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MODEL PENILAIAN RISIKO UNTUK PELAKSANAAN TEKNOLOGI 

DIGITAL TWIN DALAM INDUSTRI PEMBINAAN CHINA 

 

ABSTRAK 

Industri pembinaan di China telah dikritik kerana kadar penggunaan 

pendigitalan yang perlahan, sementara teknologi Digital Twin (DT) diiktiraf sebagai 

penyelesaian yang berpotensi. Namun, pelaksanaan DT hadir dengan pelbagai risiko 

yang melibatkan peluang dan ancaman. Selain itu, terdapat jurang ketara dalam 

penilaian risiko khususnya untuk pelaksanaan DT dalam sektor pembinaan di China. 

Untuk mengisi jurang ini, penyelidikan ini bertujuan untuk membangunkan model 

penilaian risiko (RAM) yang berkesan untuk menilai risiko yang berkaitan, dengan 

matlamat untuk meningkatkan kejayaan pelaksanaan DT dalam pembinaan. Pertama, 

penyelidikan ini menjalankan kajian literatur yang komprehensif untuk mengenal pasti 

potensi risiko yang berkaitan dengan amalan DT dalam industri pembinaan. Kedua, 

temu bual separa berstruktur dan Kaedah Fuzzy Delphi dijalankan untuk 

memperhalusi risiko-risiko tersebut. Ketiga, bagi menilai risiko ini dengan lebih baik, 

penyelidikan ini membangunkan RAM General Cybernetic Best-Worst Method (G-

Cy-BWM) untuk mengenal pasti dan menilai faktor risiko penting (RF) yang berkaitan 

dengan amalan DT dalam sektor pembinaan. Kaedah membuat keputusan multikriteria 

(MCDM) digunakan, melibatkan 36 pakar yang berkelayakan dalam pelbagai fasa 

penyelidikan ini. Hasilnya, sejumlah 32 RF kritikal, termasuk 23 peluang dan 9 

ancaman, telah dikenal pasti dan diutamakan berdasarkan wajaran saling bergantung 

yang dikira menggunakan RAM yang dibangunkan. Secara khusus, peluang-peluang 

ini dikategorikan kepada empat kumpulan: Ekonomi (4), Teknikal(3), Pemantauan & 

Keselamatan (7), dan Pengurusan (8). Begitu juga, ancaman dikategorikan kepada: 
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Ekonomi (3), Teknikal (3), Dasar & Pengurusan (3). Peluang dan ancaman yang paling 

ketara ialah 'Peningkatan dalam pemboleh digital utama' dan 'Peningkatan kos sumber 

manusia' masing-masing. Sebagai tambahan, kategori Ekononi di kenal pasti sebagai 

yang paling penting untuk kedua-dua peluang dan ancaman, menekankan keperluan 

untuk perancangan ekonomi strategik bagi memanfaatkan peluang dan mengurangkan 

potensi ancaman dalam konteks RAM yang dibangunkan. Walau bagaimanapun, RAM 

yang dibangunkan tidak termaasuk strategi mitigasi untuk risiko ketara yang dikenal 

pasti. Oleh itu, terdapat keperluan untuk mencadangkan strategi rawatan terhadap 

risiko yang ketara dalam penyelidikan masa depan. Analisis sensitiviti mengesahkan 

kekukuhan RAM yang dibangunkan dan kebolehgunaannya disahkan melalui 

perbincangan kumpulan fokus. RAM yang dibangunkan dalam penyelidikan ini dapat 

memudahkan pihak berkepentingan projek pembinaan dalam melaksanakan DT 

dengan kadar kejayaan yang lebih tinggi dan membolehkan pengamal menilai risiko 

yang disesuaikan dalam bidang masing-masing. 
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A RISK ASSESSMENT MODEL FOR THE IMPLEMENTATION OF 

DIGITAL TWIN TECHNOLOGY IN CHINA’s CONSTRUCTION INDUSTRY 

 

ABSTRACT 

The Chinese construction industry has been criticized for its slow adoption of 

digitization, while Digital Twin (DT) technology is recognized as a potential solution. 

However, the implementation of DT comes with various risks, encompassing both 

opportunities and threats. Moreover, there is a notable gap in risk assessment specific 

to DT implementation within the Chinese construction sector. To fill this gap, this 

research is aiming at developing an effective risk assessment model (RAM) for 

evaluating associated risks, with the goal of enhancing the successful implementation 

of DT in construction. First, this research conducted a comprehensive literature review 

to identify potential risks associated with the practice of DT in the construction 

industry. Second, semi-structured interviews and the Fuzzy Delphi Method are carried 

out to refine the risks. Third, to better evaluate these risks, this research develops a 

General Cybernetic Best-Worst Method (G-Cy-BWM) RAM to identify and assess the 

significant risk factors (RFs) associated with the practice of DT within the construction 

sector. The multicriteria decision-making (MCDM) methods are adopted and a total of 

36 qualified experts are involved in different phases of this research. As a result, a total 

of 32 critical RFs, including 23 opportunities and 9 threats, are identified and 

prioritized based on their interdependent weights calculated using the developed RAM. 

Specifically, opportunities are categorized into four groups: Economic (4), 

Technical(3), Monitoring & Safety (7), and Management (8). Similarly, threats are 

categorized into: Economic (3), Technical (3), Policy &Management (3). 

Consequently, the most significant opportunity and threat are ‘Enhancement in key 
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digital enablers’ and ‘Increase of cost on human resource’ respectively. Moreover, for 

both opportunities and threats, Economic is the most significant category. This 

highlights the necessity for strategic economic planning to effectively capitalize on 

opportunities and mitigate potential threats in the context of the developed RAM. 

However, The developed RAM lacks mitigation strategies for the identified notable 

risks. In this case, there is a need for the proposal of treatment suggestions towards the 

significant risks in the RAM in future research. A sensitivity analysis validates the 

solidity of the developed RAM and its applicability is validated through a focus group 

discussion. The developed RAM in this research facilitates construction project 

stakeholders in implementing DT with a higher success rate and enables practitioners 

to analyze customized risks in their respective fields. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Introduction 

The construction industry plays a significant role in contributing to the economic 

growth of countries around the globe. According to Nnaemeka et al. (2021), the global 

construction market is anticipated to grow by 85%, reaching $15.5 trillion by 2030. 

However, this industry has long been plagued by fragmentation issues, such as 

information silos, isolated stakeholders, and decentralized on-site labor, due to the 

slow adoption of digitization (Kor et al., 2022; Lee et al., 2021; Rampini & Re Cecconi, 

2022; Teisserenc & Sepasgozar, 2022; Zhao & Taib, 2022). Nonetheless, the advent of 

various technologies is reshaping the execution of construction projects. One notable 

technology in this regard is Building Information Modelling (BIM), which has 

improved collaboration by providing a centralized platform for information sharing, 

change management, and conflict resolution (Durdyev et al., 2022; Han et al., 2022).  

However, it should be noted that BIM has limitations in offering dynamic data of 

the physical objects and handling large volumes of data (Tuhaise et al., 2023). In 

contrast, Digital Twin (DT) technology enables dynamic bidirectional data exchange, 

thereby representing the dynamic status and characteristics of construction sites during 

the project lifespan (Opoku et al., 2022; Tuhaise et al., 2023). Specifically, this real-

time bidirectional data exchange of DT offers significant benefits to the construction 

industry, including enhanced safety monitoring, improved productivity, reduced costs, 

and timely decision-making (Malhotra & Mehta, 2022). Therefore, DT has received 

and is expected to get more attention within the construction sector.  

There are multiple definitions of DT across different contexts. In 2003, Michael 



2 
 

Grieves initially defined DT as a virtual model that represents the physical products 

(Madubuike et al., 2022a). National Aeronautics and Space Administration (NASA) 

proposed a more comprehensive definition in 2012, which involves integrating multi-

physics, multiscale, and probabilistic simulation to create an objective representation 

using the best available physical models (Angjeliu et al., 2020). Subsequently, to 

develop a more widely applicable DT concept in other fields, Tao et al. (2019) 

proposed a DT model with five-dimension, which includes physical objects, virtual 

representations, connections, data, and services.  

Within the construction industry, the definition of DT lacks a universally accepted 

definition. However, numerous researchers are actively working towards proposing a 

definition of DT specifically tailored to the construction field (Sacks, Brilakis, et al., 

2020). To illustrate, Kor et al. (2021) put forth a definition for DT in construction as a 

comprehensive engineering model capable of monitoring construction products 

through multi-site monitoring systems, utilizing data flow and unique capabilities. 

Similarly, Inrahim Yitman et al. (2021) extended the DT concept to define 

Construction Digital Twin (CDT) as a system that monitors complex construction 

procedures based on the DT functions. This includes anomaly detection, and 

behavioral learning, and predicts the actions and functions of the physical twin.  

According to Jiang et al. (2021) and Tao et al. (2019), it is significant for DT to 

deliver a specific service. In this case, a comprehensive five-level taxonomy to 

encompass the diverse levels of services that DT can provide is proposed including 

descriptive, informative, predictive, comprehensive, and autonomous twin (Hertz, 

2023; Seaton et al., 2022). In level 1 (descriptive), the DT is a digital representation 

that, using computer-aided engineering (CAE), incorporates simulation of the physical 
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entities and serves as a descriptive DT for further development. In level 2 (informative), 

the DT evolves by incorporating predictions from CAE-based simulations and time-

series analysis. This level emphasizes the integration of data-driven insights into the 

DT framework for generating insights.  

In level 3 (predictive), the DT encompasses a digital representation that enables 

the fusion of the sensor data and a comprehensive data model. This integration enables 

real-time monitoring and analysis, facilitating a more accurate understanding of the 

asset’s behavior. Level 4 (comprehensive) DT represents an advanced stage where 

sensor data and human knowledge are encoded and integrated within the DT. By 

leveraging various sources of information, level 4 DT offers enhanced predictive 

capabilities and a deeper understanding of the performance of the assets. Finally, at 

level 5 (autonomous), the DT achieves its highest level of sophistication with digital 

technologies to reduce its reliance on human intervention. In general, the five-level DT 

complexity concept serves as a guiding paradigm, offering valuable directions for the 

progressive evolution of DT practice from level 1 (descriptive) to level 5 (autonomous). 

1.2 Background 

Given the persistent challenges in China’s construction industry, such as low 

productivity, fragmentation, poor industry image, and low predictability (Opoku et al., 

2021), DT has garnered significant attention as one of the most potential technologies 

applicable throughout the entire lifespan of construction projects (Boje et al., 2020). 

Research focusing on how DT addresses these issues in the construction sector has 

gained momentum recently (Ozturk, 2021; Ryzhakova et al., 2022; Sacks et al., 2020). 

Concurrently, the capabilities of DT have evolved alongside the development of 

enabling technologies like Artificial Intelligence (AI), machine learning (ML), 
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blockchain, and the Internet of Things (IoT) (Opoku et al., 2022). For instance, Zhao 

et al. (2022) proposed that integrating DT with ML algorithms offers a viable approach 

to predicting building status during the Operation and Maintenance (O&M) phase. 

Opoku et al. (2021) also emphasized that DT has a high potential to transform the 

construction industry but highlighted the scarcity of practical implementations. 

Specifically, DT is potentially capable of delivering significant opportunities to the 

construction industry, including improved visualization, enhanced collaboration, cost 

reduction, increased safety, enhanced quality control, and accelerated construction 

process (Madubuike et al., 2022b; Radzi et al., 2019; Visartsakul & Damrianant, 2023). 

Therefore, as supposed by Ammar et al. (2022), further improvement and broad 

adoption of DT within China’s construction industry are crucial.   

1.3 Problem Statement  

Although DT is a promising technology offering numerous benefits to the 

construction industry, its application in this field brings inherent risks because of the 

complexity of the construction projects (Madubuike et al., 2022b; Pham et al., 2023). 

The risks of implementing DT throughout the lifespan of construction projects are 

expected to be interconnected (Lei et al., 2023), for example, the seamless data 

integration in DTs from various sources could also lead to inconsistencies and 

inaccuracies that affect decision-making. Also, for instance, the ability to modify DT 

models in response to the dynamic information can introduce variability in project 

planning and execution, potentially leading to discrepancies between the digital 

visualization and its physical correspondence. Therefore, the flexible functions of DT 

notably amplify uncertainty during its practical implementation. Moreover, 

construction projects are prone to long lifespans, complex sites, multiple stakeholders, 

and numerous engineering risks (Alaloul et al., 2020).  



5 
 

Furthermore, once risks are identified, they should undergo an assessment 

(Tabatabaee, et al., 2022). Proactive risk assessment aids construction project 

managers in gaining a deeper understanding of the risks, facilitating the successful 

adoption of DT technology. On one hand, risk assessment can effectively alleviate the 

threats in the practice of DT in the construction industry. On the other hand, risk 

assessment allows industry professionals to take advantage of DT to its full potential, 

thus maximizing the opportunities associated with DT. Given various risks, 

inappropriate risk assessment may lead to many negative outcomes or even project 

failure – consequences that would trigger a series of problems like cost overruns, 

prolonged timelines, and compromised quality and safety standards (Sunil et al., 2017).  

Currently, there is lack of studies comprehensively exploring the risks related to 

DT practice in the construction industry. Hence, a deficiency in awareness among 

construction practitioners regarding the existence and importance of risks in DT 

implementation leads to reduced effectiveness in achieving objectives within 

construction projects. At the same time, in China, construction companies lack 

dedicated risk management teams, and risk assessment is always absent in construction 

projects(Leung et al., 2024). Therefore, RAM is required in China’s construction 

industry.  

Three gaps exist in the literature that this research tends to fill are: (1) there is a 

lack of a comprehensive study, to the best of the author’s knowledge (Wang et al., 

2024), that has examined the risks—both opportunities and threats—involved in 

adopting DT in the construction industry. (2) risk factors (RFs) are interrelated, while 

there is no study focused on the priority of risks in implementing DT considering both 

the interrelations and their intensity among the risk factors. (3) There is no RAM 
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capable of evaluating the risks of DT practice within China’s construction industry. In 

this case, it is quite necessary to construct a RAM that can identify and assess the risks 

of the practice of DT to enhance the probability of implementing DT in the 

construction industry successfully. 

1.4 Research Questions 

To fill the abovementioned gaps and address the stated problem, the main research 

questions are put forward: 

1: What are the risks related to DT implementation in China’s construction industry?  

2: What are the most critical risks related to the practice of DT in China’s construction 

industry?  

3: Given the interrelations among risks, how can practitioners effectively assess such 

risks in their real-life projects? 

4: Is the developed RAM for DT implementation valid and practical in China’s 

construction industry? 

1.5 Research Aim and Objectives 

The aim of this research is to provide a holistic understanding and a practical 

approach for the assessment of the risks related to DT practice in the China’s 

construction industry and to develop a RAM for evaluating the risks of implementing 

DT. To achieve the aim of this research, subsequent objectives have been determined: 

1. To investigate the risks affecting the implementation of DT in China’s construction 

industry. 

2. To identify the most significant risks of implementing DT in China’s construction 

industry. 

3. To develop a RAM capable of considering the interdependencies and intensities of 
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the risks affecting the implementation of DT in China’s construction industry. 

4. To evaluate the application of the developed RAM in China’s construction industry. 

1.6 Research Scope 

According to the Project Management Institute (PMI), risk management comprises: 

identify risks, analyze risks, response to risks, and monitor and control risks (PMBOK, 

2021). This research specifically targets the risk assessment phase, which is comprised 

with risk identification and risk analysis, of the PMI risk management approach, 

aiming at evaluating risks associated with the practice of DT within the Chinese 

construction industry. Acknowledging the scarcity of DT implementation in the 

China’s construction industry, this study extends beyond traditional building 

engineering to encompass infrastructure engineering sectors such as bridge 

engineering and tunnel engineering. This broader scope ensures a more comprehensive 

data collection, facilitating a more thorough understanding of the risks across various 

parts of the construction industry (as suggested by Gieskes et al. (2000)). Therefore, 

not only the RFs, but also the involved experts for this study consist of qualified 

practitioners from the abovementioned industries. Because DT is an emerging 

technology, urban centers are more prone to hosting DT-related projects. In this case, 

the targeted geographical regions are the most developed cities in China, namely 

Beijing, Shanghai, Shenzhen, and Guangzhou (Yin & Song, 2023). Furthermore, this 

research specifically concentrates on the implementation risks associated with DT in 

China’s construction projects throughout the whole lifecycle. Notably, the identified 

risks include both positive (opportunity) and negative (threat) aspects.  

1.7 Research Significance 

The practice of DT in China’s construction industry has a high potential to improve 
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the efficiency of projects in the construction industry. However, the intricacy of the 

construction projects may lead to numerous risks in the practice of DT. Therefore, the 

successful implementation of DT in China’s construction industry demands a thorough 

comprehension of the associated risks and the development of an effective RAM. This 

research holds great significance in addressing the critical need for several aspects. 

Firstly, through thoroughly identifying and assessing the risks associated with DT 

implementation, this study fills the existing gap in literature and is able to provide 

invaluable insights and practical guidance to industry stakeholders. Secondly, by 

focusing on the identified critical RFs, stakeholders can adopt effective measures to 

address the specific risks posed by DT practice. Thirdly, the development of a robust 

RAM capable of considering the interdependencies and intensities of risks associated 

with DT implementation represents a significant methodological contribution. 

Therefore, this RAM enhances the accuracy and reliability of risk evaluations in the 

implementation of DT in China’s construction industry. Finally, the evaluation of the 

developed RAM in China’s construction industry provides practical validation of its 

effectiveness and applicability. The validation not only demonstrates the utility of the 

proposed model but also offers valuable insights into its implementation in real case, 

facilitating its adoption by industry practitioners and decision-makers. 

1.8 Thesis Outline 

The subsequent chapters are structured in the following manner: Chapter 2 

illustrates a comprehensive literature review of construction industry in China, DT’s 

concept and implementation, risk management in the construction industry, and RFs 

of DT practice in the literature. Chapter 3 explains the whole framework and core 

methods of the thesis, including literature review, semi-structured interview, fuzzy 

Delphi method, a general cybernetic Best-worst method. It also discusses the novelty 
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of the developed G-Cy-BWM risk assessment model. To fulfill research questions, 

Chapter 4 shows the results and discussions of the literature review, semi-structured 

interview, and fuzzy Delphi method. First, it illustrates the identified risk factors from 

the literature review. Subsequently, the refined critical risk factors using semi-

structured interviews and the fuzzy Delphi method are also reported. Also, this chapter 

illustrates the prioritization of the core RFs using the general cybernetic Best-worst 

method, which involves the interdependencies and their strength among the RFs. A 

risk assessment model is developed based on the above methods. Chapter 5 mainly 

talks about the conclusions, limitations, implications, and recommendations for the 

research that could be done in the future. 
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CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides an in-depth exploration of Digital Twin in the construction 

industry through comprehensive literature review. Information and Communication 

Technology (ICT) encompasses technologies that enable access to information via 

telecommunications (Clutterbuck, 2013). It has rapidly evolved with advancements in 

communication technologies, such as computer technology, wireless networks, cell 

phones, and other types of communication (Osterrieder et al., 2020). As a result, ICT 

has emerged as the main driver for the development of the modern economy, 

revolutionizing various fields (Du et al., 2020). The construction industry, being an 

indispensable component of the economy, is no exception to this influence. ICT 

introduces numerous opportunities for improving the construction process (Lu et al., 

2015). DT technology, which can realize dynamic convergence and cyber-physical 

interoperation, is regarded as one of the key enablers of the ICT revolution (Jiang et 

al., 2022).  

The construction industry, in accordance with the manufacturing industry’s 

exploration of ICT-enabled technologies in Industry 4.0, is also striving to identify and 

leverage the benefits, known as Construction 4.0 (Schönbeck et al., 2020). It focuses 

on improving the quality of “digital building” throughout all stages, including planning, 

design, construction, operation, and maintenance stages (Walter, 2020). By digitizing 

the entire project management process, virtual reality and real-time interaction can be 

combined, increasing the efficiency of construction processes and ensuring the quality 

of building products. To embrace Construction 4.0, construction enterprises must 

leverage advanced digital technologies to manage key aspects of construction projects, 
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including the construction process, construction site work cooperation, and building 

lifecycle.  

Digital twin (DT), recognized as the fourth wave of technological advancements 

in Industry 4.0, is recognized as one of the key enablers of the ICT revolution. 

(Madubuike et al., 2022b; Teisserenc & Sepasgozar, 2021). DT culminates in the 

development of a digital model that mirrors the physical entity (Liu et al., 2021). The 

opportunities of digitalization are vast, including improved project management 

efficiency, enhanced product quality, reduced safety risks at construction sites, and 

overall progress for the construction industry. However, despite being a key industry 

in China’s economy, the construction industry is often considered outdated due to its 

technological lag (Forcael et al., 2020; Kor et al., 2022). While the technical systems 

in construction have improved over the past several industrial revolutions, they still 

trail behind other industries. This has resulted in a growing technological gap between 

the construction industry and other fields.  

2.2 Digital Twin in the Construction Industry 

The construction industry develops sluggishly due to poor digitization (Teisserenc 

& Sepasgozar, 2021). According to Tahmasebinia et al. (2023), digitization involves 

data management in digital format using the internet and software. Also, Ammar et al. 

(2022) proposed that construction projects rely heavily on large volumes of data 

originating from diverse sources. Therefore, data is crucial for the development of the 

whole industry. With the emergence of innovative technologies such as IoT, big data 

analytics, cloud computing, and AI, the concept of data and data-centric decision-

making is increasingly prevalent (Qi et al., 2021). Specifically, to make valued 

decisions, the data quality is significant for decision-makers. Therefore, DT is regarded 
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as a key facilitator for the digital revolution of the construction industry, enhancing the 

digitization performance of the whole industry (Ammar et al., 2022). Therefore, DT’s 

implementation in the construction industry should be further explored.  

2.2.1 Definitions of DT in the Construction Industry 

The definition of ‘twin’ was first mentioned by the National Aeronautics and Space 

Administration (NASA) in the aerospace industry, specifically during the Apollo 

project in the 1960s (Negri et al., 2017). NASA developed a model of space vehicles 

on Earth that could simulate their conditions, essentially serving as replicas of the 

prototypes (Rosen et al., 2015). Professor Michael Grieves first proposed the term 

“digital twin” in 2003 within the field of product lifecycle management (Grieves, 

2014). In 2012, NASA successfully utilized DT technology to create dynamic models 

mirroring the real-time status of flying physical twins. These digital twins had access 

to historical information and data, allowing them to make predictions regarding the 

health and remaining lifespan of the vehicles (Glaessgen & Stargel, 2012). Siemens 

applied DT technology in 2016, marking its integration into the development of the 

manufacturing industry as the rise of Industry 4.0 (Qi et al., 2021). According to Tao 

et al. (2019), DT has emerged as a core intelligent technology that can achieve smart 

manufacturing and Industry 4.0. Academic research has also extensively addressed on 

DT. In 2017, Tao Fei et al. (2017) proposed a 5-dimension Digital twin shop-floor 

model, building upon the previous 3-dimension DT model. Figure 2.1 below depicts 

some notable milestones related to DT. 
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Figure 2.1. Timeline of DT history (designed by the author, adopted from (Qi et 

al., 2021)) 

 

Over the years, numerous definitions of DT have emerged with the continuous 

evolution of DT-enabling technologies. These technologies encompass various aspects 

such as sensing, data acquisition, modeling, data management methods, DT services, 

and data connectivity since the 2000s (Hu et al., 2021; Qi et al., 2021). The initial 

definition of DT was put forth by Michael Grieves in 2003, describing it as a “virtual 

digital representation equivalent to physical products” (Grieves, 2014). However, the 

concept of DT did not see significant development until 2012 when NASA proposed 

a more comprehensive definition (Glaessgen & Stargel, 2012). In general, the 

definition highlights DT as the integration of multi-physics, multiscale, probabilistic 

simulation of an as-built object, employing the best available physical models to create 

its corresponding twin (Angjeliu et al., 2020). This makes DT a popular research topic 

in the aerospace field. Following NASA’s definition, Rios et al. (2015) expanded the 

concept of DT to encompass other domains. Similarly, Rosen et al. (2015) put forward 

a definition that DT is the mirroring of physical and virtual objects to assess the 

behavior of the physical counterpart. During this phase, the definition of DT primarily 

focused on explaining its purpose and the components involved (Madubuike et al., 

2022a).  
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Thereafter, the definitions of DT were improved in the manufacturing industry. 

Boschert & Rosen (2016) proposed a more concise definition, stating that DT 

encompasses all useful data related to a physical product. However, this definition 

lacked comprehensiveness as it did not address the purpose and components of DT. In 

2017, Grieves and Vickers provided a more detailed definition, considering DT as a 

system of digital information that represents a physical product. It can be seen as the 

virtual counterpart of the manufactured object. This definition emphasizes how DT 

enables researchers to gain a better understanding of their designs and enhances 

control over end-product quality (Grieves & Vickers, 2016). Although this definition 

is more specific to the product lifecycle management industry, it offers great detail. 

Zhuang et al. (2018) defined DT within the field of smart manufacturing. They 

described it as a virtual model in the virtual world that accurately maps its 

corresponding physical counterpart and dynamically changes along with it in every 

aspect. In product design engineering, Tao et al. (2019) defined DT as a complete 

correspondence between physical objects and their digital representations, 

incorporating physical, virtual, and interactive data between them. 

The concept of DT is ill-defined in the AEC industry, lacking a universal definition 

(Sacks, Brilakis, et al., 2020). However, several researchers have made efforts to 

propose comprehensive definitions of DT specifically tailored to the construction 

industry. Madni et al. (2019) defined DT as a virtual model of its physical twin that 

continually evolves throughout its lifecycle to simulate maintenance, performance, 

and health status. Building upon these concepts, Kor et al. (2021) put forward a 

definition for DT in construction, characterizing it as a comprehensive engineering 

model that utilizes multi-site monitoring systems, data flow, and unique capabilities to 

monitor construction projects. Similarly, Alizadehsalehi & Yitmen (2021) extended the 
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DT concept to a Construction Digital Twin, which encompasses real-time monitoring, 

anomaly detection, behavioral learning, and the ability to predict the actions and 

functions of the physical twin. These definitions primarily address the real-time 

monitoring function of DT, which is particularly relevant for predictive maintenance 

in construction projects. Notably, there is no general definition of DT applicable to all 

industries since each industry has its own specific purposes and requirements when 

utilizing DT technology. Table 2.1 illustrates several significant DT definitions within 

the construction industry. 

Table 2.1. Main concepts of DT within construction industry 

Reference 

Definitions Applied field 

Madni et al. 

(2019) 

A virtual instance of its physical corresponding, and it is 

continually changing during its lifecycle to simulate the 

physical one in maintenance, performance, and health status 

Construction 

Kor et al. 

(2022) 

A comprehensive engineering model that can monitor the 

construction product from multi-site-monitoring systems with 

the help of data flow and unique abilities 

Construction 

Yitmen et al. 

(2021) 

Construction digital twin (CDT) is the evolution of the DT 

concept, and it is able to monitor complicated construction 

procedures based on the basic functions of DT. A CDT is not 

only a DT, it also has the ability to conduct anomaly detection 

and behavioral learning. Most importantly, it can predict the 

actions and functions of the physical twin 

Construction 

Sacks et al. 

(2020) 

An innovative approach to managing construction products. It 

utilizes data streams from diverse monitoring technologies 

and employs AI to deliver precise information. This enables 

proactive analysis and optimization of continuous processes 

related to design, planning, and production. 

Construction 

Sepasgozar 

(2021) 

Current definitions of DTs emphasize: (1) the necessity for 

precise digital representations that encompass the geometric 

features and attributes of physical objects, (2) DTs should also 

incorporate the logic and rules dictating the behavior of these 

physical entities, (3) DTs are anticipated to encode data, 

encompassing historical records, current states, and 

predictions related to the corresponding physical entities. 

Construction 

Jasiński et al. 

(2023) 

A concept applied across various fields, defined by the 

development of a virtual copy for an existing object. This 

virtual representation is typically based on a digital model and 

enables dynamic monitoring of the real-world counterpart.  

Civil and 

Bridge 

Engineering 

Britain (2022) Lifelike digital representations of physical assets, serving the 

purpose of monitoring and forecasting performance, 

providing valuable insights, and facilitating interventions.  

Built 

Environment 

Boje et al. 

(2020) 

The conception of DT is developed based on BIM, enhanced 

by incorporating sensing capabilities, big data, and IoT from 

site to building operation 

Buildings and 

Infrastructure 

Jiang et al. 

(2021) 

Characterized by virtual representations mirroring their 

physical counterparts. Data transfer between the physical and 

Civil 

Engineering 
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virtual worlds is necessary.  

Naderi & 

Shojaei (2023a) 

A virtual replica of a physical asset with bidirectional data 

flow. 

Infrastructure 

 

 In summary, from the definitions of DT in Table 2.1, DT establishes a twin 

relationship between the virtual and physical worlds, characterized by its capacity for 

dynamic bidirectional data exchange (Jiang et al., 2021; Opoku et al., 2022). DT is 

capable of creating digital representations that can be regularly updated using multiple 

data sources, enabling predictions, optimization, monitoring, and improved decision-

making (Opoku et al., 2023). Based on the literature, this study proposed a definition 

of DT tailored to the construction industry: A digital twin is a digital replica that 

simulates and mirrors real-world entities or processes in a virtual environment. This 

virtual representation is synchronized in real-time to maintain alignment with its 

physical counterpart, capturing a high level of fidelity to enable comprehensive 

analysis, monitoring, and optimization. Notably, the real-world entities could be both 

entities (e.g., construction equipment and products, workers, construction sites, and 

assets) and processes (e.g., design, construction, operation & management, and 

demolition) in the construction projects. Virtual representation is a digital duplicate of 

construction objects and processes, which includes various linked digital assets (e.g., 

digital models, images, documents, and videos) and supporting data (Seaton et al., 

2022). Synchronization, which enables the status of the DTs to be consistent with their 

physical counterparts (McKee, 2023), is a key element that differentiates a digital twin 

from other digital models. At the same time, synchronization is affected by both 

frequency and fidelity, which determines the timing of updates and precision of the 

virtual representation, respectively. 
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2.2.2 Digital Twin Maturity Model in the Construction Industry 

Several DT maturity models have been proposed in different domains. In the 

manufacturing industry, Kritzinger et al. (2018) outlined three hierarchical tiers of DTs 

based on the degree of data integration: digital model, digital shadow, and digital twin. 

Building upon this framework, Liu et al. (2024) introduced two additional levels: 

Cognitive DT and Federated DT. Another model specific to manufacturing was 

developed by Hu et al. (2023), including Basic, Connection, Integration, Perception, 

Interaction, and Autonomy. In the field of systems engineering, Madni et al. (2019) 

proposed a 4-level model based on the sophistication of the virtual model: Pre-digital 

Digital Twin, Digital twin, Adaptive Digital Twin, and Intelligent Digital Twin. 

Similarly, Kumar et al. (2022) proposed a more comprehensive model including 

Digital model, Digital twin, Adaptive digital twin, Technical and functional DT, and 

Autonomous DT. In the Aerospace area, Medina et al. (2021) introduced a 4-level 

maturity model comprising Monitoring, Diagnostic, Prediction, and Prescription. 

In the construction industry, there are also several maturity models have been 

developed. ARUP (2019) proposed a 5-level evolution model based on four metrics: 

autonomy, intelligence, learning, and fidelity, which are expected to increase as the 

DT progresses. According to the characteristics of each level, the five levels are named: 

Linked, Feedback & Control, Predictive & Analytic, Learning, and Autonomous. Chen 

et al. (2021) developed their 6-level model grounded in asset management maturity 

stages: Unaware, Identifiable, Aware, Communicative, Interactive, Instructive & 

Intelligent. Furthermore, models by Boje et al. (2020) and Naderi et al. (2023b) 

emphasize technical advancements, while some models focus on functional 

completeness. For instance, Wagg et al. (2020) proposed a 5-level model for asset 

management: Supervisory, Operational, Simulation, Intelligent, and Autonomous 
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Management. Similarly, Autodesk (2021) introduced a tailored 5-level model for the 

Architecture, Engineering, and Construction (AEC) industry: Descriptive twin, 

Informative twin, Predictive twin, Comprehensive twin, and Autonomous twin, which 

was also adopted by Seaton et al. (2022). The different DT maturity models are listed 

in Table 2.2. 

Table 2.2. Digital twin maturity model in the literature. 

Domain Reference Levels Name of the Levels 

General 

Liu et al. 

(2024) 
0~4 

Digital model, Digital shadow, Digital twin, Cognitive 

DT, Federated DT 

Kumar et 

al. (2022) 
1~5 

Digital model, Digital twin, Adaptive digital twin, 

Technical and functional DT, Autonomous DT 

Manufacturing 

Hu et al. 

(2023) 
1~6 

Basic, Connection, Integration, Perception, Interaction, 

Autonomy 

Kritzinger 

et al. 

(2018) 

1~3 Digital model, Digital shadow, Digital twin 

Systems 

engineering 

Madni et 

al. (2019) 
1~4 

Pre-digital twin, Digital Twin, Adaptive Digital Twin, 

Intelligent Digital Twin 

Aerospace 
Medina et 

al. (2021) 
1~4 Monitoring, Diagnostic, Prediction, Prescription 

Construction 

ARUP 

(2019) 
1~5 

Linked, Feedback and Control, Predictive and Analytic, 

Learning and Autonomous 

Wagg et al. 

(2020) 
1~5 

Supervisory, Operational, Simulation, Intelligent, 

Autonomous management 

Boje et al. 

(2020) 
1~3 

Monitoring Platform, Intelligent Semantic Platform, 

Agent-driven socio-technical platform 

Autodesk 

(2021) 
1~5 

Descriptive twin, Informative twin, Predictive twin, 

Comprehensive twin, Autonomous twin  

Seaton et 

al. (2022) 
1~5 

Descriptive twin, Informative twin, Predictive twin, 

Comprehensive twin, Autonomous twin  

Chen et al. 

(2021) 
1~6 

Unaware, Identifiable, Aware, Communicative, 

Interactive, Instructive and Intelligent 

Naderi et 

al. (2023b) 
0~4 BIM, Digital twin, enhanced DT, Metaverse 

Given the relevance and comprehensiveness of the 5-level model proposed by 

Autodesk (Autodesk, 2021) and Seaton et al. (Seaton et al., 2022) as shown in Figure. 

2.2, it is adopted in this review paper. At the Descriptive level (level 1), DTs represent 

the digital model connected to real-world systems but lack intelligence, learning, and 

autonomy (Ghorbani et al., 2024). While the Informative level (level 2) involves 

converting data into actionable information. This is achieved with computer vision 
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techniques, which are supported by deep learning technologies (Pan & Zhang, 2021b). 

The Predictive level (level 3) employs operational data for prediction. Specifically, 

with artificial intelligence (AI)-based technologies (e.g., process mining), DTs can 

utilize large volumes of data to make valuable analytics and predictions (Pan & Zhang, 

2021b; van der Aalst, 2016). In the Comprehensive level (level 4), DTs learn from 

diverse data sources within the surrounding environment, and it is able to conduct real-

time analytics through what-if simulations. By utilizing AI techniques such as machine 

learning, DTs can analyze historical data and real-time information to simulate various 

scenarios. Finally, at the Autonomous level (level 5), with the help of AI, DTs can learn 

and minimize reliance on human inventions through automatic analytics and decision-

making. Obviously, AI and AI-based technologies play a significant role throughout 

the DT levels. 

 

Figure 2.2. DT maturity model (adopted from (Autodesk, 2021; Seaton et al., 

2022)). 

2.2.3 Review Articles of Digital Twin Applications within the Construction 

Sector  

In this section, a comprehensive literature review is conducted to explore the 
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conceptions and applications of DT. During this process, the potential risk factors (RFs) 

are also extracted from the literature. This section aims to provide a thorough overview 

of the previous literature reviews pertaining to the practice of DT in the construction 

industry and a total of 45 published reviews within the last decade are explored. The 

reviews can be categorized into four clusters based on their scope, including 

exploration of DT enabling technologies (e.g., AR, AI, and IoT), differentiation of DT 

from other similar concepts (e.g., digital shadow, BIM, and Cyber-Physical Systems, 

identification of barriers or challenges associated with DT adoption, and investigation 

of DT’s applications in the construction industry (e.g., sustainability, fault detection, 

and monitoring). The cluster distribution is illustrated in Figure 2.3.  

 

Figure 2.3. Distribution of clusters regarding review topics 

In terms of DT enabling technologies, Tuhaise, et al. (2023) conducted a 

systematic review using demonstrative case studies to identify the emerging key 

enabling technologies for DT implementation in the literature, such as IoT sensors, 

vision and component-based sensing devices. They (ibid) highlighted research gaps in 

area such as data transmission, data processing, and visualization. These areas also 

represent the future directions for technological development. Similarly, Hosamo et al. 
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(2022) systematically reviewed the development and practice of DT technologies in 

construction. They (ibid) identified four technological drivers for digitization: big data, 

IoT, and cloud-based access. In a review conducted by Naderi & Shojaei (2023a), 85 

studies related to infrastructure DT between 2012 and 2022 were analyzed. The 

authors (ibid) categorized DT technologies into three groups: information model 

technologies, data acquisition technologies, and data processing technologies.  

Moreover, Deng et al. (2021) conducted a comprehensive review to investigate 

the current state of DT technologies in built environment applications. Baghalzadeh et 

al. (2022) concluded that DT, BIM, and IoT are trending technologies across various 

fields within the construction industry based on their analysis. Sadri et al. (2023) 

examined 86 academic articles to investigate DT-enabling technologies, challenges, 

scope, and integration possibilities. Their findings revealed the potential benefits of 

integrating technologies (e.g., blockchain and IoT) in addressing implementation 

challenges individually. Opoku et al. (2021) adopted a systematic literature review 

method to comprehensively explores the concept, technologies, and applications of 

DT in construction industry. They (ibid) highlighted that DT can be applied throughout 

all stages of a construction project’s lifecycle. Although plenty of advanced DT-

enabling technologies have been recognized by researchers, considerable knowledge 

gaps remain to be addressed. Resolving these gaps is imperative to enhance the 

capabilities, reliability and applicability of DT in real-world scenarios (Deng et al., 

2021). 

In terms of DT definitions and concepts, Boje et al. (2020) reviewed numerous 

applications of BIM in the construction industry as a foundation for developing the 

concept of construction DT. They (ibid) highlighted that the benefits of DT extend 

beyond real-time data to include profound impacts such as economic and sustainable 
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benefits for smart construction. In distinguishing the DT concept from digital shadow, 

Sepasgozar (2021) emphasized that DT not only provides a digital representation but 

also facilitates bidirectional data flow and real-time self-management. Radzi et al. 

(2023) analyzed 54 studies and identified four different DT-BIM relationships: BIM is 

a part of DT, DT is a part of BIM, BIM is equivalent to DT, and no connection between 

the two. They also found that the previous research on DT and BIM focuses on areas 

of planning, design, construction, O&M, and decommissioning. For different purposes, 

Jiang et al. (2021) distinguish DT from BIM and CPS based on the physical and digital 

aspects, connections, and twin relationships. Mêda et al. (2021) conducted a review to 

enhance our understanding of DT and concluded that digital data templates and digital 

building logbooks are key factors for the development of digital twin construction 

(DTC), which was proposed by Sacks et al. (2020), within the construction process.  

In terms of DT implementation barriers and challenges, Opoku et al. (2023) 

identified the barriers to DT implementation in construction. Similarly, Lei et al. (2023) 

identify the challenges related to urban DTs through a systematic review and an expert 

survey. Consequently, they identified nine non-technical and 14 technical challenges, 

and the most significant challenges were interoperability and practice value. In the 

context of sustainable structural design, Zhang et al. (2020) reviewed current research 

to explore the implementation of DT. They also provided suggestions for future 

improvements based on their findings. Farouk et al. (2023) identified and categorized 

45 barriers into six groups, determining that the most significant obstacles to DT are 

related to “performance” and “security”. In general, researchers aim to make DT more 

adaptable and practical to construction industry by addressing these barriers. 

In terms of DT’s application, most of the review articles have examined the 

application of DT in asset management (AM) and facility management (FM). For 
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instance, Xie et al. (2023) conducted a review using clustering, knowledge mapping, 

and network analysis methods. They (ibid) generated a knowledge map that depicted 

three stages of construction DT for AM and fault prediction. Similarly, Hosamo et al. 

(2022) employed qualitative research methods to explore DT’s capabilities in fault 

detection. They (ibid) concluded that DT requires further development in scanner 

hardware and software, prediction and detection algorithms, and modeling to achieve 

effective fault detection and prediction. Zhong et al. (2023) proposed a predictive 

maintenance method based on DT, which offers three key advantages: real-time 

perception, high-fidelity models, and accurate simulation predictions. Arisekola & 

Madson (2023) utilized social network analysis to examine DT’s application in 

assessment management. Their findings revealed that topics real-time data and 

decision-making were important topics in the literature.  

Furthermore, Saback et al. (2022) took a systematic approach to review DT’s 

application in asset management, and several gaps were addressed, including a lack of 

unified DT definition, complex data flow, and software compatibility for DT 

development. Coupry et al. (2021) highlighted the potential utilization of DT in 

conjunction with extended reality technologies to improve maintenance operations in 

smart buildings. Hakimi et al. (2023) reviewed 248 documents related to DT in FM, 

and concluded that the current literature focuses on BIM-based FM, AI-based 

predictive maintenance, dynamic cyber-physical system data integration, and lifecycle 

FM. Meanwhile, Hou et al. (2023) investigated DT’s application in heritage facilities 

management and found that DT could support decision-making, monitor and predict 

performance, design maintenance strategies, and evaluate and manage energy in 

heritage facilities. 

Several studies have highlighted DT’s potential through the lifespan of 
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construction projects. In a study by Visartsakul and Damrianant (2023), DT is shown 

to have applications in various stages of construction. Another systematic review 

conducted by Khallaf et al. (2022) analyzed the applications of DTs in construction 

through content analysis. They categorized the applications into nine areas: lifecycle 

analysis, FM, energy, education, disaster, structural health monitoring(SHM), smart 

cities, infrastructure management, and miscellaneous purposes.  

Furthermore, Hu et al. (2022) reviewed 182 papers on DT in construction and 

proposed six key applications. The study concluded that the majority of literature 

focuses on improving the method, milieu, and measurement aspects of construction 

processes, while the machine, manpower, and material parts receive less emphasis. 

Through a comprehensive bibliometric analysis on 77 articles about DT application in 

the AEC-FM industry, Deng et al. (2021) drew a conclusion that information 

standardization is the most significant obstacle that hindering the application of DT in 

the construction sector. In general, the dynamic data flow enables a DT to mirror 

physical entities by consistently adapting to operational changes and alterations 

predicated on informational inputs and online data aggregation (Tuhaise et al., 2023). 

Consequently, this empowers the lifecycle management and predictive capabilities of 

DT within construction projects. 

DT has shown potential to enhance the sustainability of buildings. Sepasgozar et 

al. (2021) highlighted the combination of BIM and IoT as a means to achieve 

sustainable construction. Megahed & Hassan (2022) emphasized its contribution 

towards sustainable development goals. In the energy efficiency field, Bortolini et al. 

(2022) conducted a comprehensive review of DT’s application in buildings, 

categorizing the literature into four areas: design optimization, occupants’ comfort, 

building operation and maintenance, and energy consumption simulation. Furthermore, 




