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MENINGKATKAN PRESTASI KESAN PIEZOELEKTRIK DALAM REKA
BENTUK RASUK PIEZOELECTRIK

ABSTRAK

Penggunaan bahan-bahan piezoelektrik dalam struktur berbentuk rasuk telah menarik
perhatian yang besar kerana keupayaannya untuk menukar getaran mekanikal kepada
tenaga elektrik. Kesan piezoelektrik ini telah membuka jalan bagi pembangunan
pengumpul tenaga menggunakan struktur berbentuk rasuk, yang menggabungkan satu
atau dua lapisan piezoelektrik dipasang pada substrat. Projek ini bertujuan untuk
mengkaji pengaruh bahan lapisan piezoelektrik yang berbeza terhadap output voltan
struktur berbentuk rasuk tersebut. Fokus utama adalah pada pemodelan dan analisis
simulasi reka bentuk berbentuk rasuk, dengan mempertimbangkan pelbagai bahan
piezoelektrik. Dalam kertas ini, kami meneroka dua jenis simulasi BEH berbentuk
rasuk: model unimorph dan bimorph. Simulasi dilakukan dalam perisian Ansys
Workbench, di mana analisis modal, tindak balas harmonik, dan penghasilan voltan
disusun dan dijalankan untuk kedua-dua jenis, dan hasilnya disahkan dari kertas
terdahulu. Didapati bahawa bimorph memberikan hasil yang lebih baik dalam
penghasilan voltan, oleh itu simulasi diteruskan dalam bimorph dengan model yang
dipertingkatkan untuk menentukan penghasilan voltan tertinggi pada lapan bahan
piezoelektrik iaitu PZT-5H, PZT-5A, PZT-8, PZT-4, PZT-26, Lithium Niobate, Lithium
Tantalate, dan Lithium Tetraborate. Memandangkan deformasi model dengan bahan
piezoelektrik yang berbeza mempunyai frekuensi yang berlainan, satu frekuensi
tertentu dalam julat untuk semua bahan telah dipilih untuk membandingkan hasilnya.
Lithium Niobate memiliki voltan tertinggi yang diperoleh pada 196Hz dengan 5681
millivolt diikuti oleh PZT-5A dan Lithium Tantalate dengan 3906 millivolt dan 150
millivolt masing-masing. Hasil analisis simulasi dihasilkan dan diinterpretasikan secara
grafik, yang menunjukkan deformasi model, voltan, dan respons frekuensi untuk semua

rasuk dengan beban, daya dan dimensi yang sama.
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ENHANCING PIEZOELECTRIC EFFECT PERFORMANCE IN
PIEZOELECTRIC BEAM DESIGN

ABSTRACT

The utilisation of piezoelectric materials in beam structures has garnered significant
attention due to their ability to convert mechanical vibrations into electrical energy. This
piezoelectric effect has paved the way for the development of energy harvesters using
cantilevered beam structures, incorporating one or two piezoelectric layers mounted on
a substrate This project seeks to investigate the influence of different piezoelectric layer
materials on the voltage output of such beam structures. The primary focus is on the
modelling and simulation analysis of cantilevered beam designs, considering a various
of piezoelectric materials. In this paper, we dive into two types of simulation PEH
cantilever beam: unimorph and bimorph model. The simulations were done in Ansys
workbench software, in which modal analysis, harmonic response and voltage
generation were set up and run for both types, and the results were validated from
previous paper. It is shown that bimorph have a better result in voltage generation, so
the simulation proceeds in bimorph with improvised model to determine the highest
voltage generation on eight piezoelectric materials which are PZT-5H, PZT-5A, PZT-8.
PZT-4, PZT-26, Lithium Niobate, Lithium Tantalate and Lithium Tetraborate. Since the
deformation of the models with different piezoelectric materials have different in
frequency obtained, a certain frequency within range for all materials were selected to
compare the result. Lithium Niobate have the highest voltage obtained at 196Hz with
5681 millivolts followed by PZT-5A and Lithium Tantalate with 3906 millivolts and
150 millivolts respectively. The outcome of the simulation analysis was generated and
interpreted graphically, which shows the model deformation, voltage and the frequency

response for all the beams with same weight of load, force and dimensions.
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CHAPTER 1

INTRODUCTION

Over the years, energy harvesting technologies have been used in various self-powered
systems [1], [2]. These technologies have several methods of application depending on
their usage. Renewable energy is one of the types of energy harvesting technologies [3]
where energy is generated from naturally replenished sources. Energy harvesting
involves gathering energy from the surroundings or alternative sources and converting
it into electrical energy. Currently, there are three harvesting mechanisms are
established which are electromagnetic induction, electrostatic conversion, and
piezoelectricity [4], [5], [6], [7]. The utilisation of electromagnetic induction
technology is widespread in various energy collectors; however, its effectiveness
depends on the relative motion of the magnet and the coil or alterations in the magnetic
field. This complexity poses challenges in applying it to wireless sensing systems [8].
Electrostatic conversions are preferred at extremely low accelerations because they
have reduced losses [6]. With the advantages of high output voltage, no pollution, and
high capacitances, piezoelectric can produce electricity under external force [9].
Motivated by those advantages, piezoelectric materials have been widely used for the
development of piezoelectric energy harvester (PEH) since they are generally robust
and can withstand high mechanical stresses, temperature and vibrations, making them

suitable for applications in harsh environments [10], [11].



Energy Harvesting

Large Scale

Figure 1.1: Classification of energy harvesting sources [12]

The field of energy harvesting has witnessed a remarkable evolution, driven by the
pursuit of sustainable and self-sufficient technologies. Among the various approaches,
the integration of piezoelectric materials into cantilevered beam structures has emerged
as a promising avenue for converting ambient mechanical vibrations into electrical
energy [13]. The PEH refers to the ability of the piezoelectric materials to harvest an
electric field in response to applied mechanical stress. The piezoelectric effect, a
phenomenon where mechanical stress induces an electric charge, underpins the
potential of these structures to serve as efficient energy harvesters [14]. It is discovered
by French physicists Jacques and Pierre Curie in 1880, Conversely, the reverse
piezoelectric effect occurs when an applied electric field causes the material to deform
or change shape [15], [16]. The PEH structure has three components: mechanical
structure, piezoelectric material, and electrical interference. Typically, the beam is used
as a mechanical structure to produce mechanical energy. In contrast, the piezoelectric
material layer is bounded on the structure's surface; it converts mechanical energy into
electrical energy. In the end, the electrical interference accumulates the charge and
transforms it into usable electrical energy. This research project delves into the intricate
interplay between piezoelectric materials and the performance of cantilevered beam

designs, seeking to enhance the piezoelectric effect performances.

Moreover, in recent years, the demand for sustainable and autonomous electronic
systems has fuelled a growing interest in piezoelectric energy harvesting. The

piezoelectric cantilever beam is introduced with the benefits of flexibility, ease of
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production and modelling, simple encapsulation, suitable for low-frequency conditions
and low self-vibration frequency [17]. In addition, the concept of the Internet of Things
(IoT) has led to placing smart equipment in remote areas, for example, in health care
devices inside the human body, where it is difficult and sometimes impossible to charge
batteries. Therefore, energy harvesting has become necessary to sustain such self-
powered systems [18]. Furthermore, cantilevered beam structures, featuring one or two
piezoelectric layers mounted on a substrate called unimorph and bimorph, represent a
versatile and scalable platform for capturing ambient mechanical energy [19], [20]. An
inertial mass is frequently added to the tip of beam harvesters to reduce or optimise the
system's resonance frequency and increase mechanical responsiveness and output

power in low-amplitude excitations [4], [5], [21].

A crucial factor influencing the performance of cantilevered beam structures as energy
harvesters is the choice of piezoelectric material [22], [23]. The diverse range of
materials available poses a significant challenge in determining the optimal selection
for maximising energy harvesting efficiency. This project is motivated by the need to
systematically analyses the impact of different piezoelectric layer materials on the
power output of cantilevered beams. Through advanced modelling and simulation
analyses, we aim to unravel the nuanced relationships between material properties and

energy harvesting performance.



1.1 Brief overview

Piezoelectric energy harvesting has gained considerable attention as a sustainable
means of converting ambient mechanical vibrations into electrical energy. Cantilevered
beam structures, with one or two piezoelectric layers mounted on a substrate, represent
a promising configuration for such energy harvesting systems. The piezoelectric effect,
where mechanical strain induces an electrical charge, allows for the development of

self-powered devices and sensors, eliminating the need for external power sources.

While the potential of piezoelectric-based energy harvesting is evident, the selection of
appropriate piezoelectric materials remains a critical challenge. The literature
highlights a wide range of materials with varying electromechanical properties, making
it vital to understand the influence of these properties on the overall performance of
cantilevered beam structures. Current research suggests that the choice of piezoelectric
material significantly affects the system’s energy harvesting efficiency and dynamic
response [12]. The integration of piezoelectric materials into cantilevered beam
structures has become a focal point in the realm of energy harvesting technologies. The
cantilevered beam configuration, unimorph and bimorph provide an ideal environment

for harvesting energy from ambient mechanical vibrations.

One of the primary engineering challenges in piezoelectric energy harvesting is
selecting the optimal piezoelectric material. The diverse range of materials available
introduces material stiffness, damping characteristics, and electrical conductivity.
These properties directly impact the cantilevered beam’s dynamic response and energy
harvesting efficiency. A comprehensive understanding of material engineering is
essential to navigate this complexity and make informed decisions regarding material

selection.

The success of this project relies on sophisticated modelling and simulation analyses.
Cantilevered beam structures exhibit nonlinear behaviours influenced by both
mechanical and electrical factors. Accurate representation of these complexities
requires advanced engineering approaches, considering factors such as piezoelectric
coupling, dynamic response, and the interaction between the materials and the external
environment. Developing robust models is essential for gaining meaningful insights

into the relationship between piezoelectric layer materials and beam power output



Enhancing the piezoelectric effect in cantilevered beam designs is relevant in a world
increasingly focused on sustainable technologies. This project's outcomes have the
potential to revolutionise the field of energy harvesting, offering practical solutions for
self-powered sensors, low-power electronics, and other applications. By addressing the
identified engineering issues, we aim to contribute to the academic understanding of
piezoelectric energy harvesting and the development of real-world, sustainable

engineering solutions.
1.1.1  Piezoelectric Cantilever Beam Design

The piezoelectric cantilever beam arrangement is defined by an active piezoelectric
layer affixed onto a passive substrate beam. The most frequent configurations for
cantilevered laminated beams are typically either unimorph or bimorph. In a unimorph
cantilever beam comprises a single layer of piezoelectric material bonded with the
substrate; in contrast, a bimorph cantilever beam configuration consists two layers of
piezoelectric material poled along the substrate in the middle as depicted in Figure 1.2.
When subjected to base excitation, the cantilever beam generates mechanical energy,
and the subsequent piezoelectric layer converts this mechanical energy into electrical
energy. Consequently, the piezoelectric effect produces an electrical voltage across the

load resistance.
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Figure 1.2: unimorph and bimorph piezoelectric cantilevered beam configuration [20]



1.2 Problem Statement

The demand for renewable energy has significantly increased with the advancements
in energy harvesting systems. Batteries have become less favourable [24] due to their
limited full discharge cycles, which degrade their capacity and performance over time,
and the significant safety risks posed by thermal runaway [25] from improper charging.
Additionally, they suffer from reduced energy efticiency with repeated use and have a
considerable environmental impact due to the hazardous chemicals involved in their
production, disposal, and recycling. To address these issues, a piezoelectric energy
harvesting cantilever beam has been introduced to generate electrical energy from
mechanical vibrations. This approach promotes green energy by harnessing mechanical
vibrations [26], which are environmentally friendly. Additionally, the cantilever beam
can store energy by absorbing ambient vibrations. For analysing the electromechanical
interaction and power output of these piezoelectric energy harvesters, the finite element

method using ANSYS software is employed.

A critical challenge is the lack of a systematic understanding of how different
piezoelectric layer materials impact the performance of cantilever beam structures.
While existing research provides insights into the general principles of piezoelectric
energy harvesting, it falls short of comprehensively analysing the effects of varied
piezoelectric materials on power output. This gap in knowledge hinders the
optimisation of piezoelectric beam energy harvester designs, as the influence of
material property variations on the efficiency of the piezoelectric effect remains

insufficiently explored.

The significance of this problem is underscored by the potential applications in
sustainable technologies, including self-powered sensors, low-power electronics, and
energy-efficient devices. Bridging this gap is essential for unlocking the full potential

of cantilevered beam structures as efficient energy harvesters.



1.3 Objectives

1. To develop finite element models unimorph and bimorph for simulating the
dynamic response of cantilevered beam structures with different piezoelectric
layer materials.

2. To simulate the designed beam using Ansys workbench to analyses the modal,
harmonic response and voltage generation.

3. To quantify and compare the power output of cantilevered beam structures with
varied piezoelectric layer materials through simulation validation.

4. To find material that can increase volume, so that simulation analysis can

indicate the stress deformation and voltage interaction.



1.4 Scope of project

This project is comprehensive investigation involving simulation that encompasses
finite element modelling. Integrating these components is essential for understanding
the impact of piezoelectric layer materials on the performance of cantilevered beam

structures in three models which is unimorph, bimorph and improvised bimorph.

Finite element models will be developed to simulate the dynamic response of
cantilevered beam structures with different piezoelectric layer materials. Ansys
Workbench is used to accurately capture the complexities of the piezoelectric effect in
the designed structures using Modal, Harmonic Response and Voltage Generation
Analysis. Modal Analysis determines the deformations and scale of the deformation
from minimum to maximum. Harmonic Response Analysis determines the response of
the mechanical structure of the models at a specific frequency that varies sinusoidally
with time, such as frequency response and phase response. Addition to that voltage

generation also can be simulate in harmonic response analysis.

The project acknowledges the constraint of time for researches and simulation
regarding the concept and materials for piezoelectric. Additionally, limited information
and guidance using Ansys software, including access to specific piezoelectric materials

and features, may impact the scale of the simulation work



CHAPTER 2

LITERATURE REVIEW

The integration of piezoelectric materials into cantilevered beam structures for energy
harvesting has gathered significant attention in recent literature. The piezoelectric
effect, where mechanical vibrations induce an electric charge, forms the foundation for
harnessing ambient mechanical energy. This literature review explores relevant studies,
theoretical frameworks, and engineering fundamentals that contribute to the

understanding of piezoelectric energy harvesting with a cantilevered beam design.

2.1 Piezoelectric Energy Harvesting:

This literature review aims to explore the output of piezoelectric transducers, focusing
on two different material types and various energy harvesting structures. Piezoelectric
transducers are commonly used in energy harvesting due to their ability to generate
electricity when subjected to mechanical stress. This review conducts a comparative
analysis to assess the power output of different materials and structures. Piezoelectric
materials generate electricity through the deformation of their inner lattice, which

induces a separation of positive and negative centres, resulting in a small dipole [27].

This review presents a comprehensive overview and analysis of advancements in three
distinct energy harvesting methods. It systematically outlines the performance of
various harvesters across diverse excitation types, delving into nonlinear energy
harvesters characterized by different structural attributes. The review combines the
advantages of nonlinearity in energy harvesting and offers a synthesis of practical
applications. Additionally, it explains current strategies and mechanisms aimed at
enhancing the efficiency of energy harvesters. Overall, this review summarises the
developmental progress in existing energy harvesting technologies, addresses the
technical challenges encountered in piezoelectric energy harvesting technologies, and
provides insights into prospective research and development trajectories for

piezoelectric vibration energy harvesting technologies [28].

This review provides a comprehensive overview of the current state of piezoelectric
energy harvesting. It outlines the principles of piezoelectric energy conversion and
explains the operational modes of piezoelectric generators. The review discusses the

advancements, limitations, and potential enhancements in both materials and
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