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MEMBANGUNKAN TERAPI INDIVIDU COLISTIN MELALUI APLIKASI
MODEL FARMAKOKINETIK UNTUK PESAKIT KRITIKAL MALAYSIA

MENGGUNAKAN HPLC-FLD

ABSTRAK

Colistin adalah antibiotik yang digunakan sebagai pilihan terakhir untuk
merawat jangkitan bakteria. Disebabkan ketoksikannya, colistin diberi dalam bentuk
prodrug yang tidak aktif, colistin methanesulfonate sodium (CMS). Penukaran CMS
kepada colistin in vivo, yang berbeza-beza membawa kepada variasi dalam kepekatan
colistin di dalam plasma dan parameter farmakokinetik bagi pesakit kritikal. Ketepatan
kaedah analisa kepekatan colistin adalah diperlukan untuk menjayakan kajian
farmakokinetik. Colistin mempunyai julat terapeutik yang sempit dan perlu dipantau
untuk pengoptimuman dos. Oleh itu, kajian ini bertujuan, untuk membangunkan dos
yang diperibadikan untuk colistin dengan menggunakan model farmakokinetik untuk
pesakit yang kritikal di Malaysia. Kajian ini telah diluluskan oleh Jawatankuasa Etika
Penyelidikan Manusia, Universiti Sains Malaysia, dan Jawatankuasa Penyelidikan and
Etika Penyelidikan Perubatan, Kementerian Kesihatan Malaysia. Kaedah kromatografi
cecair berprestasi tinggi dengan pengesanan pendarfluor (HPLC-FLD) telah
dibangunkan dan divalidasikan untuk pengukuran kepekatan colistin dalam serum
manusia. Kaedah yang telah divalidasikan ini kemudiannya digunakan untuk analisis
serum pesakit kritikal yang menerima rawatan antibiotik CMS. Farmakokinetik
populasi untuk colistin telah dimodelkan dengan pendekatan bukan parametrik
menggunakan perisian Pmetrics. Model farmakokinetik yang telah dibangunkan akan
digunakan untuk mengoptimumkan dos terapeutik ubat bagi pesakit secara individu.

Keluk penentukuran linear diperolehi untuk mengukur colistin dalam kepekatan 0.3
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hingga 8 pg/mL dengan kesesuaian yang baik (+° = 0.9993). Kaedah analisis ini telah
mengukur dengan tepat kepekatan colistin dalam serum tanpa hidrolisis CMS kepada
colistin in vitro yang ketara diperhatikan semasa prosedur. Ketepatan kaedah analisis
ini diperolehi antara 98% hingga 100%. Dalam kebanyakan pesakit, kepekatan palung
adalah lebih tinggi daripada purata kepekatan semasa dalam keadaan mantap yang
disyorkan (2 pg/mL) dan ianya boleh mengakibatkan nefrotoksisiti. Algoritma Grid
Adaptif Bukan Parametrik dalam perisian Pmetrics telah digunakan untuk
membangunkan model farmakokinetik colistin menggunakan data meta-analisis
daripada 15 kajian farmakokinetik. Pengesahan luaran model akhir telah dilakukan
dalam 25 pesakit (data Malaysia dan meta-analisis). Farmakokinetik colistin
diterangkan dengan baik oleh model dua bahagian dengan penghapusan tertib pertama.
Pengesahan model telah dinilai dengan menggunakan plot terhadap kepekatan yang
diukur untuk individu berbanding kepekatan kolistin yang diramalkan dimana R-
kuadrat adalah 0.974. Model farmakokinetik colistin kemudiannya digunakan untuk
pengoptimuman dos terapeutik ubat pesakit secara individu. Penggunaan pendekatan
model-bermaklumat yang memfokuskan pada ubat yang diperibadikan boleh

membantu mencapai ketepatan pengindividuan dos.
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DEVELOPING INDIVIDUALISED THERAPY FOR COLISTIN THROUGH
APPLICATION OF PHARMACOKINETIC MODEL TAILORED FOR

CRITICALLY ILL MALAYSIAN PATIENTS UTILIZING THE HPLC-FLD

ABSTRACT

Colistin is an antibiotic used as a last option to treat bacterial infections. Due
to its toxicity, colistin is administered in the form of an inactive prodrug, colistin
methanesulfonate sodium (CMS). The conversion of CMS to colistin in vivo varies
greatly, leading to variations in plasma colistin concentration and pharmacokinetic
parameters in critically ill patients. A novel analytical method is necessary for any
pharmacokinetic studies to succeed. Colistin has a narrow therapeutic window and
needs to be monitored for dose optimisation. Therefore, this study aimed to develop
personalised medicine for colistin using a pharmacokinetic model for Malaysian
critically ill patients. The Human Research Ethics Committee of Universiti Sains
Malaysia and the Malaysian Ministry of Health Research Ethical Committee approved
the study. The high-performance liquid chromatography with fluorescence detection
(HPLC-FLD) method was developed and validated to measure colistin in human
serum. This validated method was then used to analyse serum from critically ill
patients receiving CMS. Colistin population pharmacokinetics was modelled with a
nonparametric approach using Pmetrics software. The constructed pharmacokinetic
model of colistin was then applied to optimise individual patient therapeutic drug
doses. Linear calibration curves were obtained for colistin concentrations of 0.3 to 8
ug/mL, with good fit (#* = 0.9993). This analytical method accurately measured the

amount of colistin in serum, with no significant hydrolysis of CMS into colistin in
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vitro observed during the procedure. The accuracy ranged from 98% to 100%. In most
patients, the trough concentration was higher than the recommended average steady-
state concentration (2 pg/mL) and may be associated with nephrotoxicity. The Non-
Parametric Adaptive Grid algorithm within Pmetrics software was used to develop a
colistin pharmacokinetic model using meta-analysis data from 15 pharmacokinetic
studies, and external validation of the final model was performed in 25 subjects
(Malaysian and meta-analysis data). A two-compartment model with first-order
elimination best describes colistin pharmacokinetics. Model validation was assessed
by using a plot of observed versus individual predicted colistin concentration, and an
R-squared of 0.974 was obtained in the validation group. The colistin pharmacokinetic
model was then implemented for individual patient therapeutic drug dose optimisation.
Applying a model-informed approach, focusing on personalised medicine, may help

achieve precise dose individualisation.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Nosocomial infections cause high mortality and morbidity, particularly in
patients who are critically ill (Haque et al., 2018). The widespread nosocomial
infections of multidrug-resistant Gram-negative bacteria (MDR GNB), including
extended-spectrum B-lactamases (ESBLs), for example, Escherichia coli,
Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii,
have raised significant concern (Morris & Cerceo, 2020). The effectiveness of many
existing antimicrobials against these organisms has significantly decreased, and
treatment options have become limited (Tosi ef al., 2018). Carbapenems are the first-
line therapy in critically ill patients with MDR GNB. Unfortunately,
Enterobacteriaceae isolates have developed resistance to carbapenems (Meletis,
2016). The number of carbapenem-resistant enterobacteriaceae (CRE) isolates is

increasing alarmingly (Logan & Weinstein, 2017).

In Malaysia, there has been a noticeable increase in MDR GNB, specifically
those demonstrating resistance to carbapenems or colistin due to ESBL or plasmid-
mediated colistin resistance (Annual Report IPC, 2022), as shown in Figures 1.1 and
1.2. Polymyxin antibiotics, such as colistin, are increasingly prescribed to combat

these pathogens despite their potential to induce nephrotoxicity (Vaara, 2019).
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Treating infections in critically ill patients is becoming more challenging
because of the prevalence of resistant bacteria to multiple drugs (Tosi et al., 2018).
Additionally, the antibiotic concentration could be affected by dynamic physiological
changes in critically ill patients (Parker, Sime & Roberts, 2015; Nation ef al., 2017).
The standard antibiotic regimen used to treat critically ill patients may be inadequate

(Roberts, Roger & De Waele, 2019).

Critically ill patients exhibit greater pharmacokinetic variability than non-
critically ill patients, particularly for hydrophilic antibiotics like aminoglycosides, [
lactam, glycopeptide, and linezolid (Abdul-Aziz et al., 2020). In critically ill patients,
the volume of distribution and drug clearance of B-lactam antibiotics can be twice as
high as in non-critically ill patients (Abdul-Aziz et al., 2020). Hence, optimising
antibiotic therapy for ICU patients poses a significant challenge for managing doctors.
The use of therapeutic drug monitoring (TDM) to personalise antibiotic treatment for
critically 1ill patients is now justifiable. This is due to the improved understanding of
the relationships between antibiotic dose, pharmacokinetic/pharmacodynamic

(PK/PD) exposure, and patient outcomes.

1.2 Problem statement

Colistin use in critically ill patients has increased due to the rise in MDR GNB
and the lack of new antibacterial medication classes developed in recent years. When
colistin became available, it was known to be toxic. Colistin methanesulfonate sodium,
a less toxic prodrug for intravenous injection, was developed to minimise its toxicity.

When using CMS, it is important to note that it is converted slowly to colistin in the
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body. The initial low concentration at the start of treatment may result in inadequate
bacterial killing (Plachouras et al., 2009). Colistin has been found to have a prolonged
half-life (14 hours) in individuals who are critically ill (Plachouras et al., 2009) than
in patients with cystic fibrosis (10 hours) (Li et al., 2003) and healthy individuals (3
hours) (Couet et al., 2011). These findings indicated delayed attainment of steady-state
colistin concentrations in critically ill populations (Plachouras et al., 2009; Mohamed
et al., 2012; Karaiskos et al., 2015). Owing to these issues, most current guidelines
recommend applying CMS as a loading dosage prior to the maintenance dose (Nation
etal.,2016; Tsuji et al., 2019). However, this may not always lead to sufficient colistin

plasma levels (Ehrentraut et al., 2020).

Optimising the colistin dosage in critically ill patients to achieve adequate
plasma levels has proven difficult. Due to rapid fluctuations in renal function, volume
status, and pathophysiology, variability in colistin plasma levels has been observed
(Leuppi-Taegtmeyer et al., 2019; Kristoffersson et al., 2020; Ram et al., 2021).
Colistin has a narrow therapeutic window (2-4 pg/mL) (Nation et al, 2017).
Nephrotoxicity due to colistin 1s more prevalent when the minimum concentration
(Cmin) of colistin exceeds 2.4 ug/mL (Sorli et al, 2013; Forrest et al., 2017).
Consequently, it may be potentially harmful to use colistin without TDM. It may be
helpful that colistin therapy is adjusted based on blood concentration to optimise the
balance between the benefits and risks of treatment. High-performance liquid
chromatography (HPLC) measures colistin levels in plasma but is not commonly
performed in Malaysia. Liquid chromatography-mass spectrometry (LC-MS) methods
for colistin assays are expensive and require skilled personnel, making them

impractical in smaller settings (Gobin et al., 2010; Gikas et al., 2013). High-
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performance liquid chromatography with fluorescence detection (HPLC-FLD) has
been extensively used for colistin analysis (Li et al., 2001; Chepyala et al., 2015; Hanai
et al., 2018). The colistin levels of critically ill patients receiving CMS treatment were

measured using the HPLC-FLD method in this current study.

Recent studies reported by Holford, Ma & Metz (2020) and Wicha et al. (2021)
that TDM strategies are frequently ineffective or inferior. This is related to the TDM
approach that defines therapeutic ranges within which the concentration is expected to
be safe and effective. Therapeutic drug monitoring sampling should be conducted
when the patient reaches a steady state. Therefore, TDM sampling for drugs with a
long half-life will take place on Day 2 or 3 of therapy. In cases of infection, the
pharmacokinetic-pharmacodynamic (PK/PD) target should be achieved as early as
possible. In TDM, sampling time is crucial; if a sample is taken outside a predefined
accepted window time, it cannot be interpreted accurately. Hence, the concept of target
concentration intervention has been introduced, where defined targets instead of
ranges were used (Holford, Ma & Metz, 2020). The prediction of drug concentration
using pharmacometrics models with PK/PD targets might enhance the attainment of
individual targets (Neely et al., 2018). The advantage of this approach, Bayesian
estimation of the pharmacokinetics (PK) parameter can be done using any timed
plasma sample as long as the sampling is accurately documented (Alihodzic et al.,

2020).

Our understanding of CMS and colistin population PK has significantly
progressed in the past decade (Karaiskos et al., 2015; Kristoffersson et al., 2020).

Extensive research, primarily using a parametric approach, has been conducted. The
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pharmacokinetics and plasma levels of colistin exhibit substantial variation among
critically ill patients, making it challenging to achieve a normal (Gaussian)
distribution. Therefore, a nonparametric method may be a more suitable approach to
study population pharmacokinetics in this patient population. Although limited, some
studies have explored the use of nonparametric methods (Mathew et al., 2022). This
study, therefore, employed a nonparametric approach to investigate the population
pharmacokinetics of colistin in critically ill Malaysians. The need for further research
in this area is urgent to optimise antibiotic dosing using pharmacokinetic modelling
combined with software programs such as Pmetrics to calculate individualised doses.
This approach has the potential to enhance the accuracy of antibiotic dosing and

improve the clinical outcomes of the patients.



1.3

1.3.1

Objectives

General objective

This study aims to develop personalised medicine for colistin using a pharmacokinetic

model for Malaysian critically ill patients.

1.3.2

Specific objectives

To develop a high-performance liquid chromatography method for
quantification of colistin to be used in pharmacokinetics study.
To develop a pharmacokinetic model of colistin using meta-analysis data from

previous pharmacokinetics studies.

. To validate the developed pharmacokinetic model using Malaysian critically

ill patient data.
To develop a personalised dosage optimisation using population

pharmacokinetic modelling and simulation.



14 Justification of the study

Colistin's therapeutic window is narrow, ranging from 2-4 pg/mL. Improper
dosing of colistin can lead to an increased incidence of colistin resistance or toxicity
(Nation et al., 2017). Accurate dosage prediction depends on understanding
pharmacokinetic variability and measuring it in relation to easily obtainable clinical
covariates (Wicha ef al., 2021). It is possible to achieve this using population
pharmacokinetic models. Population PK models are applied to investigate potential
causes of patient exposure variability and determine patients' drug exposure time
course. They can be used to simulate different dosage regimens to optimise the
achievement of the PK/PD target. Individual PK parameters could be estimated based
on available clinical covariates. Personalised dosage optimisation can be determined
by using the individual's estimated PK parameters (Holford, Ma & Metz, 2020; Wicha

etal.,2021).

There are two pharmacokinetic modelling approaches: parametric and
nonparametric, based on the assumption of parameter distribution (Goutelle et al.,
2022; Guidi, Csajka & Buclin, 2022). Most pharmacokinetic data for colistin in
critically ill patients is derived from a parametric approach. In parametric models, the
PK parameter probability distributions are represented by parameters like mean and
covariances, describing normal or lognormal distribution assumptions in the
population study. Unlike parametric models, non-parametric models have a discrete
distribution with no predefined shape. Continuous functions cannot describe the
statistical distribution of the model parameter values in the population (Goutelle ef al.,

2020). They are used to pool and analyse data from groups of patients. The parameter
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estimate consists of individual parameters and a probability distribution without pre-

existing assumptions about its shape (de Velde et al., 2018).

The nonparametric method utilises an exact likelihood function, whereas the
parametric method uses an approximation. The nonparametric approach is chosen for
its advantages over parametric methods in identifying unexpected sub-populations or
outliers (Jelliffe et al., 2000). Only one study so far used a nonparametric approach,
conducted by Mathew et al. (2022). Therefore, this current study developed a
pharmacokinetic model with a nonparametric approach using data from previous
studies on critically ill patients. It incorporates local data and other relevant parameters

to help doctors determine the best dosage for individual patients.

1.5 Conceptual framework

Figure 1.3 illustrates the conceptual framework for the population
pharmacokinetics model of colistin in critically ill patients, highlighting co-variates
that may influence colistin concentration in plasma. The covariates that may also
influence outcomes include the patient's comorbidities, hypoalbuminemia,
extracorporeal therapies (e.g., renal replacement therapy), fluid management, post-

surgical drainage, sepsis, mechanical ventilation, and others investigated in this study.
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Figure 1.3 Conceptual framework of population PK model of colistin.

1.6  Significance of the study

The current dosing regimens for colistin used in the treatment of GNB
infections are unlikely to attain the desired plasma concentration or may potentially
increase the risk of toxicity. Since colistin has a narrow therapeutic range and patient
severely ill are more prone to have substantial changes in their condition, it is
necessary to monitor blood colistin levels to ensure the target concentration is met.
Personalised colistin medicine aims to achieve specific PK/PD targets, reduce bacterial
resistance, and minimise antibiotic toxicity. Using software to tailor antibiotic
concentrations for individual patients can improve dosing accuracy in critically ill

patients.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Critically ill patients are prone to infection due to invasive procedures like
intubation and mechanical ventilation, as well as vascular access (Blot et al., 2022).
They have more chronic comorbid disorders, severe acute physiological
derangements, and immunosuppression and are subjected to broad-spectrum
antibiotics, causing selection and colonisation pressure in comparison to general ward
patients (Jolivet ef al., 2020). Because critically ill patients have severe physiological
imbalances, they are more vulnerable to MDR GNB infections and may not receive an
optimal dosage of antimicrobial therapy (Bonten, 2012; Téngdén et al, 2017,

Heffernan et al., 2018; Jolivet et al., 2020).

Antibiotic concentrations may be altered due to extreme physiological
derangements, life-saving medical interventions, or the natural course of critical illness
(Abdul-Aziz et al., 2015; Cotta, Roberts & Lipman, 2015). Dosing for antibiotics in
this population is challenging and not as straightforward as in the general ward (Sime,
Roberts & Roberts, 2015). Improving antibiotic therapy in the ICU can be challenging
for various reasons, especially when dealing with infections caused by polymyxin-

only susceptible GNB.
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2.2 Critically ill patients

2.2.1 Definition

Critically ill patients are individuals with life-threatening conditions requiring
constant treatment and monitoring. In this current study, critically ill patients are
defined as individuals with possibly life-threatening conditions, single or multiple
organ failure, who receive medical treatment in a high dependency ward (HDW) or
ICU for the purpose of intensive care monitoring and organ support such as
haemodynamic, renal, respiratory, neurological and others (Sakr et al., 2018; Evans et
al., 2021). Because of the widespread use of invasive devices for diagnosis and
treatment, patients in critical condition have a greater chance of acquiring life-
threatening infections, leading to sepsis. According to a recent analysis by Rudd ef al.
(2020) an estimated 48.9 million (95% uncertainty interval [UI] 38.9-62.9) cases of
sepsis, and there have been 11 million (95% UI 10.1-12.0) sepsis-associated mortality
were reported globally, comprising 19.7% (95% UI 18.2-21.4) of all mortality

reported to be caused by sepsis.

Sepsis is a life-threatening organ failure caused by a dysregulated immune
response to infection, commonly leading to ICU admission (Sakr ef al., 2018). Septic
shock is a severe form of sepsis that involves significant dysfunction in circulatory,
cellular, and metabolic systems, increasing the risk of death compared to sepsis alone
(Singer et al., 2016). Controlling the pathogen's source and providing early,
appropriate antibiotic therapy is vital for those who are severely ill and have infections

(Paul et al., 2010).
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2.2.2 Antibiotic pharmacokinetics alteration in the critically ill patients

Dynamic physiological alterations experienced by severely ill patients, drugs
(hydrophilicity and lipophilicity of the compound, drug interaction), disease
conditions (organ dysfunction, acute phase response), and therapeutic intervention
(fluid resuscitation, extracorporeal therapy) can significantly affect antibiotics
pharmacokinetics (Parker, Sime & Roberts, 2015; Monogue, Kuti & Nicolau, 2016;

Tosi et al., 2018).

Sepsis and septic shock resulting from a severe infection can lead to multiple
organ failure and pathophysiological modifications, which may impact the PK/PD
characteristics of antibiotics (Roberts, Roger & De Waele, 2019). Bacterial endotoxins
trigger systemic inflammatory response syndrome (SIRS), characterised by
inflammatory mediators damaging blood vessel lining. Resulting in vasoconstriction
or vasodilation, blood flow changes, endothelial injury, and leaky capillaries (Singer
et al., 2016; Tosi et al., 2018). Because of vascular endothelial damage and
inflammation, capillary leakage occurs due to fluid shifts between blood vessels and
tissues (Singer et al., 2016; Tosi et al., 2018).Resulting in an increased volume of

distribution (Vg) of hydrophilic drugs.

The volume of distribution determines the relationship between dose and
serum concentration. An increase in V4 can decrease the overall concentration of
antibiotics in the blood (Roberts, Kumar & Lipman, 2017). Factors that might
influence Vg include sepsis, shock, mechanical ventilation, changes in plasma protein
binding, hypoalbuminemia (increased capillary leakage), extracorporeal therapy (e.g.,

13



renal replacement therapy), post-surgical drainage, burn injury, or fluid resuscitation
(Blot, Pea & Lipman, 2014). Low plasma antibiotic concentrations can impact the
required dosage amount. Severe sepsis is associated with organ failure, while septic
shock is characterised by unresponsive hypotension requiring vasopressor support
despite adequate fluid administration (Singer et al., 2016). This condition may alter

the antibiotic elimination half-life (ti/2).

An antibiotic's elimination half-life is the time it takes for its concentration or
total quantity to decrease by 50%. Antibiotic elimination half-life is directly related
to antibiotic clearance (CL) and Vg4, as shown by the equation below (Roberts &
Lipman, 2009):

t1/2 = 0.693 x Vd/CL

Antibiotic metabolism occurs predominantly in the liver and kidneys. Renal
blood flow directly correlates with the kidneys' capacity to eliminate the medication
(Roberts & Hall, 2013). Sepsis or septic shock may occur due to volume depletion
caused by capillary leakage and increased vascular capacity by vasodilatation, leading
to disruption of the renal blood flow (Jacobi, 2002). This disease process may also

increase Vg, and reduced CL will likely increase ti.

Pharmacokinetic parameters may be altered due to interventions by
intensivists, such as fluid resuscitation and the use of vasopressors to enhance blood
flow and renal perfusion, which help restore blood volume and improve cardiac
function (Boucher, Wood & Swanson, 2006; Roberts & Lipman, 2009). The

intervention process can impact various PK parameters of antibiotics, such as
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decreased Vg4 and increased CL and is also likely to reduce ti». Additional
interventions, such as mechanical ventilation, extracorporeal therapy, and albumin
administration, can potentially modify the PK characteristics of antibiotics (Boucher,

Wood & Swanson, 2006; Roberts & Lipman, 2009; Blot, Pea & Lipman, 2014).

Critically ill patients may encounter dynamic physiologic changes that affect
their pharmacokinetic parameters, resulting in a change in antibiotic concentration.
Multiple factors may influence pharmacokinetics, making predicting an appropriate

concentration more challenging.

23 Polymyxin antibiotic

In the absence of effective and safe therapy options, polymyxins serve as the
primary treatment for carbapenem-resistant infections. Several new antibiotics and
combinations have recently been approved to treat certain MDR and extensively drug-
resistant (XDR) gram-negative bacteria. Examples of these antibiotics include
ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam,
plazomicin, and cefiderocol. However, these new antibiotics are not yet available in

many countries, especially in developing countries like Malaysia.

2.3.1 Chemical structure

Polymyxins are polypeptide antibiotics that consist of 5 different chemical
properties substances (polymyxins A to E). Only Polymyxin B and Polymyxin E

(colistin) are available for clinical options (Rhouma et al., 2016; Poirel, Jayol &
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Nordmann, 2017). Polymyxins consist of a cyclic structure formed by seven amino
acids and a linear chain of three amino acids linked to a fatty acid group (Rhouma et
al., 2016; Poirel, Jayol & Nordmann, 2017). Polymyxin E and B differ by a single
amino acid, D-leucine or D-phenylalanine, respectively, at position six of the peptide

ring (Figure 2.1).

Colistin is an old antibiotic which was not widely used due to its adverse
effects, especially nephrotoxicity (Mendes & Burdmann, 2010). To reduce its toxicity,
the colistin molecule has undergone modifications and is now administered
intravenously as a prodrug known as CMS (Figure 2.2) (Falagas & Kasiakou,
2006).Colistin methanesulfonate sodium is produced by reacting colistin's free -
amino groups with formaldehyde and sodium bisulfite (Bergen et al., 2006; He et al.,
2013). Colistin methanesulfonate sodium is not microbiologically active. After
administration, it spontaneously hydrolyses in aqueous media and is converted into
colistin and partially sulfomethylated derivatives in biological fluid (Bergen et al.,

2006)).

The primary constituents of colistin are colistin A and B (Figure 2.2), available
for oral and topical use as colistin sulphate and intravenous formulation as CMS (Orwa
et al., 2001). Colistin (colistin sulphate or CMS) can also be administered as an
inhalation (Li et al., 2006). Colistin is polycationic, and CMS is a polyanion at a
physiological pH of 7.4 (Li et al., 2006, Bergen et al., 2012). The a,y-diaminobutyric
acid residues are ionised at physiological pH. This causes colistin molecules, which

carry a net positive charge, to interact with the lipid A's negatively charged phosphate
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groups in the bacterial lipopolysaccharide (LPS) membrane (Nation, Velkov & Li,

2014).

Colistin methanesulfonate sodium is replaced by negatively charged
methanesulfonate moieties at physiological pH, which are the main amines of the Dab
residues. After administration, it must be converted to colistin to become active against
bacteria (Bergen et al., 2006). The molecular weight of colistin A is 1169 g/mol, and
colistin B is 1155 g/mol. Colistin methanesulfonate sodium has a higher molecular
weight due to five extra sulfomethyl groups, and the molecular weights of CMS A is
1635 g/mol, and CMS B is 1621 g/mol (Grégoire et al., 2017). Colistin is a hydrophilic
drug (Shah et al., 2014) with basic properties (acid dissociation constant [pKa] of

about 10) (Li et al., 2005) and CMS is less basic than colistin (Yapa et al., 2013).
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Figure 2.1 Chemical structure of polymyxin.

Number 6 indicates the amino acid position on the structure, D-phenylalanine in polymyxin B, or D-leucine in polymyxin E (colistin) (Adapted
from Rhouma et al. (2016)).
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Figure 2.2 Chemical structure of CMS and colistin (polymyxin E). Amino group: a,y-diaminobutyric acid residues. Fatty acid, R-6-

methyloctanoic for CMS A and colistin A, 6-methylheptanoic acid for CMS B and colistin B (Adapted from Rhouma et al. (2016))
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2.3.2 Mechanism of antibacterial activity of polymyxins

Colistin's specific antibacterial mode of action in killing bacterial cells is
unknown (Kaye et al., 2016). Colistin's potent antibacterial action is driven by its
interaction with the LPS molecules in the cytoplasmic membrane of GNB. This
interaction destroys the membrane, allowing internal components to leak out and

causing cell death (Vaara, 1992; El-Sayed Ahmed et al., 2020).

24 Bioassay of colistin methanesulfonate sodium and colistin

A variety of methodologies have been reported for quantifying colistin in
biological specimens: capillary electrophoresis (Kjergaard Kristensen & Honoré
Hansen, 1993), microbiological assay (Thomas, Thomas & Holloway, 1980; Leroy et
al., 1989), immunological assay (Kitagawa et al., 1985), thin-layer chromatography

(TLC) ) (Thomas & Holloway, 1978), and HPLC (Dagla ef al., 2019).

241 Microbiological assay

Microbiological assays were previously used in pharmacokinetic research to
determine dosage regimens for prescribing information. However, these approaches
are inadequate in sensitivity and selectivity, and the processes take considerable time.
The microbiological method for assaying CMS and colistin uses a clinical isolate such
as Bordetella bronchiseptica (Thomas, Thomas & Holloway, 1980) or Escherichia
coli (Wootton, Holt & Macgowan, 2005) as indicator organism. The indicator strain

was evenly distributed on the surface of the agar medium, and then standard antibiotic
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concentrations were added to the agar. After that, the plates underwent a 24-hour pre-
incubation at 37°C. Li (2005) expressed concerns about the method’s inability to
differentiate between CMS and colistin during in vitro conversion. In vitro, the
conversion of CMS to colistin was slower than in vivo, and the development of colistin
from its intermediates was more rapid (Milne et al., 2003). According to Li (2005),
samples containing partially methanesulfonate intermediates in the agar plate will
exhibit a more rapid colistin formation during incubation than samples containing
CMS used for calibration curves. This suggests that previous dosage recommendations

based on microbiological assay pharmacokinetic data may have been inaccurate.

2.4.2 High-performance liquid chromatography with fluorimetry detection
(HPLC-FLD)

The advancement of HPLC analytical methods has considerably enhanced our
comprehension of CMS and colistin pharmacokinetics. These analytical methods can
separate and accurately measure colistin and CMS concentration in biological samples.
Colistin has low ultraviolet (UV) absorbance and has no native fluorescent properties,
so its analysis in biological samples using HPLC requires derivatisation with
fluorescent reagents. In the colistin assay, derivative reagents such as
orthophthalaldehyde (OPA), 9-flurenylmethyl chloroformate (FMOC-CI), and dansyl
chloride were used. The HPLC method with fluorimetry detection demonstrated high
sensitivity and accuracy in quantifying the concentration of colistin within the
clinically relevant analytical range of 0.05-20 pg/mL (Nation et al., 2016; Hanai et
al., 2018). Liquid chromatography methods require derivatisation and have relatively
long run times, typically ranging from 9 to 35 minutes for fluorimetry detection (Le

Brun, de Graaf & Vinks, 2000; Li ef al., 2001, 2002; Reed et al., 2001). Table 2.1
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summarises the bioassay of CMS and colistin in biological fluid using HPLC with a

fluorimetry detection method.

243 Liquid chromatography-tandem mass spectrometry (LC-MS)

Colistin detection via mass spectrometry provides great sensitivity and
specificity without requiring a derivatisation procedure. A new and advanced method
was developed to measure colistin in human biological fluid using the LC-MS systems
(Gobin et al., 2010), liquid chromatography-tandem mass spectrometry (LC-MS/MS)
system (Jansson et al., 2009; Dotsikas et al., 2011; Leporati et al., 2014) and Ultra-
high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)
system (Tsai et al., 2013). These newly developed methods were improvised to
accelerate the analysis. The introduction of better pre-treatment procedures (Jansson
et al., 2009; Gobin et al., 2010; Tsai et al., 2013), using automated robotic liquid-
handling workstations (Dotsikas ef al., 2011), and an alternative technique utilising
hybrid quadrupole time-of-flight mass spectrometry (QTOF MS) combined with ultra-
performance liquid chromatography (UPLC) (Gikas et al., 2013), reducing the run

time for LC-MS up to two minutes per analysis (Ma et al., 2008; Dotsikas et al., 2011).

The liquid chromatography-tandem mass spectrometry approach shortened the
chromatographic method's run times. This method could also detect colistin levels two
to seven times lower than those found using the fluorescence method. However, this
instrument required trained personnel and mass spectrometry was not widely available.
Table 2.2 summarises the bioassay of CMS and colistin in biological fluid using the

LC-MS/MS method.
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Table 2.1 Bioanalysis of CMS and/or colistin in biological fluid using HPLC with fluorimetry detection method.

Sample Preparation Chromatography method Total Fluorimetry detection method
Author Sample Internal Run FI t C trati
Protein Precipitation Standard LC Column Mobile Phase Elution  Tjme uorescen Detection oncentration
reagent Range
Le Brun, Human MeOH-20% TCA (plasma, - HPLC Novapack ACN, 0.0lmol  Isocratic 26min OPA excitation 30pg/L-
de Graaf plasma,  sputum), MeOH (urine) C18 phosphate 340nm, Img/L
& Vinks, urine, (3.9x150  buffer (675:325 emission
(2000) sputum mm) v/v) 440 nm
(Colistin)
Reed eral. Human  Perchloric acid, potassium - HPLC  Eclipse Solvent A: Gradient  18min Dansyl excitation 5-7ug/mL
(2001) plasma,  hydroxide, hydrochloric acid, XDB-C8  Water-0.1% chloride  350nm,
(Colistin)  urine, 9% sodium carbonate, (150x TFA emission
sputum  proline, ethyl acetate (plasma, 4.8mm) Solvent B: 500nm
sputum). Water, perchloric ACN-0.1%
acid, sodium phosphate, TFA
proline, ethyl acetate. (urine)
(170min)
Pinho et Human  0.1M sodium bicarbonate Amphetamine HPLC  LiChroC Solvent A: Gradient  17min Dansyl 0.09-9ug/mL
al. (2018)  plasma buffer, TCA sulphate ART ACN chloride
(Colistin) Purospher  Solvent B:
Star C18 Water
(55mmx4
4mm,
3um)

ACN: Acetonitrile; FMOC-CI: 9-flurenylmethyl chloroformate; HPLC: High-performance liquid chromatography; MeOH: Methanol; mg/L: milligram/Liter; mm: millimetre; nm: nanometer;
pg/mL: microgram/millilitre; OPA: Orthophthalaldehyde; v/v/v: volume/volume/volume; TCA: Trichloroacetic acid; XDB: eXtra Dense Bonding.
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Table 2.1 Continued.

Sample Preparation Int | Chromatography method Total Fluorimetry detection method
nterna
Author Sample Pr'ot.em. SPE - Standard LC Column Mobile Phase Elution ]]i{.un Fluorescent Detection Concentration
Precipitation  Column  Elution 1me reagent Range

Lietal Human MeOH-10%  C18 Acetone  Netilmicin HPLC  Ultrashpere =~ ACN- Isocratic ~ 35min FMOC- excitation 0.1-4.0mg/L
(2001) plasma  TCA (50:50, 0.2M C18 tetrahydrofuran- CI 260nm,
(Colistin) v/v) boric (250x4.6 water (87:4:13 emission

acid mm) v/V) 315nm

solution
Lietal Rat MeOH-10%  C18 Acetone  Netilmicin HPLC  Ultrashpere =~ ACN- Isocratic ~ 18min FMOC- excitation 0.33-53.3mg/L
(2002) plasma  TCA (50:50, 0.2M C18 tetrahydrofuran- CI 260nm, (rat plasma),
(CMS) rat v/v) boric (250x4.6 water (50:30:20 emission 0.25-40mg/L

urine acid mm) V/IVIv) 315nm (rat urine)

solution
Chepyala Human  MeOH-20%  C18 Acetone  Polymyxin HPLC  Poroshell ACN, Isocratic  22min FMOC- excitation 0.3-6.0png/mL
et al. plasma  TCA (50:50, B1 120 tetrahydrofuran, CI 260nm,
(2015) v/v) (100x2.1 water (82:2:16, emission
(Colistin) mm, 2.7 V/IVIV) 315nm

pm)
Hanai et  Human MeOH-10%  CI18 Acetone  Netilmicin  HPLC Hydrospere = ACN/ Isocratic  ~9min FMOC- excitation 0.1-8pug/mL
al. 2018)  plasma  TCA (50:50, C18 tetrahydrofuran/ CI 260nm,
(Colistin) v/v) (50x4.6, distilled water emission
Sum) (50:14:20, 315nm
v/v/Iv)

ACN: Acetonitrile; FMOC-CI: 9-flurenylmethyl chloroformate; HPLC: High performance liquid chromatography; MeOH: Methanol; mm: milimeter; nm: nanometer; pg/mL:

microgram/mililiter; mg/L: milligram/Liter; OPA: Orthophthalaldehyde; v/v/v: volume/volume/volume; TCA: Trichloroacetic acid
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