INVESTIGATING THE EFFECT OF BRAIN BREAK EXERCISE VIDEOS ON MENTAL STRESS, PERSONALITY, MENTAL HARDINESS, SOCIAL SUPPORT AND PHYSICAL ACTIVITY AMONG COLLEGE STUDENTS IN JIANGXI PROVINCE, CHINA

PAN MINGZHU

UNIVERSITI SAINS MALAYSIA 2025

INVESTIGATING THE EFFECT OF BRAIN BREAK EXERCISE VIDEOS ON MENTAL STRESS, PERSONALITY, MENTAL HARDINESS, SOCIAL SUPPORT AND PHYSICAL ACTIVITY AMONG COLLEGE STUDENTS IN JIANGXI PROVINCE, CHINA

by

PAN MINGZHU

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

March 2025

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to my principal supervisor, Associate Professor Dr. Garry Kuan Pei Ern. I am grateful for his continuous guidance in exploring research questions. His passion for research and academic rigour are truly admirable. Additionally, he often led us in sports activities, reminding us to love life, stay kind, and maintain a balanced healthy lifestyles perspective, which has given me a new appreciation for life. Thank you for constant support and guidance whenever I sought help or had questions, and for always steering me in the right direction. I would also like to show my highest gratitude to my cosupervisor, Associate Professor Dr. Kueh Yee Cheng @ Erica. Her meticulous guidance and professional insights have been invaluable throughout this research process. Dr. Erica always helps me to understand complex concepts from her specialized perspective has significantly enriched my knowledge framework. Her attention to detail and professional expertise have greatly contributed to the depth and quality of this study. Thank you also to my field supervisor, Associate Professor Dr. Yao Liying who always delivers her suggestions for this study. I am profoundly thankful to my family for their unconditional support. Their encouragement and belief in my abilities have been a source of strength and motivation. Without their support, completing this research would not have been possible. Additionally, I would like to express my sincere thanks to Shangrao Normal University for providing support and resources for this study. Also, my sincerest appreciation extents to all participants, researchers, and all person who involved and contributed to this study. Their involvement and cooperation were crucial to the success of this research.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	X
LIST OF FIGURES	xiii
LIST OF APPENDICES	XV
LIST OF ABBREVIATIONS, SCRONYMS AND SYMBOLS	xvii
ABSTRAK	xix
ABSTRACT	xxii
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Problem statement	10
1.3 Significance of study	14
1.4 Operational Definition	15
1.5 Research Objective, Research Questions, Research Hypothesis	18
1.5.1 General Objective	20
1.5.2 Specific Objectives	21
1.5.3 Research Questions	18
1.5.4 Research Hypothesis	19
1.6 Organisation of the thesis	22
1.7 Summary	23
CHAPTER 2 LITERATURE REVIEW	24

2.1 Introduction	24
2.2 Mental stress and health status	26
2.3 Mental stress of college students	27
2.3.1 Prevalence of mental stress among college students	27
2.3.2 Policy support for psychological problems among university students in China	29
2.3.3 Risk factors of mental stress among college students	32
2.3.4 Research on mental stress coping mechanisms among college students	34
2.4 College Students' Mental Stress Interventions	35
2.4.1 Physical Activity	35
2.4.2 Music	38
2.4.3 Psychoeducational Interventions	40
2.4.4 Cognitive-behavioral Therapy (CBT)	42
2.4.5 Summary of Mental Stress Intervention Strategies	43
2.5 Brain Breaks Intervention Programme	44
2.6 Mental Stress Measurement	47
2.7 Variables related to the study	52
2.8 Factor analysis	61
2.9 Repeated Measures ANOVA and MANOVA	66
2.10 Gaps in the Literature	68
2.11 Conceptual framework	70
2.12 Summary	71
CHAPTED 3 METHOD OF PHASE 1	73

3.1 Introduction	73
3.2 Study design	73
3.3 Study duration	73
3.4 Study location	73
3.5 Study population and sample	74
3.5.1 Reference population	74
3.5.2 Source population	74
3.5.3 Sampling frame	74
3.5.4 Study participants	75
3.6 Sampling method	75
3.7 Sample size calculation	76
3.8 Measurement tools	77
3.8.1 Mental stress	82
3.8.2 Stress scales for college students (SSCS)	83
3.8.3 Personality (MINI-IPIP)	79
3.8.4 Mental hardiness (CD-RISC)	80
3.8.5 Social support (SSSUS)	81
3.8.6 Global Physical Activity Questionnaire	81
3.9 Data collection	83
3.10 Data management	88
3.11 Statistical analysis	88
3.11.1 Preliminary data analysis	89

	3.11.2 Descriptive analysis	90
	3.11.3 Reliability analysis	90
	3.11.4 Validity analysis	91
	3.11.5 Confirmatory Factor Analysis (CFA)	92
	3.11.6 Structural Equation Modelling (SEM)	102
3.1	2 Ethical consideration	105
	3.12.1 Ethical approval	105
	3.12.2 Data protection and record keeping	106
	3.12.3 Declaration of conflict of interest	107
3.1	3 Study flow chart	107
3.1	4 Summary	108
CE	HAPTER 4 RESULT OF PHASE 1	109
4.1	Introduction	109
4.2	2 Validating the uBioMacpa Pro Stress Measurement Tool	110
	4.2.1 Sample Description	110
	4.2.2 Preliminary data analysis	110
	4.2.3 Descriptive analysis for uBioMacpa Pro study	112
	4.2.3 Descriptive analysis for abioviacpa FTO study	
	4.2.4 Reliability test of uBiomacpa Pro	115
4.3	4.2.4 Reliability test of uBiomacpa Pro	116 ntal
4.3	4.2.4 Reliability test of uBiomacpa Pro	116 ntal 117

4.3.3 Descriptive analysis of the items and study variables	118
4.4 Assumption checking for CFA	123
4.4.1 Univariate normality	124
4.4.2 Multivariate normality check by Mahalanobis distance plot vs Chi square	124
4.4.3 Multivariate normality check based on Mardia Kurtosis and Skewner values	
4.5 Measurement model (CFA)	126
4.5.1 The MINI-IPIP Measurement Model	126
4.5.2 The CD-RISC measurement model	130
4.6 Assumption checking on SEM	136
4.6.1 Univariate normality	136
4.6.2 Multivariate normality	136
4.6.3 Multicollinearity (MC)	136
4.7 SEM Analysis	136
4.7.1 The relationship between personality, hardiness, social support, physicactivity, mental stress	
4.7.2 Path model testing of structural model	137
4.7.3 Summary of SEM testing and model's fit indices	140
4.7.4 Structural model testing for indirect relationship	142
4.8 Summary	143
CHAPTER 5 METHOD OF PHASE 2	144
5.1 Introduction	144
5.2 Study Design	144

5.3 Study duration	144
5.4 Study location	144
5.5 Study population and sample	145
5.6 Sampling method	146
5.7 Sample Size Calculation	147
5.8 Measurement and Intervention Tools	148
5.9 Data collection	150
5.10 Data Management	152
5.11 Statistical Analysis	152
5.12 Study Flow Chart	157
5.13 Summary	158
CHAPTER 6 RESULT OF PHASE 2	160
CHAPTER 6 RESULT OF PHASE 2	
	160
6.1 Introduction	160
6.1 Introduction	160 160
6.1 Introduction	160 160 161
6.1 Introduction	160 160 161 167
6.1 Introduction	160160161167185
6.1 Introduction	160160161167185188
6.1 Introduction	160160161167185188188

7.5 Discussion on the results and key findings	196
7.6 Strengths and limitations of the study	218
7.7 Summary	226
CHAPTER 8 CONCLUSION	227
8.1 Introduction	227
8.2 Conclusion	227
8.3 Recommendations for future studies	229
REFERENCES	231
APPENDICES	
LIST OF PUBLICATIONS	

LIST OF TABLES

Page
Table 2.1 Summary of Literature Search Strategy
Table 3.1 List of questionnaires
Table 3.2 The present study's intended statistical analyses
Table 3.3 Summary of the grouping of fit indices and cut-off value97
Table 4.1 Participants' response rate summary for objective 1
Table 4.2 Participant demographic characteristics ($n = 60$)
Table 4.3 Demographic characteristics of participants (<i>n</i> =200)112
Table 4.4 Three-day mean mental stress score for participants
Table 4.5 Categorical of Mental Stress Score
Table 4.6 Categorical Mental stress score measured by SSCS
Table 4.7 Categorical Mental stress score measured by uBiomacpa Pro114
Table 4.8 Reliability test results (ICC, 95% CI)
Table 4.9 Correlation between uBioMacpa Pro & SSCS
Table 4.10 Participants' Response Rate Summary
Table 4.11 Demographic characteristics of participants (<i>n</i> =890)118
Table 4.12 Categorical of Mental stress score
Table 4.13 Distribution of the items' scores of MINI-IPIP scale
Table 4.14 Distribution of the items' scores of the CD-RISC scale
Table 4.15 Distribution of the items' scores of the SSSUS scale
Table 4.16 Categorical of GPAQ
Table 4.17 Goodness of fit indices for MINI-IPIP (Initial and final models)128

Table 4.18 Standardised factor loading, AVE, and CR of MINI-IPIP measurement model	.130
Table 4.19 Goodness of fit indices for CD-RISC three factors (Initial and final models)	.132
Table 4.20 Standardised factor loading, AVE, and CR of CD-RISC measurement model.	.135
Table 4.21 Specific hypotheses for the initial model of SEM	.138
Table 4.22 Goodness of fit indices for initial SEM	.139
Table 4.23 Goodness of fit indices for final model of SEM	.140
Table 4.24 Decision for the proposed hypotheses	.141
Table 4.25 Hypothesised path relationships in the modified proposed model	.141
Table 4.26 The standardized indirect and total effects on mental stress	.142
Table 5.1 Brain-Breaks intervention program	.149
Table 6.1 Characteristics of Phase 2 participants	.161
Table 6.2 Comparison of Mental Stress Score with group based on time (Time effect)	.162
Table 6.3 Overall mean differences of Mental Stress scores among intervention and control groups	.162
Table 6.4 Comparison of mean score for Mental Stress among two groups based on time (Time*Group effect)	.163
Table 6.5 Summary of Levene's test for Mental Stress	.164
Table 6.6 Comparison of mean score for GPAQ scale within group based on time (Time effect)	.165
Table 6.7 Overall mean differences of GPAQ score among intervention and control groups.	.165
Table 6.8 Comparison of mean score for GPAQ scale among two groups based on time (Time*Group effect)	.166
Table 6.9 Summary of Levene's test for GPAQ scale	.167
Table 6.10 Comparison of mean score for MINI-IPIP scale within groups based on time (Time effect).	.168
Table 6.11 Overall mean differences of MINI-IPIP score among two groups	169

Table 6.12 Comparison of mean score for MINI-IPIP scale among two
groups based on time (Time*Group effect)170
Table 6.13 Correlations of Pre-intervention score for MINI-IPIP factor174
Table 6. 14 Comparisons of mean score for CD-RISC scale within group based on time (Time effect)
Table 6.15 Overall mean difference of CD-RISC score among two groups176
Table 6.16 Comparison of mean score for CD-RISC scale among two based on groups time (Time*Group effect)
Table 6.17 Correlations of Pre-intervention score for CD-RISC factors179
Table 6.18 Comparison of mean score for SSSUS scale within group based on time (Time effect)
Table 6.19 Overall mean differences of SSSUS score among two group181
Table 6.20 Comparison of mean score for SSSUS scale among two groups based on time (Time*Group effect)
Table 6.21 Correlations of Pre-intervention score for SSSUS factors185
Table 6.22 Summary of RM ANOVA and RM MANOVA for measured scales
Table 7.1 Specific hypotheses for the initial model of SEM (Copy from Table 4.21)

LIST OF FIGURES

Page
Figure 2.1 Conceptual framework of this study71
Figure 3.1 Location of the area where the study was conducted74
Figure 3.3 Flow chart of data collection for Objective 2
Figure 3.4 Flowchart of the statistical analysis for uBioMacpa Pro92
Figure 3.5 Flow chart of CFA for MINI-IPIP and CD-RISC
Figure 3.6 Flowchart of SEM analysis
Figure 3.7 Study Flow Chart
Figure 4.1 Chi-square versus Mahalanobis distance plot of MINI-IPIP model 125
Figure 4.2 Chi-square versus Mahalanobis distance plot of CD-RISC Model125
Figure 4.3 Initial model of MINI-IPIP with five factors
Figure 4.4 Final model of MINI-IPIP with five factors
Figure 4.5 Initial model of CD-RISC with three factors
Figure 4.6 Final model of CD-RISC with three factors
Figure 4.7 The hypothesized proposed initial SEM of personality, mental hardiness, social support, amount of PA, and mental stress level139
Figure 4.8 The final SEM of personality, mental hardiness, social support, amount of PA and mental stress
Figure 5.1 Flow chart of data collection for phase 2 and group allocation151
Figure 5.2 Analysis steps of the RM ANOVA and RM MANOVA157
Figure 5.3 Study Flow Chart
Figure 6.1 Plot shows the adjusted mean of Mental stress score for pre- intervention and post-intervention for the intervention and control groups
Figure 6.2 Plot shows the adjusted mean of GPAQ score for pre-intervention and post-intervention for the intervention and control groups166

Figure 6.3	Plot shows the adjusted mean Extraversion of MINI-IPIP scores for pre-intervention and post-intervention for the intervention and control groups
Figure 6.4	Plot shows the adjusted mean Agreeableness of MINI-IPIP scores for pre-intervention and post-intervention for the intervention and control groups
Figure 6.5	Plot shows the adjusted mean Conscientiousness of MINI-IPIP scores for pre-intervention and post-intervention for the intervention and control groups
Figure 6.6	Plot shows the adjusted mean Neuroticism of MINI-IPIP scores for pre- intervention and post-intervention for the intervention and control groups
Figure 6.7	Plot shows the adjusted mean Intellect/ Imagination of MINI-IPIP scores for pre-intervention and post-intervention for the intervention and control groups.
Figure 6.8	Plot shows the adjusted mean Toughness of CD-RISC scores for pre- intervention and post-intervention for the intervention and control groups
Figure 6.9	Plot shows the adjusted mean Strength of CD-RISC scores for pre- intervention and post-intervention for the intervention and control groups
Figure 6.1	0 Plot shows the adjusted mean Optimism of CD-RISC scores for pre- intervention and post-intervention for the intervention and control groups
Figure 6.1	1 Plot shows the adjusted mean Subjective support of SSSUS scores for pre-intervention and post-intervention for the intervention and control groups
Figure 6.1	2 Plot shows the adjusted mean Objective support of SSSUS scores for pre-intervention and post-intervention for the intervention and control groups
Figure 6.1	3 Plot shows the adjusted mean Support utilization of SSSUS scores for pre-intervention and post-intervention for the intervention and control groups.

LIST OF APPENDICES

Appendix A	Histograms and box plots of reliability test of uBioMacpa Pro for
	Univariate normality test.
Appendix B	Histograms and box plots of validity test of uBioMacpa Pro for
	Univariate normality test.
Appendix C	Histograms and box plots of MINI-IPIP and CD-RISC for
	Univariate normality test.
Appendix D	Multivariate normality tests of MINI-IPIP and CD-RISC using
	Mplus 8.0.
Appendix E	Univariate normality tests of SEM final model using Mplus 8.0.
Appendix F	Multivariate normality test of SEM final model using Mplus 8.0.
Appendix G	Histogram plots for RM ANOVA Mental stress.
Appendix H	Histogram plots for RM ANOVA GPAQ.
Appendix I	Histogram plots for RM MANOVA MINI-IPIP.
Appendix J	Scatter plots for RM ANOVA MINI-IPIP
Appendix K	Histogram plots for RM MANOVA CD-RISC
Appendix L	Scatter plots for RM ANOVA CD-RISC
Appendix M	Histogram plots for RM MANOVA SSSUS
Appendix N	Scatter plots for RM ANOVA SSSUS
Appendix O	Chinese version of the study questionnaires
Appendix P	Chinese version of study promotional posters
Appendix Q	Ethic Approval Letter

Appendix R Professional Qualification of Researchers

Appendix S Participant Information Sheet and Consent form

Appendix T Intervention Group Process Records

LIST OF ABBREVIATIONS, SCRONYMS AND SYMBOLS

ACHA-NCHA American college Health Association-National College Health

Assessment

ACSM American College of Sports Medicine

AG Agreeable

APA American Psychological Association

CBT Cognitive behavioral intervention

CD-RISC Connor-Davidson Resilience Scale

CFA Confirmatory factor analysis

CFI Comparative fit index

Chisq/df Chi-square / degrees of freedom

CI Confidence Interval

CO Conscientiousness

COVID Corona Virus Disease

CPC Communist Party of China

CPS Chinese Psychological Society

CR Composite reliability

ECVI Expected Cross-validation index

EX Extraversion

GFI Goodness of fit index

GPAQ Global Physical Activity Questionnaire

HRV Heart rate variability

ICC Intraclass correlation coefficient

IN Intellect

MH Mental hardiness

MINI-IPIP Mini International Personality Item Pool

MS Mental stress

MS Mental stress

MT Music Therapy

MVPA Moderate to vigorous physical activity

NE Neuroticism

NNFI Non-normed fit index

OP Optimism

PA Physical activity

PER Personality

PNFI Parsimony normed fit index

RCTs Randomised controlled trials

RM ANOVA Repeated measures analysis of variance

RM MANOVA Repeated measures multivariate analysis of variance

RMSEA Root Mean Square Error of Approximation

SEM Structural equation modeling

SI Skew index

SRMR Standardized Root Mean Square Residual

SS Social support

SSCS Stress scales for college students

SSSUS Social support scale for university students

ST Strength

T2DM Type 2 Diabetes Mellitus

TLI Tucker-Lewis index

To Toughness

WHO World Health Organisation

MENYELIDIK KESAN VIDEO SENAMAN BRAIN BREAKS TERHADAP TEKANAN MENTAL, PERSONALITI, KETAHANAN MENTAL, SOKONGAN SOSIAL DAN AKTIVITI FIZIKAL DALAM KALANGAN PELAJAR KOLEJ DI WILAYAH JIANGXI, CHINA

ABSTRAK

Pelajar kolej, sebagai satu kumpulan yang unik, sedang melalui peralihan antara kehidupan kampus dan kehidupan social, menghadapi tekanan seperti dinamik interpersonal, tuntutan akademik, kekangan kewangan, jangkaan pekerjaan, dan tekanan harian. Menguruskan kesejahteraan psikologi di universiti adalah isu yang mendesak. Penglibatan dalam aktiviti fizikal, seperti video senaman Brain Breaks, terbukti memberi kesan positif terhadap kesihatan mental dengan mengurangkan tahap tekanan. Kajian ini bertujuan untuk mengesahkan alat pengukuran tekanan uBioMacpa Pro di kalangan pelajar kolej Cina. Kajian menunjukkan bahawa ciri-ciri individu seperti personaliti, ketabahan mental, sokongan sosial, dan aktiviti fizikal mempengaruhi tahap tekanan mental secara signifikan. Oleh itu, objektif seterusnya adalah untuk meneroka hubungan antara faktor-faktor ini dan tekanan mental, dan untuk menilai kesan intervensi video senaman Brain-break ke atas pembolehubah kajian dalam kalangan pelajar kolej Cina di Bandar Shangrao, Wilayah Jiangxi. Kajian ini dijalankan dalam dua fasa, Fasa 1 melibatkan ujian kebolehpercayaan dan kesahan uBioMacpa Pro dan kajian keratan rentas, dengan 60 pelajar terlibat dalam ujian kebolehpercayaan, 200 dalam ujian kesahan, dan 890 dalam kajian keratan rentas. Selain itu, 80 pelajar dengan tekanan mental dari Fasa 1 menyertai Fasa 2, yang merupakan percubaan terkawal rawak. Dalam fasa 2, 80 pelajar dibahagikan secara rawak kepada Kumpulan intervensi atau kawalan untuk eksperimen selama empat minggu. Kumpulan intervensi menerima video senaman Brain Breaks selama 20 minit (berintensiti sederhana hingga tinggi) dua kali seminggu. Indeks tekanan mental peserta dan pembolehubah lain diukur sebelum dan selepas intervensi menggunakan uBioMacpa Pro dan soal selidik yang dilaporkan sendiri. Data yang dikumpul dianalisis menggunakan SPSS 27.0 untuk deskriptif, analisis varians ukuran berulang, dan analisis multivariate ukuran berulang, serta Mplus 8.0 untuk pemodelan persamaan struktur. Keputusan fasa 1 menunjukkan bahawa uBioMacpa mempunyai kebolehpercayaan yang baik (ICC > 0.75) dan kesahan (r = 0.246, nilai p < 0.01), menjadikannya sesuai untuk memantau dan mengukur tekanan mental pelajar kolej Cina. Dalam kajian kedua Fasa 1, 40.8% pelajar dikategorikan dalam kumpulan tekanan utama, terkumpul, dan kronik, dengan skor purata 34.61 (SD = 13.25). Model skruktur akhir menunjukkan kesesuaian yang baik (CFI = 0.976, TLI = 0.968, SRMR = 0.038, RMSEA p-value= 0.055), dan hubungan signifikan ditemui antara personaliti, ketahanan mental, sokongan sosial, jumlah aktiviti fizikal, dan tekanan mental. Ini mencadangkan bahawa strategi holistic diperlukan untuk mencegah masalah psikologi di kalangan pelajar kolej dengan mengintegrasikan faktor dalaman dan luaran. Dalam Fasa 2, peserta terdiri 39 pelajar perempuan dan 41 pelajar lelaki dengan purata umur 19 tahun (SD = 1.41 tahun). Kumpulan intervensi menunjukkan peningkatan yang signifikan berbanding kumpulan kawalan dalam ketahanan mental, tekanan mental, dan aktiviti fizikal, tetapi tidak dalam personaliti atau sokongan sosial. Intervensi video senaman Brain Breaks terbukti bermanfaat untuk pelajar yang mengalami tekanan mental, menunjukkan kesan positif terhadap hasil kesihatan mental.

INVESTIGATING THE EFFECT OF BRANIN BREAKS EXERCISE VIDEOS ON MENTAL STRESS, PERSONALITY, MENTAL HARDINESS, SOCIAL SUPPORT AND PHYSICAL ACTIVITY AMONG COLLEGE STUDENTS IN JIANGXI, CHINA

ABSTRACT

College students, as a distinct cohort, are navigating the transition between campus and social life, facing pressures such as interpersonal dynamics, academic demands, financial constraints, employment expectations, and daily stress. Managing psychological well-being in universities is a pressing concern. Engaging in physical activity, such as Brain Breaks exercise videos, has been shown to have a positive impact on mental health by reducing stress levels. This study primarily aims to validate the uBioMacpa Pro stress measurement tool among Chinese college students. Studies indicated that individual characteristics like personality traits, hardiness, social support, and physical activity profoundly influence mental stress levels. Thus, the subsequent objectives were to explore the relationships between these factors and mental stress, and to evaluate the effect of Brain-breaks exercise video intervention on the study variables among Chinese college students in Shangrao City, Jiangxi Province. The study was conducted in two phases, Phase 1 involved reliability and validity tests of the uBioMacpa Pro and a cross-sectional study, with 60 students involved in the reliability test, 200 in the validity test, and 890 in the cross-sectional study. Additionally, 80 students with mental stress from Phase 1 participated in Phase 2, which was a randomized controlled trial. In phase 2, 80 students were randomly

assigned to intervention or control groups with a four-week experiment. The intervention group received a 20-minute Brain Breaks exercise video (moderate to high intensity) twice a week. Participants' mental stress index and other variables were measured pre-and post-intervention using the uBioMacpa Pro and the self-reported questionnaires. The collected data were analyzed using SPSS 27.0 for descriptive statistics, repeated measures analysis of variance, and repeated measures multivariate analysis of variance, and Mplus 8.0 for structural equation modeling. Phase 1 results demonstrated that uBioMacpa has good reliability (ICC > 0.75) and validity (r = 0.246, p-value < 0.01), making it suitable for monitoring and measuring Chinese college students' mental stress. In the second study of Phase 1, 40.8% of students were categorized into primary, accumulated, and chronic stress groups, with a mean score of 34.61 (SD = 13.25). Moreover, the final structural model showed a good fit (CFI= 0.976, TLI= 0.968, SRMR= 0.038, RMSEA p-value= 0.055), and significant relationships were found between personality, mental hardiness, social support, amount of PA, and mental stress. Hence, it suggests holistic strategies are necessary to prevent psychological issues in college students by integrating internal and external factors. In Phase 2, participants included 39 female and 41 male students with a mean age of 19 years old (SD = 1.41 years). The intervention group showed significant improvements over the control group in mental hardiness, mental stress, and physical activity, but not in personality or social support. The Brain Breaks exercise video intervention proved beneficial for students with mental stress, indicating positive impacts on mental health outcomes.

CHAPTER 1

INTRODUCTION

1.1 Background

Mental health issues are a major public health challenge globally. Mental health is an integral part of general health and well-being. It exists with experiences ranging from an ideal state of well-being to debilitating states of great suffering and emotional pain on a complex continuum. People with mental health conditions are more likely to experience lower levels of mental well-being. The World Health Organization (WHO) defines health as a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity (WHO, 2018). Thus, mental health is also a measure of individual wellness.

There exists a robust connection between mental health and stress. Stress, an inevitable aspect of life, manifests as both a physiological and psychological reaction to external and internal challenges. Psychological stress could be positive, inspiring individuals to respond constructively to challenges, but it can also be negative, causing tension and anxiety. Prolonged exposure to chronic stress may precipitate a spectrum of mental health disorders, including anxiety and depression. Furthermore, maladaptive coping strategies, such as withdrawal, excessive anger, or substance abuse, could exacerbate these mental health issues. Mental stress significantly impacts physiological health, initiating a cascade of bodily responses such as elevated heart rate, increased muscle tension, and higher blood pressure. Prolonged chronic stress can

precipitate serious chronic conditions, including hypertension, diabetes, and cardiovascular diseases. According to Zhao et al. (2019), cardiovascular disease, which accounts for 40% of deaths in the Chinese population, is currently the main cause of death and premature death in China.

Chronic stress may also weaken the immune system, making people more susceptible to infections and illnesses. Prolonged periods of stress may have an impact on the immune system, which is highly activated for long periods, heightening the risk of common illnesses such as colds, influenza, etc. It has also been shown that prolonged chronic stress contributes to systemic inflammation, which is associated with a range of diseases, such like heart disease, cancer, and diabetes. Consequently, chronic stress may indirectly elevate the risk of these conditions. Additionally, stress significantly affects sleep quality (Prather et al., 2013). Anxiety and chronic stress are often precursors to sleep disturbances such as insomnia or non-restorative sleep (Blaxton et al., 2017). These sleep issues have been linked to several health problems, including obesity, cardiovascular diseases, and other diseases (Antza et al., 2022; Miller & Howarth, 2023; Peker et al., 2023; Stefani & Högl, 2020).

Until recently, mental health conditions have been highly prevalent in all countries. Several studies have shown that current university students are at the borderline of mental health problems (Berking & Wupperman 2012; Oswalt et al., 2020; Pedrelli et al., 2015). At present, about one-third of college students have mental health problems of varying degrees, and a significant proportion of university students have psychological problems such as pessimism, anxiety, and depression (Prince,

2015). Every year, there are increasing numbers of withdrawals from universities due to mental illness and psychological disorders, and suicidal behavior cases are also on the rise (Ishii et al., 2018). As estimated by WHO, 54 million people in China suffer from depression, and about 41 million suffer from anxiety disorders (WHO, 2022). Meanwhile, it illustrated that depression and anxiety are the two most prevalent mental health disorders in China. The data from the China Mental Health Survey highlights a grave issue: annually, around 280,000 individuals in China commit suicide, with 40% suffering from depression. Notably, half of these depressed individuals are university students. Furthermore, the survey indicates that a significant 86% of these patients attribute emotional stress as the primary cause of their depression (Mental Health Branch of Chinese Association of Narcotic Drugs, 2023). Another study on the mental health of university students across China surveyed approximately 100,000 students in 43 cities and 23 universities nationwide, and it revealed that the average prevalence of psychological disorders among university students was 22.8% and that 73.2% of students experienced varying degrees of psychological stress (Li & Cao, 2022).

Furthermore, according to the WHO, the COVID-19 pandemic triggers 25% increase in the prevalence of anxiety and depression worldwide. At the same time, some studies have shown that contemporary college students have become psychologically vulnerable groups (Cooke et al., 2006). Qing and Chao (2023) noted that the COVID-19 pandemic has exacerbated economic downturns and job market stagnation, intensifying structural employment contradictions. Consequently, this has led to a reduced number of job opportunities for college graduates, rendering the

employment landscape for these students increasingly dire. The employment pressures resulting from the pandemic have heightened anxiety among college graduates, making psychological issues related to employment increasingly pronounced. Another study revealed that over 50% of college graduates experience varying degrees of psychological stress related to employment, commonly manifesting as negative emotions such as anxiety, confusion, low self-esteem, etc. (Peng et al., 2023). These negative emotions would accumulate, leading to varying degrees of psychological issues among some students.

College students, as a group with a higher cultural level and as the future reservoir of skilled talent, play a pivotal role in the future development of the country. Whereas, with the rapid development of society and the economy, college students face more stressful events in such a complex environment. According to Lazarus (2006), stress is produced when people experience stressful situations. Negative emotions may emerge when people are unsure of how to handle this sense of stress. Stress is a multifaceted construct that is affected by a large number of factors (Kuruvilla & Jacob 2007). The factors influencing psychological stress vary significantly across different populations. For university students, for example, freshmen would face the pressure of changing roles, sophomores would suffer the dilemma of how to actively engage with society, juniors would undergo the pressure of further studies, seniors may encounter the pressure of employment, and other scenarios will exert varying degrees of psychological pressure on university students (Ribeiro et al., 2018).

Concerning the influencing factors of mental health issues, the interaction

between individuals and their environments constitutes an ecological system. A common method of categorising these influencing factors is according to the source of psychological stress, which is divided into individual characteristics and social factors, which refer to an individual's mental processes and the external environment (Yu, 2024). Meanwhile, in the 'Stress and Coping' model developed by Lazarus and Folkman, mental stress is conceptualized not as a direct result of external stressors but rather as being determined by the individual's cognitive appraisal of those stressors (Lazarus, 1984). Two kinds of cognitive appraisals are identified in the model: primary appraisal and secondary appraisal (Biggs et al., 2017). In the primary appraisal process, individuals evaluate an encounter as irrelevant, benign-positive, or stressful. The secondary appraisal refers to whether the individual has sufficient resources to cope with the stressor. During the appraisal process, individuals are influenced by various factors (Surachman & Almeida, 2018); for instance, personality traits significantly shape the primary appraisal phase (Lazarus, 1984). Personality could influence an individual's behavior and can be considered as a broad set of attributes and characteristics that shape an individual's psychological makeup (Saucier & Srivastava, 2014). Different personality traits could influence how people perceive and deal with mental stress, affecting their mental health. Evidence shows that the interpretation of situations and the resulting emotional response are substantially influenced by individual personality traits. For instance, people with elevated emotional stability are inclined to perceive potentially stressful scenarios as challenges. Conversely, those with higher neuroticism levels may appraise these situations as threats, resulting in a greater stress response (Afshar et al., 2015; Segerstrom & Smith, 2019). Through an analysis of the Big Five personality traits, Huang et al. also revealed that a person with negative personality traits had the highest chance of experiencing moderate or higher psychological distress (Huang et al., 2021). Meanwhile, some studies have suggested that different types of personnel would cope with stress in different ways (Grant & Langan-Fox, 2006; Lee-Baggley et al., 2005).

The secondary appraisal process primarily involves evaluating available resources, coping strategies, and support systems, such as mental hardiness and social support systems. Mental hardiness serves as a critical internal resource, enhancing an individual's capacity for tolerance and adaptability when confronted with stressinducing situations (Bartone et al., 2018). Studies have demonstrated that hardiness has the potential to mitigate the possible negative effects of personality traits. Hardiness has been found to be negatively correlated with work stress in various settings and occupations, including hospital staff nurses, critical care nurses, and university staffers (Kunzler et al., 2020; Zahra et al., 2014). Therefore, for university students, the high competitiveness of the job market, and the academic pressure, it's necessary to explore how to improve their mental health by building their hardiness to relieve mental pressure. On the other hand, from the perspective of interpersonal, social support influences individuals' cognitive judgments, coping styles, and strategies when coping with stressful events and emotional distress (Mao et al., 2024). As for the study of how stress and social support interact among college students, most researchers agree that social support has a protective effect on people in stressful circumstances and think it helps university students better manage stress (Alsubaie et al., 2019; Z. Green et al., 2024; Sabo et al., 2023). For instance, Mclean et al. revealed that students with higher levels of social support reported lower levels of stress, further supporting the negative correlation between social support and stress among university students (McLean et al., 2023). Similarly, Poots et al. concluded that college students who have good social support are more socially evolved, better able to adapt to society, better able to realize their potential, and have more positive experiences coping with social stress (Poots & Cassidy, 2020). University students who have a perception of insufficient social support are more likely to express life dissatisfaction and have suicidal thoughts (Arria et al., 2009). In the framework of Lazarus and Folkman Stress Coping Theory, social support is considered a personal coping resource that mitigates the negative effects of stress.

Additionally, physical activity constitutes a significant coping resource in the secondary appraisal process, contributing positively to stress management (Stults-Kolehmainen et al., 2014). Research evidence suggests that regular engagement in physical activity mitigates stress responses and bolsters psychological resilience through both physiological and psychological pathways. Specifically, physical activity has been associated with endorphin release, reduction in anxiety levels, and enhanced emotional regulation (Alizadeh Pahlavani, 2024; Kuan & Kueh, 2015; Wu et al., 2023; Yew et al., 2022). These effects collectively support the role of physical activity as an adaptive coping mechanism. Therefore, recognizing and promoting physical activity as a resource in coping strategies is crucial for advancing research on managing

psychological stress among college students. Personality, mental hardiness, social support, and physical activity all play distinct yet interconnected roles within the 'Stress and Coping' model, jointly influencing students' cognitive appraisal and coping mechanisms in response to stress. While existing research has predominantly focused on the independent effects of these factors on psychological stress, there has been limited exploration of their interactive effects, particularly among Chinese college students. Consequently, this study aims to investigate the relationship between personality, mental hardiness, social support, physical activity, and mental stress in Chinese college students.

Presently, there is mounting research focused on the mental stress of college students. Therefore, some researchers have developed various techniques to evaluate mental stress states (Cai et al., 2022; Cushway et al., 1996; Limone et al., 2021; Whitney et al., 2022). The most popular method for assessing psychological stress levels is to adopt subjective methods. However, self-administered questionnaires inevitably suffer from biases, such as respondent bias, acquiescence bias and social desirability bias (Bowling, 2005). At present, some researchers or healthcare organizations have developed physiological measurement tools to measure mental stress (Katmah et al., 2021). uBioMacpa Pro was one such, developed by a Korean medical company. It evaluates accumulated stress by measuring heart rate variability (HRV) from pulse wave analysis of capillaries. HRV shows the variation in heart rate signal and evaluates the time interval between two adjacent R waves (Oh et al., 2021). uBioMacpa, the pulse detection, enables anyone to easily monitor stress and

cardiovascular health levels accumulated via bad lifestyle habits at home or work, maintaining a healthy state and preventing disease, which is the main purpose of the system. Thus, in this study, the research proposed to measure students' mental stress via uBioMacpa to obtain the psychological stress levels of university students objectively.

Moreover, physical activity (PA) intervention has been widely implemented to alleviate mental stress and improve individuals' mental health. Empirical studies have demonstrated that regular physical activity contributes not only to improved physical health but also to the reduction of symptoms associated with depression and anxiety, thereby enhancing mood and overall mental well-being (Creese et al., 2021; Singh et al., 2023; Wanjau et al., 2023). WHO underscores the significance of physical activity for mental health in various reports and guidelines. For instance, the Global Status Report on Physical Activity 2022 by WHO highlights that consistent physical activity can alleviate psychological stress and bolster mental health (WHO, 2022). Brain Breaks ® are structured physical activity videos provided by HopSports, designed to promote physical and mental health among school-aged children. These videos typically last between 2-5 minutes and are intended to be used during the school day to provide students with short breaks that encourage physical movement and mental relaxation. The videos incorporate elements of sport, dance, and fitness, making them versatile and engaging for students of all ages. Research indicates that Brain Breaks can positively impact students' physical and mental health (Hidrus et al., 2020; Rizal et al., 2019; Zhou et al., 2021). Hence, the researcher proposed to adopt the Brain Breaks exercise videos as an intervention to alleviate participants' mental stress and regulate their negative emotions, which is important for enhancing their physical and mental health.

1.2 Problem statement

Students in higher education are in the pre-adult phase, also known as late youth, which is characterised by two main traits: first, the developmental tasks at this stage are more demanding, difficult, and complex than those of youth; and second, the social roles they play have significantly changed (Almaiah et al., 2020). Due to these changes, society, educational institutions, and families now have new standards and expectations for college students. Therefore, after entering school, students have to adapt to new life, such as independent disposal of time and money, learning professional knowledge, dealing with more complex interpersonal relationships, participating in various activities for enriching social experience, acquiring various qualifications, etc. All of these changes may lead to physical and mental health problems among university students. On the physiological level, psychological stress can make the heart beat faster, blood pressure rise, and breathing faster, which can easily produce diseases such as hypertension and coronary heart disease (Lin et al., 2021). On the psychological level, psychological stress has a huge impact on mental health and can cause people to develop symptoms such as cognitive bias, anxiety, emotional agitation, irritability, and stereotypical actions, which can cause various neurological disorders such as neurasthenia, anxiety disorders, phobias, and depressive

neuroticism in mild cases, or serious mental illnesses and even personality disorders in severe cases (Hernández-Torrano et al., 2020).

However, from the existing research literature, it can be understood that most of the studies on psychological stress among university students have mainly used selfassessment questionnaires in their research design. For example, the college student stress scale (Feldt, 2008), the student stress scale, an adaptation of Holmes and Rahe's life events for college-age adults (Holmes & Rahe, 1967), and other scales (Schneider et al., 2020; Taylor et al., 2020). All the self-assessment questionnaires are more subjective and to a certain extent affect the survey results. uBioMacpa Pro, as an objective measurement tool, can help to check blood circulation status and accumulated stress by measuring HRV through pulse wave analysis of capillary. It's an objective measurement instrument. At present, the majority of research and use of this device is concentrated in Korea (Jo, Park, & Yeon 2021; Jung & Jang 2016; Kim & Lee 2018; Ryu, Yun, & Choi 2020). However, there is a scarcity of research on the use of objective measurements of stress in China. Besides, there is currently no relevant study that has been conducted to examine the reliability and validity of uBioMacpa Pro for stress monitoring among Chinese college students. As a result, the first question to be answered in this study employing this equipment is whether it is appropriate for testing university students in China.

Studies have found that stress among university students is related to many factors, such as personality, hardiness, social support, physical activity, etc. Numerous studies have been conducted on both personality and stress, and most findings of these

research demonstrate that different aspects of the stress reaction are linked to various dimensions of personality traits (Xin et al., 2017). For instance, extroverted people displayed decreased cortisol activation in response to stress and a decrease in the emergence of negative emotions. According to research on the relationship between hardiness and stress, those with stronger hardiness tend to manage more favorably with stressful events (Green et al., 2007). There are also many studies on social support and stress, and the findings from this aspect of research indicate that social support has a significant direct effect on stress (Sullivan & Kashubeck-West, 2015; Ye et al., 2020). For PA, it has long been proven to be an effective strategy to promote individuals' physical and mental health (Elbe et al., 2019; Herbert, 2022b; Van Dyck et al., 2015), and how to better promote persons' psychological health through physical exercise has been a hot topic in the fields of sport and psychology. However, according to the currently available literature, there is less research on college students' personality, hardiness, social support, and physical activity in association with stress. Therefore, it's necessary and comprehensive to explore the study of personality, hardiness, social support, physical activity, and mental stress among university students and the mechanisms that contribute to it.

At present, there are very few studies on stress interventions for university students, the existing research in China shows that studies on stress among college students have mainly focused on exploring the relationship between stress and another variable and its mediating model. Currently, it is usual for Chinese universities to provide mental health education courses and to establish counseling services to help

students with psychological issues. These strategies have many limitations and are relatively inefficient. HOPSports developed a promising intervention, named Brain Breaks® physical activity solutions. It integrated different kinds of movement in 3-5-minute online exercise videos. For now, many studies have proven that Brain Breaks® has beneficial effects, such as improved internal feelings, improved self-confidence, improved cognitive and behavioral processing, and improved physical activity (Glapa et al., 2018; Popeska et al., 2018; Rizal et al., 2019). However, there are currently few studies in China that utilize Brain Breaks® as an intervention strategy, and there is a shortage of research that applies Brain Breaks® to interventions for psychological stress among Chinese university students. Therefore, this study uses the Brain Breaks® intervention to explore whether this intervention solution is effective in lowering the psychological stress of Chinese university students.

In general, this study attempts to explore the current level and status of psychological stress by using objective measures and instruments to measure psychological stress among Chinese university students. Furthermore, to address the issue of stress among university students, this study will adopt objective measurement to get the university students' stress status, combined with the exercise intervention, and to validate its effectiveness. Thus, this study hopes to provide new ideas and references for the construction of a mental health service system for college students and to assist them in managing their psychological stress and negative emotions to promote healthy physical and mental development.

1.3 Significance of study

Mental stress among university students has emerged as a critical issue, particularly within the Chinese context where academic pressure and social expectations are significant. Mental stress is a pervasive issue that poses significant risks to both mental and physical health. High levels of stress can lead to a range of adverse outcomes, including anxiety, depression, and burnout, which can severely influence academic performance and overall well-being (Hussain et al., 2013). Chronic stress can disrupt normal cognitive and emotional functioning, leading to difficulties in concentration, memory, and decision-making, further exacerbating academic challenges (Beiter et al., 2015). Addressing this issue is paramount for fostering a healthier, more resilient student population.

However, psychological stress is an indicator that is not easily monitored. To our knowledge, there are limited methods available today for measuring mental stress levels, and the usefulness of public pressure is restricted because of the cost, the difficulty of conveying and managing equipment, the environmental requirements needed for measurement, and the high level of skill needed for testing. In comparison to complicated psychiatric examinations and time-consuming psychometric questionnaires, the use of straightforward electronic devices for stress evaluation is more practical in research practice. Therefore, this study examined the reliability of the mental stress measuring meter (uBioMacpa Pro) among Chinese university students to provide a valid measurement tool and reference for stress research.

Moreover, this study could enrich and improve the connotation of stress theory

among university students. This study took college students' stress as the research object and intervened in the stress level, enhancing the theory's connotations and the technique for measuring the college students' stress level and status. Thus, it would provide new perspectives and theoretical references for the mental health care system of Chinese college students. Furthermore, this study, guided by the concept of health promotion, explored the current status, influencing factors, and interventions for college students' stress.

1.4 Operational Definition

1.4.1 Reliability and validity analysis

Reliability and validity analysis are fundamental aspects of research across various disciplines, ensuring the consistency and accuracy of measurements and assessments. Reliability refers to the consistency and stability of measurement over time, while validity pertains to the accuracy of the results obtained from the research (Kimberlin & Winterstein, 2008). In the context of measurement instruments, reliability ensures that the instrument produces consistent results when used repeatedly, while validity ensures that the instrument measures what it is intended to measure accurately (Heale & Twycross, 2015). Reliability and validity analysis are adopted to validate the uBiomacpa Pro among Chinese college students.

1.4.2 Confirmatory Factor Analysis (CFA)

Confirmatory factor analysis (CFA) is a special form of factor analysis, most applied in social science research (Tabri & Elliott, 2012). CFA tests whether the relationship between a factor and its corresponding measurement item conforms to the

theoretical relationship designed by the researcher. CFA is often tested through structural equation modeling. In practical research, the process of CFA is also the process of testing the measurement model. It provides a more precise understanding of the covariation among a number of indicators that is fewer than the number of measured variables (Hox, 2021).

1.4.3 Structural Equation Modelling (SEM)

SEM has been described as a technique that combines factor analysis with linear regression models to validate hypotheses (Maddi et al., 2020). It is a powerful tool for evaluating relationships among variables and has been favored for testing mediation and moderation hypotheses (Sardeshmukh & Vandenberg, 2017). SEM is performed to explore the structural relationship between personality, mental hardiness, social support, amount of PA, and mental stress.

1.4.4 Personality

Personality is the unique set of behavioral tendencies, thoughts, and feelings that distinguish one individual from another and remain relatively consistent over time and across different situations (Saucier & Srivastava, 2014). It could influence an individual's behavior and can be considered as a broad set of attributes and characteristics that shape an individual's psychological makeup (Saucier & Srivastava, 2014). The present study used the five factors (Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Intellect/Imagination) of MINI-IPIP developed by Donnellan et al. (2006).

1.4.5 Mental hardiness

Mental hardiness is a psychological construct that encompasses the ability to effectively cope with stress and adversity. Mental hardiness plays a significant role in improving individuals' ability to cope with environmental pressures and life stresses (Hajebi et al., 2016). For the present study, three factors (toughness, strength, and optimism) from the Connor-Davidson Resilience Scale (CD-RISC) (Connor & Davidson, 2003) were used to evaluate the hardiness trait of participants.

1.4.6 Social support

Social support is a multifaceted concept that encompasses various forms of assistance and plays a significant role in individuals' well-being and coping mechanisms. This support can be received from family, friends, community members, and organisations (Shumaker & Brownell, 1984). The present study adopted the Social Support Scale for University Students developed by Yue et al. (2008). It includes three factors, subjective support, objective support, and support utilization. Subjective support, objective support are important concepts in the field of social support. Subjective support refers to the individual's perception of the support they receive from their social network, including emotional, informational, and instrumental support (Williams et al., 2004). On the other hand, objective support is the actual tangible support that an individual receives from their social network, such as financial assistance, practical help, or advice (Rubashkin et al., 2018). Support utilization, as defined in the literature, encompasses how individuals make use of the available social support, including seeking and accepting support from others (Colquitt

et al., 2014)

1.4.7 Amount of Physical Activity

Participants' physical activity level and exercise status. This study adopted the Global Physical Activity Questionnaire (GPAQ). GPAQ was designed to measure physical activity (PA) and sedentary time. Levels of total physical activity were classified into 3 levels: High, Moderate, and Low. Details of the GPAQ scoring protocol were discussed in Chapter 3, Section 3.8.6.

1.4.8 Mental stress

The concept of mental stress is closely related to the broader notion of mental health, as it can significantly influence an individual's ability to cope with adversity (Heaney, 2021). It can manifest in various forms, such as depression, anxiety, post-traumatic stress disorder (PTSD), and other mental health problems. For the present study, the mental stress of participants was measured by uBiomacpa Pro, which is an objective measuring tool. It was divided into five groups, good level, temporary stress, primary stress, accumulated stress, and chronic stress. Details of the uBioMacpa Pro instrument were discussed in Chapter 3, Section 3.8.1.

1.5 Research Objective, Research Questions, Research Hypothesis

The study's research objectives, questions, and hypothesis were separated into two phases (Phase 1 and Phase 2) based on the sequences of the research.

1.5.1 General Objective

The general objective of this research is to determine the relationship between personality, mental hardiness, social support, the amount of PA, and mental stress

among college students at Shangrao Normal University, Jiangxi, China, as well as the effect of the Brain Breaks video intervention on the variables among college students at Shangrao Normal University, Jiangxi, China.

1.5.2 Specific Objectives

1.5.2 (a) Phase 1

- To validate the mental stress measuring by using, uBioMacpa Pro, among college students in Jiangxi, China.
- To validate the translated Chinese version questionnaire Mini International Personality Item Pool (MINI-IPIP) and Connor-Davidson Resilience Scale (CD-RISC) scale among college students in China, using Confirmatory Factory Analysis (CFA).
- To develop a structural equation model of personality, mental hardiness, social support, amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China.

1.5.2 (b) Phase 2

- 4. To examine the time effects (within groups) of the Brain-Breaks video exercise on personality, mental hardiness, social support, amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China.
- 5. To examine the group effects (between groups) of the Brain-Breaks video exercise on personality, mental hardiness, social support, amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China.

6. To examine the interaction effects (within-between groups) of the Brain-Breaks video exercise on personality, mental hardiness, social support, amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China.

1.5.3 Research Questions

1.5.3 (a) Phase 1

- 1. What is the validity and reliability of the uBioMacpa Pro among Chinese college students in Jiangxi, China?
- 2. Are the translated Chinese version questionnaires of the Mini International Personality Item Pool (MINI-IPIP) and Connor-Davidson Resilience Scale (CD-RISC) valid and reliable among college students in China based on confirmatory factor analysis (CFA)?
- 3. Are there any significant path relationships between personality, mental hardiness, social support, amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China?

1.5.3 (b) Phase 2

4. Is there any time effect of the Brain-Breaks video exercise intervention on personality, mental hardiness, social support, the amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China?

- 5. Is there any group effect of the Brain-Breaks video exercise intervention on personality, mental hardiness, social support, the amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China?
- 6. Is there any interaction effect of the Brain-Breaks video exercise intervention on personality, mental hardiness, social support, the amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China?

1.5.4 Research Hypothesis

1.5.4 (a) Phase 1

- 1. The mental stress measuring meter, uBioMacpa Pro, is valid and reliable among college students in Jiangxi, China.
- The translated Chinese version questionnaires of the Mini International Personality
 Item Pool and Connor-Davidson Resilience Scale are valid among the college students in China based on confirmatory factor analysis.
- 3. There are significant path relationships between personality, mental hardiness, social support, amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China.

1.5.4 (b) Phase 2

4. There is a significant difference in time effect on personality, mental hardiness, social support, the amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China after being given the Brain-Breaks video exercise intervention.

- 5. There is a significant difference in group effect on personality, mental hardiness, social support, the amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China after being given the Brain-Breaks video exercise intervention.
- 6. There is a significant difference in interaction effect on personality, mental hardiness, social support, the amount of PA, and mental stress among college students at Shangrao Normal University, Jiangxi, China after being given the Brain-Breaks video exercise intervention.

1.6 Organisation of the thesis

The thesis is organised into 8 chapters. The chapter shows the study and the content of this thesis. This covers the research background, problem statement, research questions, and research objectives. Chapter 2 is the literature review which offers the status about related studies, mental stress of college students, prevalence, associated factors, intervention method, and previous studies about Brain Breaks exercise. Chapter 2 ends with the conceptual framework, illustrating the research design and relationship of the variables that adopted in the research.

Chapter 3 presents the methodology used in the phase 1 study. In phase 1, it consists of validating the mental stress measuring reliability in Chinese college students, validating the translated Chinese version questionnaire MINI-IPIP and CD-RISC using Confirmatory Factor Analysis (CFA), as well as exploring the relationship between personality, mental hardiness, social support, amount of PA, and mental stress. Two research methodologies are presented in Chapter 3.

Chapter 4 describes the results and findings of Phase 1. Chapter 5 shows the research method of Phase 2 study. Chapter 6 elaborates on the results for Phase 2. Chapters 3 & 5 mainly focus on illustrating the chosen approach and research procedures such as study design, sampling method, measurement tools, data analysis, etc., for each phase. The research results are described descriptively by displaying with tables or figures in Chapters 4 & 6. Chapter 7 presents the discussion about results and findings based on the specific research objectives for Phase 1 and 2 studies. Moreover, the strengths and limitations of this research are also presented in this chapter. The last chapter of this study is Chapter 8. The conclusions of this current study and recommendations for future study are shown in this chapter.

1.7 Summary

This chapter introduced important issues related to this current study. It started with an introduction about mental health, the background of the study, and the problem statement. The general and specific objectives are described in sub-points to provide a clear direction and paths for the study. In addition, the rationale of the study was provided to emphasize the significance of this research. To help with comprehension, useful explanations of the terminology used in the study are also provided. Next chapter, Chapter 2 shows a review of the relevant literature related to the study.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

To deepen the understanding of the research topic, the researcher conducted an exhaustive review of previously published studies that were pertinent. This chapter encapsulates a summary of the information gleaned from the literature review, providing the foundation understanding of the current study. It includes subchapters that comprehensively cover all the related variables and concepts relevant to the present study. All preceding research papers were sourced from reputable online databases that provide access to authentic journals publishing related articles. The primary databases utilized for gathering these studies included Google Scholar, ResearchGate, PubMed, CNKI, and Scopus. These platforms were instrumental for the researcher in amassing a comprehensive collection of relevant previous studies.

The literature search employed a range of keywords to thoroughly explore the research topic. These included: "mental stress", "mental health status", "college students' mental stress", "prevalence", "management and treatment of mental stress", "mental stress measuring tool", "uBioMacpa Pro", "personality", "mental hardiness",