

First Semester Examination 2023/2024 Academic Session

February 2024

EMM 213 – Strength of Materials (Kekuatan Bahan)

Duration: 3 hours (Masa: 3 Jam)

Please check that this examination paper consists of <u>SIX</u> (6) pages of printed material before you begin the examination.

[Sila pastikan bahawa kertas peperiksaan ini mengandungi <u>ENAM</u> (6) muka surat yang bercetak sebelum anda memulakan peperiksaan ini.]

Instructions: Answer ALL **FIVE (5)** questions.

[Arahan: Jawab LIMA (5) soalan]

- 1. (a) Figure 1 (a) shows a shaft subjected to torque at three different locations A, B and C with the distance between the points. Using steel with shear modulus of G = 80 GPa and allowable shear stress of 240 MPa,
 - (i) sketch the torque diagram
 - (ii) determine the safe diameter for the shaft and the largest angle of twist.

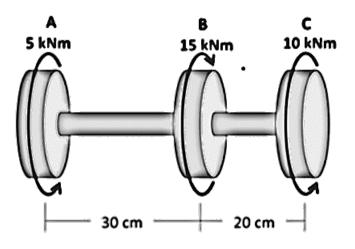


Figure 1 (a)

(50 marks)

- (b) The pin-connected structure shown in Figure 1 (b) consists of a rigid bar *ABCD* and two axial members of bars (1) and (2). Bar (1) is a steel [E = 200 GPa, $\alpha = 11.7 \times 10^{-6}$ /°C] with a cross-sectional area 400 mm². Bar (2) is an aluminum alloy [E = 70 GPa, $\alpha = 22.5 \times 10^{-6}$ /°C] with a cross-sectional area 400 mm². The bars are unstressed when the structure is assembled. After a concentrated load of P = 36 kN is applied and the temperature is increased by 25°C, determine:
 - (i) the normal stresses in bars (1) and (2).
 - (ii) the deflection of point *D* on the rigid bar.

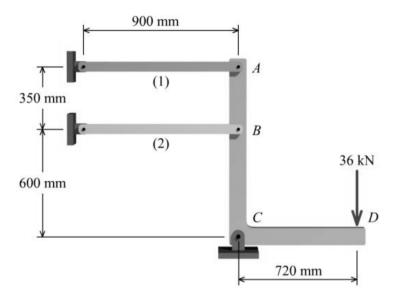


Figure 1 (b)

(50 marks)

2. Figure 2 shows a beam subjected to distributed load and a point load. Sketch the shear force and bending moment diagram for the beam. Given that the allowable stress is 200 MPa, determine the section modulus and recommend a suitable beam section from Table 1.

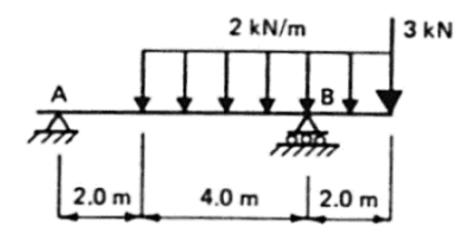


Figure 2

Table 1

American Wide Flange Beams - Static Parameters											
	Dimensions						Static Parameters				
Designation							Moment of Inertia		Elastic Section Modulus		
Imperal (in x in x	Metric (mm x mm	- h -	Width	Web Thickness	Flange Thickness	Sectional Area	Weight		ly	S _x (cm ³)	S _y ···(cm ³)·
lb/ft)	x kg/m)	(mm)	(mm)	(mm)	(mm)	(cm²)	(9,)	(cm)	(0111)	(6111)	(()))
W 4 x 4 x 13	W 100 x 100 x 19.3	106	103	7.1	8.8	24.7	19.3	475.9	160.6	89.9	31.2
W 5 x 5 x 16	W 130 x 130 x 23.8	127	127	6.1	9.1	30.4	23.8	885.5	311	139.5	49
W 5 x 5 x 19	W 130 x 130 x 28.1	131	128	6.9	10.9	35.9	28.1	1099	381.4	167.7	59.6
W 8 x 8 x 31	W 200 x 200 x 46.1	203	203	7.2	11.0	58.9	46.1	4545	1535	448	151.2
W 8 x 8 x 35	W 200 x 200 x 52	206	204	7.9	12.6	66.5	52	5268	1784	512	174.9
W 8 x 8 x 40	W 200 x 200 x 59	210	205	9.1	14.2	75.5	59	6113	2040	582	199.1
W 8 x 8 x 48	W 200 x 200 x 71	216	206	10.2	17.4	91	71	7658	2537	709	246.3

(100 marks)

- 3. Figure 3 shows a pipe with external diameter of 80 mm and internal diameter of 60 mm which is subjected to combined loading.
 - (a) Determine the bending stress, axial stress and shear stress due to torque at points H and K respectively. For this problem, ignore the shear stress due to the shear force.
 - (b) For each point, draw the stress element
 - (i) determine the principal stresses and assess the suitability of cast iron with allowable shear stress of 50 MPa and tensile stress of 100 MPa for this pipe.

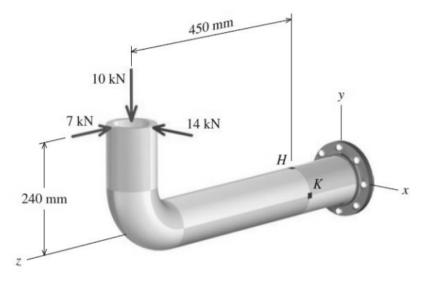


Figure 3

(100 marks)

4. A point on a structure is represented by the stress element shown in Figure 4 and another stress condition is superposed. Draw the Mohr's circle for the combined stress condition and determine the maximum shear stress and the principal stresses.

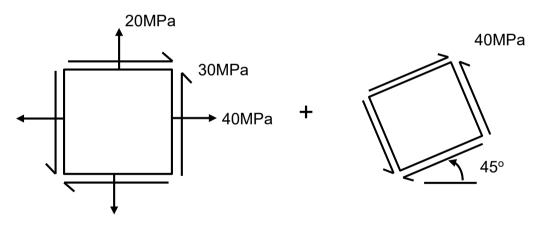


Figure 4

(100 marks)

- 5. A 45-degree strain rosette is installed on a surface of a steel (Poisson ratio = 0.30, E = 200 GPa) structure as shown in Figure 5. The reading obtained from each strain gauge is as follows: $\varepsilon_a = 750 \times 10^{-6}$; $\varepsilon_b = -125 \times 10^{-6}$; $\varepsilon_c = -250 \times 10^{-6}$. The general equation for the strain gauge is given in the Table 2.
 - (a) Determine the strain components
 - (b) Sketch the strain Mohr's circle and determine the maximum shear strain and principal strains of the point.
 - (c) Determine the principal stresses

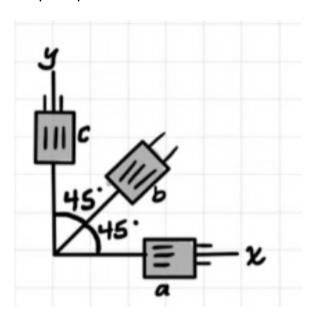
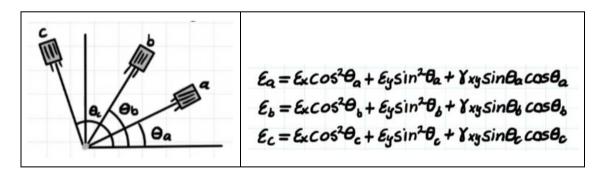



Figure 5

Table 2

(100 marks)