Supervisory, Operational, Simulation, Intelligent,
(2020) Autonomous management
Boje et al. 1-3 Monitoring Platform, Intelligent Semantic Platform,
(2020) Agent-driven socio-technical platform

Construction Autodesk 1~5 Descriptive tyvin, Ipformative twin, Pr'edictive twin,
(2021) Comprehensive twin, Autonomous twin
Seaton et 15 Descriptive twin, Informative twin, Predictive twin,
al. (2022) Comprehensive twin, Autonomous twin
Chen et al. 1~6 Unaware, Identifiable, Aware, Communicative,
(2021) Interactive, Instructive and Intelligent
Naderi et

al. (2023b) 0~4  BIM, Digital twin, enhanced DT, Metaverse

Given the relevance and comprehensiveness of the 5-level model proposed by
Autodesk (Autodesk, 2021) and Seaton et al. (Seaton et al., 2022) as shown in Figure.
2.2, 1t is adopted in this review paper. At the Descriptive level (level 1), DTs represent
the digital model connected to real-world systems but lack intelligence, learning, and
autonomy (Ghorbani et al., 2024). While the Informative level (level 2) involves

converting data into actionable information. This is achieved with computer vision
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techniques, which are supported by deep learning technologies (Pan & Zhang, 2021Db).
The Predictive level (level 3) employs operational data for prediction. Specifically,
with artificial intelligence (Al)-based technologies (e.g., process mining), DTs can
utilize large volumes of data to make valuable analytics and predictions (Pan & Zhang,
2021b; van der Aalst, 2016). In the Comprehensive level (level 4), DTs learn from
diverse data sources within the surrounding environment, and it is able to conduct real-
time analytics through what-if simulations. By utilizing Al techniques such as machine
learning, DTs can analyze historical data and real-time information to simulate various
scenarios. Finally, at the Autonomous level (level 5), with the help of A, DTs can learn
and minimize reliance on human inventions through automatic analytics and decision-
making. Obviously, Al and Al-based technologies play a significant role throughout

the DT levels.

Autonomous

Comprehensive Y-m

Predictive g —
Informative *  Digital model
Jsuis *  Sensory data

Descriptive 5

* Digital model «  Analytics
M e x
* Digital model * Sensory data *  What-if simulations
* Digital model * Sensory data * Analytics *  Autonomous
* Digital model * Sensory data * Analytics * What-if simulations operations

o Level:]; pe— svel 2 Level 3 Level 4 m——— 0G| S e—
Data collection Insight generation Make predictions Simulate future what-if Achieve self-reliant with
and visualization out of the data based on real-time scenarios (human in- less human interventions

data the-loop) (human on-the-loop)

Figure 2.2. DT maturity model (adopted from (Autodesk, 2021; Seaton et al.,
2022)).

2.2.3 Review Articles of Digital Twin Applications within the Construction
Sector

In this section, a comprehensive literature review is conducted to explore the
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conceptions and applications of DT. During this process, the potential risk factors (RFs)
are also extracted from the literature. This section aims to provide a thorough overview
of the previous literature reviews pertaining to the practice of DT in the construction
industry and a total of 45 published reviews within the last decade are explored. The
reviews can be categorized into four clusters based on their scope, including
exploration of DT enabling technologies (e.g., AR, Al and IoT), differentiation of DT
from other similar concepts (e.g., digital shadow, BIM, and Cyber-Physical Systems,
identification of barriers or challenges associated with DT adoption, and investigation
of DT’s applications in the construction industry (e.g., sustainability, fault detection,

and monitoring). The cluster distribution is illustrated in Figure 2.3.

Distribution of clusters regarding review topics

Barrier Enabling
7% Technology
15%

Conception
9%

= Enabling Technology

= Application

= Conception
Barrier

Figure 2.3. Distribution of clusters regarding review topics

In terms of DT enabling technologies, Tuhaise, et al. (2023) conducted a
systematic review using demonstrative case studies to identify the emerging key
enabling technologies for DT implementation in the literature, such as IoT sensors,
vision and component-based sensing devices. They (ibid) highlighted research gaps in
area such as data transmission, data processing, and visualization. These areas also

represent the future directions for technological development. Similarly, Hosamo et al.
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(2022) systematically reviewed the development and practice of DT technologies in
construction. They (ibid) identified four technological drivers for digitization: big data,
IoT, and cloud-based access. In a review conducted by Naderi & Shojaei (2023a), 85
studies related to infrastructure DT between 2012 and 2022 were analyzed. The
authors (ibid) categorized DT technologies into three groups: information model

technologies, data acquisition technologies, and data processing technologies.

Moreover, Deng et al. (2021) conducted a comprehensive review to investigate
the current state of DT technologies in built environment applications. Baghalzadeh et
al. (2022) concluded that DT, BIM, and IoT are trending technologies across various
fields within the construction industry based on their analysis. Sadri et al. (2023)
examined 86 academic articles to investigate DT-enabling technologies, challenges,
scope, and integration possibilities. Their findings revealed the potential benefits of
integrating technologies (e.g., blockchain and IoT) in addressing implementation
challenges individually. Opoku et al. (2021) adopted a systematic literature review
method to comprehensively explores the concept, technologies, and applications of
DT in construction industry. They (ibid) highlighted that DT can be applied throughout
all stages of a construction project’s lifecycle. Although plenty of advanced DT-
enabling technologies have been recognized by researchers, considerable knowledge
gaps remain to be addressed. Resolving these gaps is imperative to enhance the
capabilities, reliability and applicability of DT in real-world scenarios (Deng et al.,

2021).

In terms of DT definitions and concepts, Boje et al. (2020) reviewed numerous
applications of BIM in the construction industry as a foundation for developing the
concept of construction DT. They (ibid) highlighted that the benefits of DT extend

beyond real-time data to include profound impacts such as economic and sustainable
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benefits for smart construction. In distinguishing the DT concept from digital shadow,
Sepasgozar (2021) emphasized that DT not only provides a digital representation but
also facilitates bidirectional data flow and real-time self-management. Radzi et al.
(2023) analyzed 54 studies and identified four different DT-BIM relationships: BIM is
apart of DT, DT is a part of BIM, BIM is equivalent to DT, and no connection between
the two. They also found that the previous research on DT and BIM focuses on areas
of planning, design, construction, O&M, and decommissioning. For different purposes,
Jiang et al. (2021) distinguish DT from BIM and CPS based on the physical and digital
aspects, connections, and twin relationships. Méda et al. (2021) conducted a review to
enhance our understanding of DT and concluded that digital data templates and digital
building logbooks are key factors for the development of digital twin construction

(DTC), which was proposed by Sacks et al. (2020), within the construction process.

In terms of DT implementation barriers and challenges, Opoku et al. (2023)
identified the barriers to DT implementation in construction. Similarly, Lei et al. (2023)
identify the challenges related to urban DTs through a systematic review and an expert
survey. Consequently, they identified nine non-technical and 14 technical challenges,
and the most significant challenges were interoperability and practice value. In the
context of sustainable structural design, Zhang et al. (2020) reviewed current research
to explore the implementation of DT. They also provided suggestions for future
improvements based on their findings. Farouk et al. (2023) identified and categorized
45 barriers into six groups, determining that the most significant obstacles to DT are
related to “performance” and “security”. In general, researchers aim to make DT more

adaptable and practical to construction industry by addressing these barriers.

In terms of DT’s application, most of the review articles have examined the

application of DT in asset management (AM) and facility management (FM). For
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instance, Xie et al. (2023) conducted a review using clustering, knowledge mapping,
and network analysis methods. They (ibid) generated a knowledge map that depicted
three stages of construction DT for AM and fault prediction. Similarly, Hosamo et al.
(2022) employed qualitative research methods to explore DT’s capabilities in fault
detection. They (ibid) concluded that DT requires further development in scanner
hardware and software, prediction and detection algorithms, and modeling to achieve
effective fault detection and prediction. Zhong et al. (2023) proposed a predictive
maintenance method based on DT, which offers three key advantages: real-time
perception, high-fidelity models, and accurate simulation predictions. Arisekola &
Madson (2023) utilized social network analysis to examine DT’s application in
assessment management. Their findings revealed that topics real-time data and

decision-making were important topics in the literature.

Furthermore, Saback et al. (2022) took a systematic approach to review DT’s
application in asset management, and several gaps were addressed, including a lack of
unified DT definition, complex data flow, and software compatibility for DT
development. Coupry et al. (2021) highlighted the potential utilization of DT in
conjunction with extended reality technologies to improve maintenance operations in
smart buildings. Hakimi et al. (2023) reviewed 248 documents related to DT in FM,
and concluded that the current literature focuses on BIM-based FM, Al-based
predictive maintenance, dynamic cyber-physical system data integration, and lifecycle
FM. Meanwhile, Hou et al. (2023) investigated DT’s application in heritage facilities
management and found that DT could support decision-making, monitor and predict
performance, design maintenance strategies, and evaluate and manage energy in

heritage facilities.

Several studies have highlighted DT’s potential through the lifespan of
23



construction projects. In a study by Visartsakul and Damrianant (2023), DT is shown
to have applications in various stages of construction. Another systematic review
conducted by Khallaf et al. (2022) analyzed the applications of DTs in construction
through content analysis. They categorized the applications into nine areas: lifecycle
analysis, FM, energy, education, disaster, structural health monitoring(SHM), smart

cities, infrastructure management, and miscellaneous purposes.

Furthermore, Hu et al. (2022) reviewed 182 papers on DT in construction and
proposed six key applications. The study concluded that the majority of literature
focuses on improving the method, milieu, and measurement aspects of construction
processes, while the machine, manpower, and material parts receive less emphasis.
Through a comprehensive bibliometric analysis on 77 articles about DT application in
the AEC-FM industry, Deng et al. (2021) drew a conclusion that information
standardization is the most significant obstacle that hindering the application of DT in
the construction sector. In general, the dynamic data flow enables a DT to mirror
physical entities by consistently adapting to operational changes and alterations
predicated on informational inputs and online data aggregation (Tuhaise et al., 2023).
Consequently, this empowers the lifecycle management and predictive capabilities of

DT within construction projects.

DT has shown potential to enhance the sustainability of buildings. Sepasgozar et
al. (2021) highlighted the combination of BIM and IoT as a means to achieve
sustainable construction. Megahed & Hassan (2022) emphasized its contribution
towards sustainable development goals. In the energy efficiency field, Bortolini et al.
(2022) conducted a comprehensive review of DT’s application in buildings,
categorizing the literature into four areas: design optimization, occupants’ comfort,

building operation and maintenance, and energy consumption simulation. Furthermore,
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