DEVELOPING INDIVIDUALISED THERAPY FOR COLISTIN THROUGH APPLICATION OF PHARMACOKINETIC MODEL TAILORED FOR CRITICALLY ILL MALAYSIAN PATIENTS UTILIZING THE HPLC-FLD

MOHD SHAFIE BIN ZABIDI

UNIVERSITI SAINS MALAYSIA

DEVELOPING INDIVIDUALISED THERAPY FOR COLISTIN THROUGH APPLICATION OF PHARMACOKINETIC MODEL TAILORED FOR CRITICALLY ILL MALAYSIAN PATIENTS UTILIZING THE HPLC-FLD

by

MOHD SHAFIE BIN ZABIDI

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

FEBRUARY 2025

ACKNOWLEDGEMENT

All praises are to Allah, the Almighty, for giving me the courage to undertake and complete this study. I would like to express my deepest appreciation and thanks to my main supervisor, Dr Wan Nazirah Wan Yusuf, for her constant support, guidance, patience, motivation, and immense knowledge of my PhD journey. I would like to thank my co-supervisors, Dr Ruzilawati Abu Bakar, Dr Nurfadhlina Musa, and Dr Suzana Mustafa, for their support, encouragement, and invaluable suggestions for their continuous help and guidance. My warmest thanks also go to Puan Norzihana Ramli, Encik Mohd Lukman Muhamad, Encik Wan Mohd Hafiz Wan Anor and all staff members of the Laboratory Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, for their continuous support and help.

Finally, my deepest gratitude goes to my beloved wife, Dr Nur Fadhlina Arifin, and my son, Ahmad Ammar Mohd Shafie, who are pillars behind my achievement. This thesis is dedicated to my late mother, Allahyarhamah Hajah Rokiah Abdullah and my father Haji Zabidi Ishak, for their encouragement, prayers, unconditional love and understanding.

This research was funded by a Universiti Sains Malaysia (USM) Bridging Grant (No: 304.PPSP.6316240) and a GIPS-PhD Grant (No: 311/PPSP/4404810). I am grateful to the Malaysia Ministry of Health for funding my study under Hadiah Latihan Persekutuan.

TABLE OF CONTENTS

ACK	KNOWLE	DGEMENTii
TAB	BLE OF CO	ONTENTSiii
LIST	Γ OF TAB	LES xi
LIST	r of figu	JRESxiv
LIST	Γ OF SYM	BOLSxvii
LIST	Γ OF ABB	REVIATIONSxviii
LIST	Γ OF APP	ENDICESxxi
ABS	TRAK	xxii
ABS	TRACT	xxiv
CHA	APTER 1	INTRODUCTION1
1.1	Overvie	w 1
1.2	Problem	statement
1.3	Objectiv	es
	1.3.1	General objective
	1.3.2	Specific objectives
1.4	Justifica	tion of the study8
1.5	Concept	ual framework9
1.6	Significa	ance of the study10
CHA	APTER 2	LITERATURE REVIEW11
2.1	Introduc	tion11
2.2	Criticall	y ill patients
	2.2.1	Definition
	2.2.2	Antibiotic pharmacokinetics alteration in the critically ill patients

2.3	Polymyx	in antibiot	ic	15	
	2.3.1	Chemical	structure	15	
	2.3.2	Mechanis	sm of antibacterial activity of polymyxins	20	
2.4	Bioassay	of colisting	methanesulfonate sodium and colistin	20	
	2.4.1	Microbio	logical assay	20	
	2.4.2		formance liquid chromatography with fluorimetry (HPLC-FLD)	21	
	2.4.3	Liquid ch	nromatography-tandem mass spectrometry (LC-MS)	22	
2.5	Population pharmacokinetics of colistin methanesulfonate sodium and colistin in critically ill patients.				
	2.5.1	colistin	ation of colistin methanesulfonate sodium and in plasma after colistin methanesulfonate sodium ration	29	
		2.5.1(a)	Concentration of colistin in patients with preserved renal function.	30	
		2.5.1(b)	Concentration of colistin in plasma after application of loading dose	32	
		2.5.1(c)	Concentration of colistin in patients with renal impairment and patients receiving renal replacement therapy	36	
	2.5.2		okinetic parameters of colistin methanesulfonate nd colistin in critically ill patients.	38	
		2.5.2(a)	Volume of distribution (V _d)	42	
		2.5.2(b)	Clearance (CL)	43	
		2.5.2(c)	Elimination half-life (t _{1/2})	44	
2.6	Individualised dosing of colistin for critically ill patients				
	2.6.1	Populatio	on pharmacokinetics modelling	46	
	2.6.2	Pmetrics	software	48	
2.7	Summar	V		50	

CHA	PTER 3	METHODOLOGY52
3.1	Introduc	tion
	3.1.1	Chemical and solvent
	3.1.2	Instruments and materials
3.2	- 1	rformance liquid chromatography (HPLC) method development and on for measuring colistin in human plasma
	3.2.1	Preparation of chemical and reagents
		3.2.1(a) Preparation of boric acid 0.6M57
		3.2.1(b) Preparation of carbonate buffer (1%, w/w, pH 10)57
		3.2.1(c) Preparation of 9-fluorenylmethyl chloroformate (FMOC-Cl), 100mM
		3.2.1(d) Preparation of methanol 95%
		3.2.1(e) Preparation of methanol-0.1% formic acid58
	3.2.2	Drug-free human plasma and serum for HPLC method development
	3.2.3	Preparation of stock solution and working solution for colistin and CMS
	3.2.4	Preparation of HPLC calibrators
	3.2.5	Development of quadrupole time-of-flight liquid chromatography-mass spectrometry (QTOF-LC/MS) method for colistin in human plasma
		3.2.5(a) Preparation of mobile phase (Acetonitrile-0.1% formic acid, water-0.1% formic acid)
		3.2.5(b) Sample pre-treatment
		3.2.5(c) Chromatographic optimisation parameters63
		3.2.5(d) Mass spectrometry optimisation parameters64
		3.2.5(e) Recovery
		3.2.5(f) Precision

	3.2.6	with flu	nent of high-performance liquid Chromatography norescence detection (HPLC-FLD) method for g colistin in human serum
		3.2.6(a)	Preparation of mobile phase (Acetonitrile: tetrahydrofuran: water, 80%:4%:6%, v/v/v)67
		3.2.6(b)	Sample pre-treatment for colistin
		3.2.6(c)	Protein precipitation
		3.2.6(d)	Solid Phase Extraction Procedure
		3.2.6(e)	Chromatographic optimisation parameters70
		3.2.6(f)	Method validation
3.3			cokinetics model development and validation of colistin in s
	3.3.1		lysis data set of colistin in critically ill patients for velopment group
		3.3.1(a)	Search strategy and study selection
		3.3.1(b)	Eligibility criteria78
		3.3.1(c)	Inclusion and exclusion criteria
		3.3.1(d)	Data extraction for meta-analysis
		3.3.1(e)	Data quality assessment
		3.3.1(f)	Meta-analysis data set of colistin
	3.3.2		okinetic sampling of colistin in Malaysian critically ill for model validation group84
		3.3.2(a)	Sample size calculation84
		3.3.2(b)	Subject recruitment for the model validation group85
		3.3.2(c)	Ethics approval
		3.3.2(d)	Colistin methanesulfonate sodium administration87
		3.3.2(e)	Pharmacokinetic sampling
		3.3.2(f)	Adverse event
		3.3.2(g)	Serum colistin concentration measurement91

	3.3.3	Population	on pharmacokinetics model development	92
		3.3.3(a)	Structural model for colistin	92
		3.3.3(b)	Covariate model for colistin	92
		3.3.3(c)	Population pharmacokinetics model validation	93
3.4			ing of colistin methanesulfonate sodium in critically	
СНА	PTER 4	RESULT	ΓS	97
4.1			liquid chromatography (HPLC) method development a turing colistin in human plasma.	
	4.1.1	chromato	ment of quadrupole time-of-flight liquid ography-mass spectrometry (QTOF-LC/MS) for human plasma.	97
		4.1.1(a)	Sample pre-treatment	97
		4.1.1(b)	Optimisation of chromatographic condition	98
		4.1.1(c)	Optimisation of mass spectrometry condition1	02
		4.1.1(d)	Final liquid chromatography and mass spectrometry condition	08
		4.1.1(e)	Extraction recovery	09
	4.1.2	with flu	ment of high-performance liquid chromatography norescence detection (HPLC-FLD) method for g colistin in human serum	10
		4.1.2(a)	Optimisation of sample pre-treatment procedure 1	10
		4.1.2(b)	Final protein precipitation and solid phase extraction procedure	13
		4.1.2(c)	Optimisation of high-performance liquid chromatography	14
		4.1.2(d)	Final liquid chromatography condition1	19
		4.1.2(e)	Method validation1	19
		4.1.2(f)	Application of the HPLC-FLD method to clinical samples	27

5.1	High-pe	rformance liquid chromatography (HPLC) development and validation suring colistin in human plasma
		DISCUSSION
4.3	4.2.5	Population pharmacokinetics parameter of colistin in Malaysian critically ill patients
		4.2.4(b) External validation
		4.2.4(a) Internal validation
	4.2.4	Population pharmacokinetics model validation
		4.2.3(c) Final model for colistin
		4.2.3(b) Covariate model for colistin
		4.2.3(a) Structural model for colistin
	4.2.3	Population pharmacokinetics model development
		4.2.2(d) Serum colistin concentration measurement141
		4.2.2(c) Pharmacokinetic sampling
		4.2.2(b) Colistin methanesulfonate sodium administration 137
		4.2.2(a) Patient demographic data
	4.2.2	Pharmacokinetic sampling of colistin in Malaysian critically ill patients for model validation group
		4.2.1(d) Meta-analysis data set of colistin
		4.2.1(c) Demographic study and patient characteristics
		4.2.1(b) Data quality assessment
		4.2.1(a) Study selection and study eligibility
	4.2.1	Meta-analysis data set of colistin in critically ill patients for the model development group
4.2	-	vill patients

	5.1.1	Development of quadrupole time-of-flight liquid chromatography-mass spectrometry (QTOF-LC/MS) method for quantification of colistin in human plasma
		5.1.1(a) Sample pre-treatment
		5.1.1(b) Optimisation of chromatographic condition163
		5.1.1(c) Optimisation of mass spectrometry condition
		5.1.1(d) Extraction recovery
	5.1.2	Development and validation of high-performance liquid Chromatography with fluorescence detection (HPLC-FLD) method for measuring colistin in human serum
		5.1.2(a) Optimisation of sample pre-treatment procedure 168
		5.1.2(b) Optimisation of colistin derivatisation in SPE170
		5.1.2(c) Optimisation of high-performance liquid chromatography
		5.1.2(d) Method validation
5.2	_	on pharmacokinetics model development and validation of colistin in ill patients.
	5.2.1	Meta-analysis data set of colistin in critically ill patients for model development group
	5.2.2	Pharmacokinetic sampling in Malaysian critically ill patients for model validation
	5.2.3	Population pharmacokinetics model development
	5.2.4	Population pharmacokinetics model validation
	5.2.5	Population pharmacokinetics of colistin in Malaysian critically ill patients
5.3		alised dosing of colistin methanesulfonate sodium in critically ill
5.4	Study lin	nitation and recommendation for future research

CHAPTER 6	CONCLUSION
REFERENCES	
APPENDICES	

LIST OF TABLES

	Pa	ge
Table 2.1	Bioanalysis of CMS and/or colistin in biological fluid using HPLC with fluorimetry detection method	23
Table 2.2	Bioanalysis of CMS and/or colistin in biological fluid using LC-MS/MS method	25
Table 2.3	Comparison of CMS and colistin concentration in plasma after administration of the first dose of CMS	31
Table 2.4	CMS pharmacokinetic parameters in plasma at steady state3	39
Table 2.5	Colistin pharmacokinetic parameters in plasma steady state4	10
Table 2.6	CMS and colistin pharmacokinetic parameters in plasma steady- state patients receiving renal replacement therapy4	4 1
Table 3.1	List of chemicals and solvents used in the study.	54
Table 3.2	List of instruments and materials used in the study	55
Table 3.3	Low-concentration colistin sulphate calibrators and QC preparation	51
Table 3.4	The colistin sulphate calibrators and QC preparation6	51
Table 3.5	The experiment conducted for optimisation of QTOF-LC/MS conditions	55
Table 3.6	Optimisation parameters and experiments for HPLC-FLD-analysis	71
Table 3.7	Scope of literature review	79
Table 3.8	Quality assessment criteria	33
Table 3.9	Inclusion and exclusion criteria of the study	35
Table 3.10	Loading dose of colistin methanesulfonate sodium	37
Table 3.11	Maintenance dose of colistin methanesulfonate sodium	38

Table 4.1	Gradient of the elution program
Table 4.2	Results of the extraction recovery of colistin A, colistin B and polymyxin B
Table 4.3	Final protein precipitation and solid phase extraction procedure for determination of colistin in human serum
Table 4.4	High-performance liquid chromatography with fluorescence detection method for measuring colistin in human serum119
Table 4.5	Recovery of total colistin (A and B) was evaluated using QC samples at four concentration levels. (n=4)
Table 4.6	Linearity of inter-day calibration samples. (n=3)121
Table 4.7	The intra-day accuracy and precision of total colistin (A and B) were evaluated using QC samples at four concentration levels (n=4)
Table 4.8	The inter-day accuracy and precision for total colistin (A and B) were evaluated using QC samples at four concentration levels (n=4)
Table 4.9	Stability for total colistin (A and B) was evaluated using QC samples at four concentration levels
Table 4.10	Stability for colistin methanesulfonate sodium
Table 4.11	Comparison of the HPLC-FLD method with the previous method measuring colistin in human plasma
Table 4.12	Characteristics of included studies
Table 4.13	Demographic and clinical data of enrolled patients
Table 4.14	Summary of sample collection
Table 4.15	The colistin trough concentration in serum samples obtained from Malaysian critically ill patients at steady state
Table 4.16	Summary of published literature reports on colistin

Table 4.17	A comparison of demographic data for the model development and validation groups	144
Table 4.18	Statistic between structural models of one-, two- and three-compartment models	
Table 4.19	Statistic between covariate model	146
Table 4.20	Population pharmacokinetics parameter in the Malaysian critically ill patients.	153
Table 4.21	Comparison of colistin population pharmacokinetics parameters obtained with previous population pharmacokinetics studies	154
Table 4.22	Patient 1 with colistin trough concentration higher than the target concentration	155
Table 4.23	Pharmacokinetics parameters of colistin	156
Table 4.24	Candidate dosage regimens of CMS for Patient 1	157

LIST OF FIGURES

	Page
Figure 1.1	The trend of multidrug-resistant organisms has changed over time in Malaysia
Figure 1.2	The trend of Gram-negative bacteria resistant to carbapenems (CRE) has changed over time in Malaysia
Figure 1.3	Conceptual framework of population PK model of colistin10
Figure 2.1	Chemical structure of polymyxin
Figure 2.2	Chemical structure of CMS and colistin (polymyxin E)19
Figure 2.3	An outline of CMS and colistin's disposition29
Figure 3.1	Workflow of the study53
Figure 3.2	Preparation of working standard solutions of colistin sulphate and polymyxin B (internal standard)
Figure 3.3	Solid phase procedure (SPE) method by Gobin et al. (2010)63
Figure 3.4	Optimisation of sample pre-treatment for colistin69
Figure 3.5	Workflow of population pharmacokinetics modelling development and validation
Figure 3.6	PRISMA flow chart
Figure 3.7	Flow chart of subject recruitment and blood drawing process86
Figure 4.1	Mass spectrometry chromatogram of the mobile phase compositions tested in isocratic mode
Figure 4.2	Mass spectrometry chromatogram in gradient mode99
Figure 4.3	A mass spectrometry chromatogram obtained using optimised

Figure 4.4	Mass spectrometry chromatogram of collstin A and collstin B when the column temperature was set A: 30°C, B: 40°C, C: 45°C, D: 50°C
Figure 4.5	Mass spectrometry spectrum of precursor and product ions in positive ionisation mode (ESI+)
Figure 4.6	Mass spectrometry spectrum of precursor and product ions in negative ionisation mode (ESI-)
Figure 4.7	Optimisation of collision energy voltage
Figure 4.8	Chromatogram peak obtained with SPE Oasis-HLB110
Figure 4.9	Chromatogram peak obtained with SPE C18111
Figure 4.10	Chromatogram peak was obtained using protein precipitation with the SPE procedure, according to a study by Li <i>et al.</i> (2001)112
Figure 4.11	Chromatogram peak of analytes obtained using a) column C-8 and b) column C-18
Figure 4.12	Chromatogram peaks were obtained when adjusting the composition of acetonitrile in the mobile phase
Figure 4.13	Chromatogram peaks were obtained when adjusting the composition of tetrahydrofuran in the mobile phase
Figure 4.14	Chromatogram peaks were obtained when adjusting different flow rates
Figure 4.15	Chromatogram peak obtained under optimal HPLC-FLD method118
Figure 4.16	A chromatogram was obtained for the selectivity and specificity test using the optimal HPLC-FLD method
Figure 4.17	Chromatogram peak obtained from patients treated with intravenous CMS under optimal HPLC-FLD method
Figure 4.18	Quality assessment of pharmacokinetic studies
Figure 4.19	Structural design of the two-compartmental model of colistin145
Figure 4.20	An observed-predicted plot of the final model for population and individual

Figure 4.21	Marginal parameter values of the final model	148
Figure 4.22	The convergence plot of the final model	149
Figure 4.23	Normalised prediction distribution error (NPDE) for the final model.	150
Figure 4.24	Diagnostic goodness-of-fit plots of the individual colistin prediction vs actual concentration plot (A) developed model dataset and (B) validation model dataset for colistin.	151
Figure 4.25	Prediction-corrected visual predictive checks of expected concentrations and their 95% CI (simulated 5 th , 50 th and 95 th percentiles).	152
Figure 4.26	Plasma colistin concentration-time plot of a patient receiving 0.5MIU 12 hourly	158
Figure 4.27	Plasma colistin concentration-time plot of a patient receiving 0.6MIU 12 hourly	158
Figure 4.28	Plasma colistin concentration-time plot of a patient receiving 1.2MIU 24 hourly	159
Figure 4.29	Plasma colistin concentration-time plot of a patient receiving 1.3MIU 24 hourly	159

LIST OF SYMBOLS

 α Alpha

 β Beta

γ Gamma

 $t_{1/2}$ Half-life

 $t_{1/2\alpha}$ Distribution half-life

 $t_{1/2\beta}$ Terminal half-life

μ Micro

μg Microgram

μL Microliter

μm Micrometer

μg/mL Microgram per milliliter

% Percentage

> More than

- Negative

+ Positive

⁰C Degree of Celsius

pH Potential of hydrogen

pKa Acid dissociation constant

Q Intercompartmental clearance

LIST OF ABBREVIATIONS

ACN Acetonitrile

AFC Adaptive feedback control

AJS ESI Agilent jet stream electrospray ionisation

AKI Acute kidney injury

ARC Augmented renal clearance

CE Collision energy voltage

CI Confidence interval

CL Clearance

C_{min} Minimum concentration
C_{max} Maximal concentration

C_{ssave} Average concentration at steady state

CMS Colistin methanesulfonate sodium

CRE Carbapenem resistant enterobacteriaceae

CrCl Creatinine clearance

CL_r Renal clearance

CL_{RCMS} CMS renal clearance

CRRT Continuous renal replacement therapy

CVVHDF Continuous venovenous hemodiafiltration

CV Coefficient of variation

ESBL Extended-spectrum beta-lactamase

ESI Electrospray ionisation

FMOC-CL 9-Flurenylmethyl chloroformate

fm Fraction of CMS converted to colistin

GFR Glomerular filtration rate

GNB Gram negative bacilli

h hour

HD Hemodialysis

HDW High dependency ward

HLB Hydrophilic-lipophilic balance

HPLC High performance liquid chromatography

ICU Intensive care unit

IT2B Iterative-2-stage Bayesian parametric

IV Intravenous

IIV Inter-individual variabilityIOV Inter-occasional variability

L Litre

L-Dab L-diaminobutyric acid

LC-MS/MS Liquid chromatography-tandem mass spectrometry

LLOQ Lower limit of quantitation

LOD Limit of detection
LPS Lipopolysaccharide

M Molar

MDR Multidrug-resistant

MIC Minimum inhibitory inhibition

MIU Million international unit

min Minute

MRM Multiple reaction monitoring

MS Mass spectrometry

MS/MS Tandem mass spectrometry

NPAG Nonparametric adaptive grid

NR Not reported

OPA Orthophtalaldehyde
PK Pharmacokinetic
PD Pharmacodynamic
QC Quality control

QTOF- Quadrupole time-of-flight liquid chromatography mass

LC/MS spectrometry

SIRS Systemic inflammatory response syndrome

SD Standard deviation

SPE Solid phase extraction

SRM Single reaction monitoring

TDM Therapeutic drug monitoring

THF Tetrahydrofuran

TLC Thin layer chromatography

 T_{max} Time to reach maximal plasma concentration

UHPLC Ultra-high-performance liquid chromatography

UI Uncertainty interval

UV Ultraviolet

V_d Volume of distribution

V Voltage

v Volt

v/v Volume per volume

XDR Extended drug-resistant

LIST OF APPENDICES

Appendix A Jawatankuasa Etika Penyelidikan Manusia USM (JPeM)

Appendix B

Ethics Approval Medical Research and Ethics Committee

Ministry of Health (MREC)

Ministry of Health (MREC)

Appendix C Written Informed Consent Form

Appendix D Case Report Form (CRF)

Appendix E List of Publications

Appendix F List of Research Presentations.

MEMBANGUNKAN TERAPI INDIVIDU COLISTIN MELALUI APLIKASI MODEL FARMAKOKINETIK UNTUK PESAKIT KRITIKAL MALAYSIA MENGGUNAKAN HPLC-FLD

ABSTRAK

Colistin adalah antibiotik yang digunakan sebagai pilihan terakhir untuk merawat jangkitan bakteria. Disebabkan ketoksikannya, colistin diberi dalam bentuk prodrug yang tidak aktif, colistin methanesulfonate sodium (CMS). Penukaran CMS kepada colistin *in vivo*, yang berbeza-beza membawa kepada variasi dalam kepekatan colistin di dalam plasma dan parameter farmakokinetik bagi pesakit kritikal. Ketepatan kaedah analisa kepekatan colistin adalah diperlukan untuk menjayakan kajian farmakokinetik. Colistin mempunyai julat terapeutik yang sempit dan perlu dipantau untuk pengoptimuman dos. Oleh itu, kajian ini bertujuan, untuk membangunkan dos yang diperibadikan untuk colistin dengan menggunakan model farmakokinetik untuk pesakit yang kritikal di Malaysia. Kajian ini telah diluluskan oleh Jawatankuasa Etika Penyelidikan Manusia, Universiti Sains Malaysia, dan Jawatankuasa Penyelidikan and Etika Penyelidikan Perubatan, Kementerian Kesihatan Malaysia. Kaedah kromatografi cecair berprestasi tinggi dengan pengesanan pendarfluor (HPLC-FLD) telah dibangunkan dan divalidasikan untuk pengukuran kepekatan colistin dalam serum manusia. Kaedah yang telah divalidasikan ini kemudiannya digunakan untuk analisis serum pesakit kritikal yang menerima rawatan antibiotik CMS. Farmakokinetik populasi untuk colistin telah dimodelkan dengan pendekatan bukan parametrik menggunakan perisian Pmetrics. Model farmakokinetik yang telah dibangunkan akan digunakan untuk mengoptimumkan dos terapeutik ubat bagi pesakit secara individu. Keluk penentukuran linear diperolehi untuk mengukur colistin dalam kepekatan 0.3

hingga 8 µg/mL dengan kesesuaian yang baik ($r^2 = 0.9993$). Kaedah analisis ini telah mengukur dengan tepat kepekatan colistin dalam serum tanpa hidrolisis CMS kepada colistin in vitro yang ketara diperhatikan semasa prosedur. Ketepatan kaedah analisis ini diperolehi antara 98% hingga 100%. Dalam kebanyakan pesakit, kepekatan palung adalah lebih tinggi daripada purata kepekatan semasa dalam keadaan mantap yang disyorkan (2 µg/mL) dan ianya boleh mengakibatkan nefrotoksisiti. Algoritma Grid Adaptif Bukan Parametrik dalam perisian Pmetrics telah digunakan untuk membangunkan model farmakokinetik colistin menggunakan data meta-analisis daripada 15 kajian farmakokinetik. Pengesahan luaran model akhir telah dilakukan dalam 25 pesakit (data Malaysia dan meta-analisis). Farmakokinetik colistin diterangkan dengan baik oleh model dua bahagian dengan penghapusan tertib pertama. Pengesahan model telah dinilai dengan menggunakan plot terhadap kepekatan yang diukur untuk individu berbanding kepekatan kolistin yang diramalkan dimana Rkuadrat adalah 0.974. Model farmakokinetik colistin kemudiannya digunakan untuk pengoptimuman dos terapeutik ubat pesakit secara individu. Penggunaan pendekatan model-bermaklumat yang memfokuskan pada ubat yang diperibadikan boleh membantu mencapai ketepatan pengindividuan dos.

DEVELOPING INDIVIDUALISED THERAPY FOR COLISTIN THROUGH APPLICATION OF PHARMACOKINETIC MODEL TAILORED FOR CRITICALLY ILL MALAYSIAN PATIENTS UTILIZING THE HPLC-FLD

ABSTRACT

Colistin is an antibiotic used as a last option to treat bacterial infections. Due to its toxicity, colistin is administered in the form of an inactive prodrug, colistin methanesulfonate sodium (CMS). The conversion of CMS to colistin in vivo varies greatly, leading to variations in plasma colistin concentration and pharmacokinetic parameters in critically ill patients. A novel analytical method is necessary for any pharmacokinetic studies to succeed. Colistin has a narrow therapeutic window and needs to be monitored for dose optimisation. Therefore, this study aimed to develop personalised medicine for colistin using a pharmacokinetic model for Malaysian critically ill patients. The Human Research Ethics Committee of Universiti Sains Malaysia and the Malaysian Ministry of Health Research Ethical Committee approved the study. The high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method was developed and validated to measure colistin in human serum. This validated method was then used to analyse serum from critically ill patients receiving CMS. Colistin population pharmacokinetics was modelled with a nonparametric approach using Pmetrics software. The constructed pharmacokinetic model of colistin was then applied to optimise individual patient therapeutic drug doses. Linear calibration curves were obtained for colistin concentrations of 0.3 to 8 $\mu g/mL$, with good fit ($r^2 = 0.9993$). This analytical method accurately measured the amount of colistin in serum, with no significant hydrolysis of CMS into colistin in vitro observed during the procedure. The accuracy ranged from 98% to 100%. In most patients, the trough concentration was higher than the recommended average steady-state concentration (2 μg/mL) and may be associated with nephrotoxicity. The Non-Parametric Adaptive Grid algorithm within Pmetrics software was used to develop a colistin pharmacokinetic model using meta-analysis data from 15 pharmacokinetic studies, and external validation of the final model was performed in 25 subjects (Malaysian and meta-analysis data). A two-compartment model with first-order elimination best describes colistin pharmacokinetics. Model validation was assessed by using a plot of observed versus individual predicted colistin concentration, and an R-squared of 0.974 was obtained in the validation group. The colistin pharmacokinetic model was then implemented for individual patient therapeutic drug dose optimisation. Applying a model-informed approach, focusing on personalised medicine, may help achieve precise dose individualisation.

CHAPTER 1

INTRODUCTION

1.1 Overview

Nosocomial infections cause high mortality and morbidity, particularly in patients who are critically ill (Haque *et al.*, 2018). The widespread nosocomial infections of multidrug-resistant Gram-negative bacteria (MDR GNB), including extended-spectrum β-lactamases (ESBLs), for example, *Escherichia coli*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, and *Acinetobacter baumannii*, have raised significant concern (Morris & Cerceo, 2020). The effectiveness of many existing antimicrobials against these organisms has significantly decreased, and treatment options have become limited (Tosi *et al.*, 2018). Carbapenems are the first-line therapy in critically ill patients with MDR GNB. Unfortunately, *Enterobacteriaceae* isolates have developed resistance to carbapenems (Meletis, 2016). The number of carbapenem-resistant *enterobacteriaceae* (CRE) isolates is increasing alarmingly (Logan & Weinstein, 2017).

In Malaysia, there has been a noticeable increase in MDR GNB, specifically those demonstrating resistance to carbapenems or colistin due to ESBL or plasmid-mediated colistin resistance (Annual Report IPC, 2022), as shown in Figures 1.1 and 1.2. Polymyxin antibiotics, such as colistin, are increasingly prescribed to combat these pathogens despite their potential to induce nephrotoxicity (Vaara, 2019).

Figure 1.1 The trend of multidrug-resistant organisms has changed over time in Malaysia. (Adapted from Annual Report IPC, (2022))

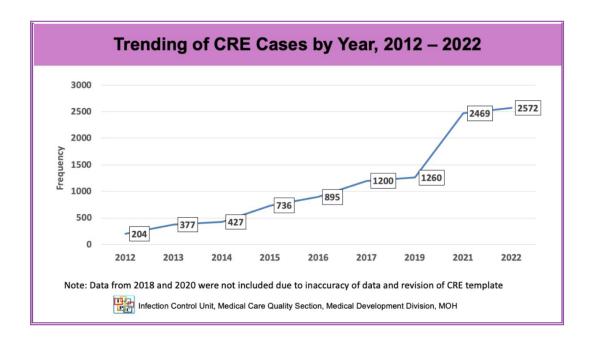


Figure 1.2 The trend of Gram-negative bacteria resistant to carbapenems (CRE) has changed over time in Malaysia. (Adapted from Annual Report IPC, (2022))

Treating infections in critically ill patients is becoming more challenging because of the prevalence of resistant bacteria to multiple drugs (Tosi *et al.*, 2018). Additionally, the antibiotic concentration could be affected by dynamic physiological changes in critically ill patients (Parker, Sime & Roberts, 2015; Nation *et al.*, 2017). The standard antibiotic regimen used to treat critically ill patients may be inadequate (Roberts, Roger & De Waele, 2019).

Critically ill patients exhibit greater pharmacokinetic variability than non-critically ill patients, particularly for hydrophilic antibiotics like aminoglycosides, β-lactam, glycopeptide, and linezolid (Abdul-Aziz *et al.*, 2020). In critically ill patients, the volume of distribution and drug clearance of β-lactam antibiotics can be twice as high as in non-critically ill patients (Abdul-Aziz *et al.*, 2020). Hence, optimising antibiotic therapy for ICU patients poses a significant challenge for managing doctors. The use of therapeutic drug monitoring (TDM) to personalise antibiotic treatment for critically ill patients is now justifiable. This is due to the improved understanding of the relationships between antibiotic dose, pharmacokinetic/pharmacodynamic (PK/PD) exposure, and patient outcomes.

1.2 Problem statement

Colistin use in critically ill patients has increased due to the rise in MDR GNB and the lack of new antibacterial medication classes developed in recent years. When colistin became available, it was known to be toxic. Colistin methanesulfonate sodium, a less toxic prodrug for intravenous injection, was developed to minimise its toxicity. When using CMS, it is important to note that it is converted slowly to colistin in the

body. The initial low concentration at the start of treatment may result in inadequate bacterial killing (Plachouras *et al.*, 2009). Colistin has been found to have a prolonged half-life (14 hours) in individuals who are critically ill (Plachouras *et al.*, 2009) than in patients with cystic fibrosis (10 hours) (Li *et al.*, 2003) and healthy individuals (3 hours) (Couet *et al.*, 2011). These findings indicated delayed attainment of steady-state colistin concentrations in critically ill populations (Plachouras *et al.*, 2009; Mohamed *et al.*, 2012; Karaiskos *et al.*, 2015). Owing to these issues, most current guidelines recommend applying CMS as a loading dosage prior to the maintenance dose (Nation *et al.*, 2016; Tsuji *et al.*, 2019). However, this may not always lead to sufficient colistin plasma levels (Ehrentraut *et al.*, 2020).

Optimising the colistin dosage in critically ill patients to achieve adequate plasma levels has proven difficult. Due to rapid fluctuations in renal function, volume status, and pathophysiology, variability in colistin plasma levels has been observed (Leuppi-Taegtmeyer *et al.*, 2019; Kristoffersson *et al.*, 2020; Ram *et al.*, 2021). Colistin has a narrow therapeutic window (2-4 µg/mL) (Nation *et al.*, 2017). Nephrotoxicity due to colistin is more prevalent when the minimum concentration (C_{min}) of colistin exceeds 2.4 µg/mL (Sorlí *et al.*, 2013; Forrest *et al.*, 2017). Consequently, it may be potentially harmful to use colistin without TDM. It may be helpful that colistin therapy is adjusted based on blood concentration to optimise the balance between the benefits and risks of treatment. High-performance liquid chromatography (HPLC) measures colistin levels in plasma but is not commonly performed in Malaysia. Liquid chromatography-mass spectrometry (LC-MS) methods for colistin assays are expensive and require skilled personnel, making them impractical in smaller settings (Gobin *et al.*, 2010; Gikas *et al.*, 2013). High-

performance liquid chromatography with fluorescence detection (HPLC-FLD) has been extensively used for colistin analysis (Li *et al.*, 2001; Chepyala *et al.*, 2015; Hanai *et al.*, 2018). The colistin levels of critically ill patients receiving CMS treatment were measured using the HPLC-FLD method in this current study.

Recent studies reported by Holford, Ma & Metz (2020) and Wicha et al. (2021) that TDM strategies are frequently ineffective or inferior. This is related to the TDM approach that defines therapeutic ranges within which the concentration is expected to be safe and effective. Therapeutic drug monitoring sampling should be conducted when the patient reaches a steady state. Therefore, TDM sampling for drugs with a long half-life will take place on Day 2 or 3 of therapy. In cases of infection, the pharmacokinetic-pharmacodynamic (PK/PD) target should be achieved as early as possible. In TDM, sampling time is crucial; if a sample is taken outside a predefined accepted window time, it cannot be interpreted accurately. Hence, the concept of target concentration intervention has been introduced, where defined targets instead of ranges were used (Holford, Ma & Metz, 2020). The prediction of drug concentration using pharmacometrics models with PK/PD targets might enhance the attainment of individual targets (Neely et al., 2018). The advantage of this approach, Bayesian estimation of the pharmacokinetics (PK) parameter can be done using any timed plasma sample as long as the sampling is accurately documented (Alihodzic et al., 2020).

Our understanding of CMS and colistin population PK has significantly progressed in the past decade (Karaiskos *et al.*, 2015; Kristoffersson *et al.*, 2020). Extensive research, primarily using a parametric approach, has been conducted. The

pharmacokinetics and plasma levels of colistin exhibit substantial variation among critically ill patients, making it challenging to achieve a normal (Gaussian) distribution. Therefore, a nonparametric method may be a more suitable approach to study population pharmacokinetics in this patient population. Although limited, some studies have explored the use of nonparametric methods (Mathew *et al.*, 2022). This study, therefore, employed a nonparametric approach to investigate the population pharmacokinetics of colistin in critically ill Malaysians. The need for further research in this area is urgent to optimise antibiotic dosing using pharmacokinetic modelling combined with software programs such as Pmetrics to calculate individualised doses. This approach has the potential to enhance the accuracy of antibiotic dosing and improve the clinical outcomes of the patients.

1.3 Objectives

1.3.1 General objective

This study aims to develop personalised medicine for colistin using a pharmacokinetic model for Malaysian critically ill patients.

1.3.2 Specific objectives

- 1. To develop a high-performance liquid chromatography method for quantification of colistin to be used in pharmacokinetics study.
- 2. To develop a pharmacokinetic model of colistin using meta-analysis data from previous pharmacokinetics studies.
- 3. To validate the developed pharmacokinetic model using Malaysian critically ill patient data.
- 4. To develop a personalised dosage optimisation using population pharmacokinetic modelling and simulation.

1.4 Justification of the study

Colistin's therapeutic window is narrow, ranging from 2-4 µg/mL. Improper dosing of colistin can lead to an increased incidence of colistin resistance or toxicity (Nation *et al.*, 2017). Accurate dosage prediction depends on understanding pharmacokinetic variability and measuring it in relation to easily obtainable clinical covariates (Wicha *et al.*, 2021). It is possible to achieve this using population pharmacokinetic models. Population PK models are applied to investigate potential causes of patient exposure variability and determine patients' drug exposure time course. They can be used to simulate different dosage regimens to optimise the achievement of the PK/PD target. Individual PK parameters could be estimated based on available clinical covariates. Personalised dosage optimisation can be determined by using the individual's estimated PK parameters (Holford, Ma & Metz, 2020; Wicha *et al.*, 2021).

There are two pharmacokinetic modelling approaches: parametric and nonparametric, based on the assumption of parameter distribution (Goutelle *et al.*, 2022; Guidi, Csajka & Buclin, 2022). Most pharmacokinetic data for colistin in critically ill patients is derived from a parametric approach. In parametric models, the PK parameter probability distributions are represented by parameters like mean and covariances, describing normal or lognormal distribution assumptions in the population study. Unlike parametric models, non-parametric models have a discrete distribution with no predefined shape. Continuous functions cannot describe the statistical distribution of the model parameter values in the population (Goutelle *et al.*, 2020). They are used to pool and analyse data from groups of patients. The parameter

estimate consists of individual parameters and a probability distribution without preexisting assumptions about its shape (de Velde *et al.*, 2018).

The nonparametric method utilises an exact likelihood function, whereas the parametric method uses an approximation. The nonparametric approach is chosen for its advantages over parametric methods in identifying unexpected sub-populations or outliers (Jelliffe *et al.*, 2000). Only one study so far used a nonparametric approach, conducted by Mathew *et al.* (2022). Therefore, this current study developed a pharmacokinetic model with a nonparametric approach using data from previous studies on critically ill patients. It incorporates local data and other relevant parameters to help doctors determine the best dosage for individual patients.

1.5 Conceptual framework

Figure 1.3 illustrates the conceptual framework for the population pharmacokinetics model of colistin in critically ill patients, highlighting co-variates that may influence colistin concentration in plasma. The covariates that may also influence outcomes include the patient's comorbidities, hypoalbuminemia, extracorporeal therapies (e.g., renal replacement therapy), fluid management, post-surgical drainage, sepsis, mechanical ventilation, and others investigated in this study.

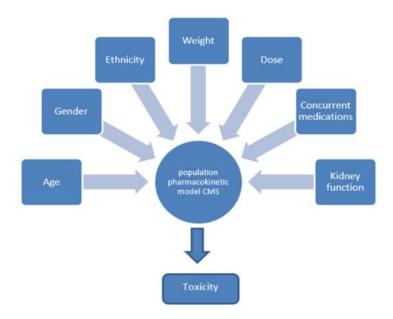


Figure 1.3 Conceptual framework of population PK model of colistin.

1.6 Significance of the study

The current dosing regimens for colistin used in the treatment of GNB infections are unlikely to attain the desired plasma concentration or may potentially increase the risk of toxicity. Since colistin has a narrow therapeutic range and patient severely ill are more prone to have substantial changes in their condition, it is necessary to monitor blood colistin levels to ensure the target concentration is met. Personalised colistin medicine aims to achieve specific PK/PD targets, reduce bacterial resistance, and minimise antibiotic toxicity. Using software to tailor antibiotic concentrations for individual patients can improve dosing accuracy in critically ill patients.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Critically ill patients are prone to infection due to invasive procedures like intubation and mechanical ventilation, as well as vascular access (Blot *et al.*, 2022). They have more chronic comorbid disorders, severe acute physiological derangements, and immunosuppression and are subjected to broad-spectrum antibiotics, causing selection and colonisation pressure in comparison to general ward patients (Jolivet *et al.*, 2020). Because critically ill patients have severe physiological imbalances, they are more vulnerable to MDR GNB infections and may not receive an optimal dosage of antimicrobial therapy (Bonten, 2012; Tängdén *et al.*, 2017; Heffernan *et al.*, 2018; Jolivet *et al.*, 2020).

Antibiotic concentrations may be altered due to extreme physiological derangements, life-saving medical interventions, or the natural course of critical illness (Abdul-Aziz *et al.*, 2015; Cotta, Roberts & Lipman, 2015). Dosing for antibiotics in this population is challenging and not as straightforward as in the general ward (Sime, Roberts & Roberts, 2015). Improving antibiotic therapy in the ICU can be challenging for various reasons, especially when dealing with infections caused by polymyxin-only susceptible GNB.

2.2 Critically ill patients

2.2.1 Definition

Critically ill patients are individuals with life-threatening conditions requiring constant treatment and monitoring. In this current study, critically ill patients are defined as individuals with possibly life-threatening conditions, single or multiple organ failure, who receive medical treatment in a high dependency ward (HDW) or ICU for the purpose of intensive care monitoring and organ support such as haemodynamic, renal, respiratory, neurological and others (Sakr *et al.*, 2018; Evans *et al.*, 2021). Because of the widespread use of invasive devices for diagnosis and treatment, patients in critical condition have a greater chance of acquiring life-threatening infections, leading to sepsis. According to a recent analysis by Rudd *et al.* (2020) an estimated 48.9 million (95% uncertainty interval [UI] 38.9–62.9) cases of sepsis, and there have been 11 million (95% UI 10.1–12.0) sepsis-associated mortality were reported globally, comprising 19.7% (95% UI 18.2–21.4) of all mortality reported to be caused by sepsis.

Sepsis is a life-threatening organ failure caused by a dysregulated immune response to infection, commonly leading to ICU admission (Sakr *et al.*, 2018). Septic shock is a severe form of sepsis that involves significant dysfunction in circulatory, cellular, and metabolic systems, increasing the risk of death compared to sepsis alone (Singer *et al.*, 2016). Controlling the pathogen's source and providing early, appropriate antibiotic therapy is vital for those who are severely ill and have infections (Paul *et al.*, 2010).

2.2.2 Antibiotic pharmacokinetics alteration in the critically ill patients

Dynamic physiological alterations experienced by severely ill patients, drugs (hydrophilicity and lipophilicity of the compound, drug interaction), disease conditions (organ dysfunction, acute phase response), and therapeutic intervention (fluid resuscitation, extracorporeal therapy) can significantly affect antibiotics pharmacokinetics (Parker, Sime & Roberts, 2015; Monogue, Kuti & Nicolau, 2016; Tosi *et al.*, 2018).

Sepsis and septic shock resulting from a severe infection can lead to multiple organ failure and pathophysiological modifications, which may impact the PK/PD characteristics of antibiotics (Roberts, Roger & De Waele, 2019). Bacterial endotoxins trigger systemic inflammatory response syndrome (SIRS), characterised by inflammatory mediators damaging blood vessel lining. Resulting in vasoconstriction or vasodilation, blood flow changes, endothelial injury, and leaky capillaries (Singer *et al.*, 2016; Tosi *et al.*, 2018). Because of vascular endothelial damage and inflammation, capillary leakage occurs due to fluid shifts between blood vessels and tissues (Singer *et al.*, 2016; Tosi *et al.*, 2018). Resulting in an increased volume of distribution (V_d) of hydrophilic drugs.

The volume of distribution determines the relationship between dose and serum concentration. An increase in V_d can decrease the overall concentration of antibiotics in the blood (Roberts, Kumar & Lipman, 2017). Factors that might influence V_d include sepsis, shock, mechanical ventilation, changes in plasma protein binding, hypoalbuminemia (increased capillary leakage), extracorporeal therapy (e.g.,

renal replacement therapy), post-surgical drainage, burn injury, or fluid resuscitation (Blot, Pea & Lipman, 2014). Low plasma antibiotic concentrations can impact the required dosage amount. Severe sepsis is associated with organ failure, while septic shock is characterised by unresponsive hypotension requiring vasopressor support despite adequate fluid administration (Singer *et al.*, 2016). This condition may alter the antibiotic elimination half-life ($t_{1/2}$).

An antibiotic's elimination half-life is the time it takes for its concentration or total quantity to decrease by 50%. Antibiotic elimination half-life is directly related to antibiotic clearance (CL) and V_{d} , as shown by the equation below (Roberts & Lipman, 2009):

$$t1/2 = 0.693 \, x \, Vd/CL$$

Antibiotic metabolism occurs predominantly in the liver and kidneys. Renal blood flow directly correlates with the kidneys' capacity to eliminate the medication (Roberts & Hall, 2013). Sepsis or septic shock may occur due to volume depletion caused by capillary leakage and increased vascular capacity by vasodilatation, leading to disruption of the renal blood flow (Jacobi, 2002). This disease process may also increase V_d , and reduced CL will likely increase $t_{1/2}$.

Pharmacokinetic parameters may be altered due to interventions by intensivists, such as fluid resuscitation and the use of vasopressors to enhance blood flow and renal perfusion, which help restore blood volume and improve cardiac function (Boucher, Wood & Swanson, 2006; Roberts & Lipman, 2009). The intervention process can impact various PK parameters of antibiotics, such as

decreased V_d and increased CL and is also likely to reduce $t_{1/2}$. Additional interventions, such as mechanical ventilation, extracorporeal therapy, and albumin administration, can potentially modify the PK characteristics of antibiotics (Boucher, Wood & Swanson, 2006; Roberts & Lipman, 2009; Blot, Pea & Lipman, 2014).

Critically ill patients may encounter dynamic physiologic changes that affect their pharmacokinetic parameters, resulting in a change in antibiotic concentration.

Multiple factors may influence pharmacokinetics, making predicting an appropriate concentration more challenging.

2.3 Polymyxin antibiotic

In the absence of effective and safe therapy options, polymyxins serve as the primary treatment for carbapenem-resistant infections. Several new antibiotics and combinations have recently been approved to treat certain MDR and extensively drug-resistant (XDR) gram-negative bacteria. Examples of these antibiotics include ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, plazomicin, and cefiderocol. However, these new antibiotics are not yet available in many countries, especially in developing countries like Malaysia.

2.3.1 Chemical structure

Polymyxins are polypeptide antibiotics that consist of 5 different chemical properties substances (polymyxins A to E). Only Polymyxin B and Polymyxin E (colistin) are available for clinical options (Rhouma *et al.*, 2016; Poirel, Jayol &

Nordmann, 2017). Polymyxins consist of a cyclic structure formed by seven amino acids and a linear chain of three amino acids linked to a fatty acid group (Rhouma *et al.*, 2016; Poirel, Jayol & Nordmann, 2017). Polymyxin E and B differ by a single amino acid, D-leucine or D-phenylalanine, respectively, at position six of the peptide ring (Figure 2.1).

Colistin is an old antibiotic which was not widely used due to its adverse effects, especially nephrotoxicity (Mendes & Burdmann, 2010). To reduce its toxicity, the colistin molecule has undergone modifications and is now administered intravenously as a prodrug known as CMS (Figure 2.2) (Falagas & Kasiakou, 2006). Colistin methanesulfonate sodium is produced by reacting colistin's free γ -amino groups with formaldehyde and sodium bisulfite (Bergen *et al.*, 2006; He *et al.*, 2013). Colistin methanesulfonate sodium is not microbiologically active. After administration, it spontaneously hydrolyses in aqueous media and is converted into colistin and partially sulfomethylated derivatives in biological fluid (Bergen *et al.*, 2006)).

The primary constituents of colistin are colistin A and B (Figure 2.2), available for oral and topical use as colistin sulphate and intravenous formulation as CMS (Orwa *et al.*, 2001). Colistin (colistin sulphate or CMS) can also be administered as an inhalation (Li *et al.*, 2006). Colistin is polycationic, and CMS is a polyanion at a physiological pH of 7.4 (Li *et al.*, 2006; Bergen *et al.*, 2012). The α,γ-diaminobutyric acid residues are ionised at physiological pH. This causes colistin molecules, which carry a net positive charge, to interact with the lipid A's negatively charged phosphate

groups in the bacterial lipopolysaccharide (LPS) membrane (Nation, Velkov & Li, 2014).

Colistin methanesulfonate sodium is replaced by negatively charged methanesulfonate moieties at physiological pH, which are the main amines of the Dab residues. After administration, it must be converted to colistin to become active against bacteria (Bergen *et al.*, 2006). The molecular weight of colistin A is 1169 g/mol, and colistin B is 1155 g/mol. Colistin methanesulfonate sodium has a higher molecular weight due to five extra sulfomethyl groups, and the molecular weights of CMS A is 1635 g/mol, and CMS B is 1621 g/mol (Grégoire *et al.*, 2017). Colistin is a hydrophilic drug (Shah *et al.*, 2014) with basic properties (acid dissociation constant [pKa] of about 10) (Li *et al.*, 2005) and CMS is less basic than colistin (Yapa *et al.*, 2013).

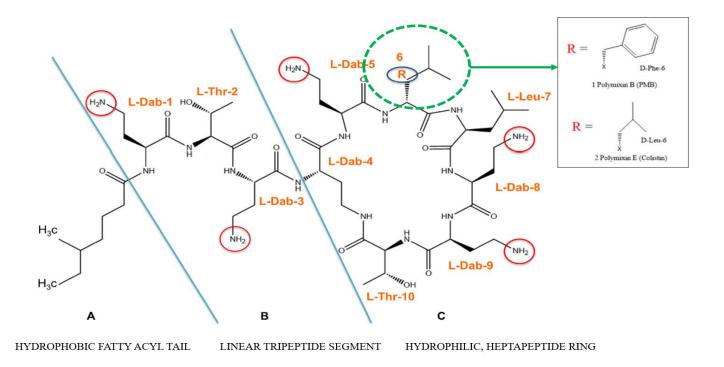
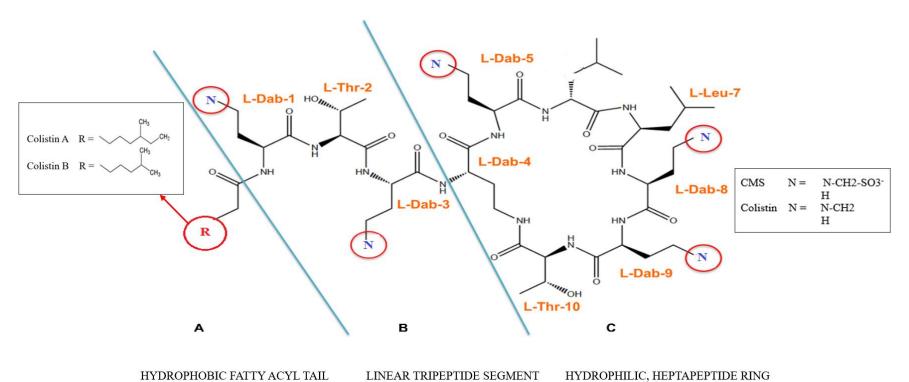



Figure 2.1 Chemical structure of polymyxin.

Number 6 indicates the amino acid position on the structure, D-phenylalanine in polymyxin B, or D-leucine in polymyxin E (colistin) (Adapted from Rhouma *et al.* (2016)).

III DROTHOBIC TATTI ACTE TALE ENLAR TRIFLI TIDE SEGMENT III DROTHIER, TELITALEI TIDE RIN

Figure 2.2 Chemical structure of CMS and colistin (polymyxin E). Amino group: α,γ-diaminobutyric acid residues. Fatty acid, R-6-methyloctanoic for CMS A and colistin A, 6-methylheptanoic acid for CMS B and colistin B (Adapted from Rhouma *et al.* (2016)).

2.3.2 Mechanism of antibacterial activity of polymyxins

Colistin's specific antibacterial mode of action in killing bacterial cells is unknown (Kaye *et al.*, 2016). Colistin's potent antibacterial action is driven by its interaction with the LPS molecules in the cytoplasmic membrane of GNB. This interaction destroys the membrane, allowing internal components to leak out and causing cell death (Vaara, 1992; El-Sayed Ahmed *et al.*, 2020).

2.4 Bioassay of colistin methanesulfonate sodium and colistin

A variety of methodologies have been reported for quantifying colistin in biological specimens: capillary electrophoresis (Kjærgaard Kristensen & Honoré Hansen, 1993), microbiological assay (Thomas, Thomas & Holloway, 1980; Leroy *et al.*, 1989), immunological assay (Kitagawa *et al.*, 1985), thin-layer chromatography (TLC)) (Thomas & Holloway, 1978), and HPLC (Dagla *et al.*, 2019).

2.4.1 Microbiological assay

Microbiological assays were previously used in pharmacokinetic research to determine dosage regimens for prescribing information. However, these approaches are inadequate in sensitivity and selectivity, and the processes take considerable time. The microbiological method for assaying CMS and colistin uses a clinical isolate such as *Bordetella bronchiseptica* (Thomas, Thomas & Holloway, 1980) or *Escherichia coli* (Wootton, Holt & Macgowan, 2005) as indicator organism. The indicator strain was evenly distributed on the surface of the agar medium, and then standard antibiotic

concentrations were added to the agar. After that, the plates underwent a 24-hour preincubation at 37°C. Li (2005) expressed concerns about the method's inability to
differentiate between CMS and colistin during *in vitro* conversion. *In vitro*, the
conversion of CMS to colistin was slower than *in vivo*, and the development of colistin
from its intermediates was more rapid (Milne *et al.*, 2003). According to Li (2005),
samples containing partially methanesulfonate intermediates in the agar plate will
exhibit a more rapid colistin formation during incubation than samples containing
CMS used for calibration curves. This suggests that previous dosage recommendations
based on microbiological assay pharmacokinetic data may have been inaccurate.

2.4.2 High-performance liquid chromatography with fluorimetry detection (HPLC-FLD)

The advancement of HPLC analytical methods has considerably enhanced our comprehension of CMS and colistin pharmacokinetics. These analytical methods can separate and accurately measure colistin and CMS concentration in biological samples. Colistin has low ultraviolet (UV) absorbance and has no native fluorescent properties, so its analysis in biological samples using HPLC requires derivatisation with fluorescent reagents. In the colistin assay, derivative reagents such as orthophthalaldehyde (OPA), 9-flurenylmethyl chloroformate (FMOC-Cl), and dansyl chloride were used. The HPLC method with fluorimetry detection demonstrated high sensitivity and accuracy in quantifying the concentration of colistin within the clinically relevant analytical range of 0.05–20 µg/mL (Nation *et al.*, 2016; Hanai *et al.*, 2018). Liquid chromatography methods require derivatisation and have relatively long run times, typically ranging from 9 to 35 minutes for fluorimetry detection (Le Brun, de Graaf & Vinks, 2000; Li *et al.*, 2001, 2002; Reed *et al.*, 2001). Table 2.1

summarises the bioassay of CMS and colistin in biological fluid using HPLC with a fluorimetry detection method.

2.4.3 Liquid chromatography-tandem mass spectrometry (LC-MS)

Colistin detection via mass spectrometry provides great sensitivity and specificity without requiring a derivatisation procedure. A new and advanced method was developed to measure colistin in human biological fluid using the LC-MS systems (Gobin *et al.*, 2010), liquid chromatography-tandem mass spectrometry (LC-MS/MS) system (Jansson *et al.*, 2009; Dotsikas *et al.*, 2011; Leporati *et al.*, 2014) and Ultrahigh-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) system (Tsai *et al.*, 2013). These newly developed methods were improvised to accelerate the analysis. The introduction of better pre-treatment procedures (Jansson *et al.*, 2009; Gobin *et al.*, 2010; Tsai *et al.*, 2013), using automated robotic liquid-handling workstations (Dotsikas *et al.*, 2011), and an alternative technique utilising hybrid quadrupole time-of-flight mass spectrometry (QTOF MS) combined with ultraperformance liquid chromatography (UPLC) (Gikas *et al.*, 2013), reducing the run time for LC-MS up to two minutes per analysis (Ma *et al.*, 2008; Dotsikas *et al.*, 2011).

The liquid chromatography-tandem mass spectrometry approach shortened the chromatographic method's run times. This method could also detect colistin levels two to seven times lower than those found using the fluorescence method. However, this instrument required trained personnel and mass spectrometry was not widely available. Table 2.2 summarises the bioassay of CMS and colistin in biological fluid using the LC-MS/MS method.

Table 2.1 Bioanalysis of CMS and/or colistin in biological fluid using HPLC with fluorimetry detection method.

Author		Sample Preparation	- Internal Standard	Chromatography method				Total	Fluorimetry detection method		
	Sample	Protein Precipitation		LC	Column	Mobile Phase	Elution	Run Time	Fluorescent reagent	Detection	Concentration Range
Le Brun, de Graaf & Vinks, (2000) (Colistin)	Human plasma, urine, sputum	MeOH-20% TCA (plasma, sputum), MeOH (urine)	-	HPLC	Novapack C18 (3.9x150 mm)	ACN, 0.01mol phosphate buffer (675:325 v/v)	Isocratic	26min	OPA	excitation 340nm, emission 440 nm	30μg/L- 1mg/L
Reed et al. (2001) (Colistin)	Human plasma, urine, sputum	Perchloric acid, potassium hydroxide, hydrochloric acid, 9% sodium carbonate, proline, ethyl acetate (plasma, sputum). Water, perchloric acid, sodium phosphate, proline, ethyl acetate. (urine) (170min)	-	HPLC	Eclipse XDB-C8 (150x 4.8mm)	Solvent A: Water-0.1% TFA Solvent B: ACN-0.1% TFA	Gradient	18min	Dansyl chloride	excitation 350nm, emission 500nm	5-7μg/mL
Pinho et al. (2018) (Colistin)	Human plasma	0.1M sodium bicarbonate buffer, TCA	Amphetamine sulphate	HPLC	LiChroC ART Purospher Star C18 (55mmx4 4mm, 3µm)	Solvent A: ACN Solvent B: Water	Gradient	17min	Dansyl chloride		0.09-9μg/mL

ACN: Acetonitrile; FMOC-CI: 9-flurenylmethyl chloroformate; HPLC: High-performance liquid chromatography; MeOH: Methanol; mg/L: milligram/Liter; mm: millimetre; nm: nanometer; μg/mL: microgram/millilitre; OPA: Orthophthalaldehyde; v/v/v: volume/volume; TCA: Trichloroacetic acid; XDB: eXtra Dense Bonding.

Table 2.1 Continued.

Author	Sample	Sample Preparation			T , 1	Chromatography method				Total	Fluorimetry detection method		
		Protein Precipitation	Column	PE Elution	- Internal - Standard	LC	Column	Mobile Phase	Elution	Run Time	Fluorescent reagent	Detection	Concentration Range
Li et al. (2001) (Colistin)	Human plasma	MeOH-10% TCA (50:50, v/v)	C18	Acetone 0.2M boric acid solution	Netilmicin	HPLC	Ultrashpere C18 (250x4.6 mm)	ACN- tetrahydrofuran- water (87:4:13 v/v)	Isocratic	35min	FMOC- CI	excitation 260nm, emission 315nm	0.1-4.0mg/L
Li <i>et al.</i> (2002) (CMS)	Rat plasma rat urine	MeOH-10% TCA (50:50, v/v)	C18	Acetone 0.2M boric acid solution	Netilmicin	HPLC	Ultrashpere C18 (250x4.6 mm)	ACN- tetrahydrofuran- water (50:30:20 v/v/v)	Isocratic	18min	FMOC- CI	excitation 260nm, emission 315nm	0.33-53.3mg/L (rat plasma), 0.25-40mg/L (rat urine)
Chepyala et al. (2015) (Colistin)	Human plasma	MeOH-20% TCA (50:50, v/v)	C18	Acetone	Polymyxin B1	HPLC	Poroshell 120 (100x2.1 mm, 2.7 μm)	ACN, tetrahydrofuran, water (82:2:16, v/v/v)	Isocratic	22min	FMOC- CI	excitation 260nm, emission 315nm	0.3-6.0μg/mL
Hanai et al. 2018) (Colistin)	Human plasma	MeOH-10% TCA (50:50, v/v)	C18	Acetone	Netilmicin	HPLC	Hydrospere C18 (50x4.6, 5µm)	ACN/ tetrahydrofuran/ distilled water (50:14:20, v/v/v)	Isocratic	~9min	FMOC- CI	excitation 260nm, emission 315nm	0.1-8μg/mL

ACN: Acetonitrile; FMOC-CI: 9-flurenylmethyl chloroformate; HPLC: High performance liquid chromatography; MeOH: Methanol; mm: milimeter; nm: nanometer; μg/mL: microgram/mililiter; mg/L: milligram/Liter; OPA: Orthophthalaldehyde; v/v/v: volume/volume; TCA: Trichloroacetic acid