PERFORMANCE ANALYSIS OF YOLO AND SSD-
BASED DEEP LEARNING MODELS FOR
DETECTION OF OIL PALM TREES IN DRONE
IMAGES

ISTIYAK MUDASSIR SHAIKH

UNIVERSITI SAINS MALAYSIA

2025



PERFORMANCE ANALYSIS OF YOLO AND SSD-
BASED DEEP LEARNING MODELS FOR
DETECTION OF OIL PALM TREES IN DRONE
IMAGES

by

ISTIYAK MUDASSIR SHAIKH

Thesis submitted in fulfilment of the requirements
for the degree of
Master of Science

July 2025



ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah for His strength and blessings in completing this
thesis. I extend my heartfelt gratitude to my supervisor, Dr. Mohammad Nishat Akhtar,
for his unwavering support, guidance, and encouragement throughout my master’s
studies. This work would not have been possible without his invaluable support.

I am deeply grateful to the School of Aerospace Engineering, Universiti Sains
Malaysia (USM), for providing excellent research facilities and to the Malaysian
Government for supporting this work through grant number 304/PAERO/6315761.

I sincerely thank my beloved parents, Abdul Hussain and Gousiya Begum, for their
unconditional love, prayers, and sacrifices, as well as my sister and brothers for their
constant encouragement. Special appreciation goes to my senior researcher brothers,
Dr. Abdul Aabid and Dr. Asrar Anjum, for their motivation and guidance, and to my
sister-in-law, Nagma Parveen, for her support.

I also appreciate my colleagues, Dr. Junaid Mohammad Khan, Mohammad Uzair Gill,
Zulfam Adnan, Mohd Hafiz Ab Satar, and Adeel Mohammad Khan, for their
assistance and valuable discussions. A special thanks to Mr. Zihad Mahmood, the
drone pilot, and Siva Aruth Sudhar, a final-year student, for their crucial help during
data collection.

Lastly, I am grateful to all my friends who have supported me throughout this journey.

il



TABLE OF CONTENTS

ACKNOWLEDGEMENT ....uuiiiiiiiiiniiiseinssissensscsssessessssesssessssssssesssesssessssssssess ii
TABLE OF CONTENTS ......ccoviiniiiintinsneinncnsnicssessecsssesssesssesssesssessssssssesssessae iii
LIST OF FIGURES ......uuuuntiiiiniinieninennnicnnenssenssnesssesssnssssesssessssssssessssssssssssesns viii
LIST OF SYMBOLS ....ouuiiiiiiiiinsinsiccniisesseecssessessssssssessssssssssssessssssssssssessasses xi
LIST OF ABBREVIATIONS ....cuuiiniiintinsinnnensnensensncsssessessssesssessssssssssssesssssssaes xii
LIST OF APPENDICES.......cotiiiiiiinrinsnnnnnenssenssnesssesssesssnessssssssssssessasssssssssessns xiv
DN 31 1 2. N XV
ABSTRACT ..uuuiiiiiinnniiinnnennneeninnnsnneesssseessssssssssssssssssssssssssssssssssssssssssssssssasssssas xvii
CHAPTER 1 INTRODUCTION.....uuciireiirrrricssunsssrercssanscsssesssssnssssssssssssssssssssans 1
1.1 Significance of Palm Oil in Malaysia.........cccceeeeuiiriiiiiiiieiiiie e 1
1.2 Significance of Palm Tree Detection by UAV ......cccvvvviiiiiiiiiiiiiieeeeeei, 4
1.3 Computer Vision Techniques of Palm Tree Detection............ccccveevvuveenneennee. 5
1.4 Problem Statement ..........c.ccooviiiiiiiiiiiiiiceee e 6
1.5 ReSEarch ODJECIIVES ..vviiiieiiiiiiiiiieeeeeeiiiieteee e e e ettt e e e e e e eitrrreeeeeeseneanseeeeeees 7
1.6 Scope and LIMItAtIONS ....ccueeerreeirireeriieeniee ettt s 8
CHAPTER 2 LITERATURE REVIEW .......iiiiinnninneecsnensecsssecssessseces 10
2.1 Overview of Precision Agriculture in Palm Oil Plantation ........................... 10
2.1.1 PA and its significance in palm oil plant.............cccceeeeviiiennienenn. 10
2.1.2 Important of Precision Agriculture in Palm Oil ............................ 11

2.1.3 Evolution and Adoption of Precision Agriculture Technologies
.................................................................................................... 11
2.1.3(a) Remote Sensing .........ccccevcueeieriiiiiieiiiiee e 12
2.1.3(b) 10T (Internet of Things) SeNSOrS.......cccevcveerrveerueeannne. 13
2.1.3(c) Geographic Information Systems (GIS)..........ccccc...e. 13
2.1.3(d) AI and Machine Learning Models ..........ccccceeeriieeennn. 14

il



2.2

2.3

2.4

2.1.4 Increased Yield and Productivity........ccceeevevieiirciieeeniiiie e, 15

2.1.4(a) Increased Yield and Productivity..........ccecouveeeniienennnes 15
2.1.4(b) Cost Efficiency......cccvveeeeeieiiiiiiieee e, 15
2.1.4(c) Environmental Sustainability............cccccceevvuveeerinierenns 16
2.1.4(d) Challenges ......ceeveeeiieieeeeiiee et 16
2.1.4(e) Future Prospects........cccceeeeveiiriiieeeeeeiiiirieeeeeeeeeeivneenn 16
Role of Deep Learning in Palm Oil Plantation Management ........................ 18
2.2.1 Introduction to Deep Learning............coooeevveeeiiieeiiiieeeiiieeee 18
222 Applications for Deep Learning in Agricultural Management....... 19
223 Key Areas of Plantation Management Enhanced by Deep
L@AIMING. .. eeiieeeiiee ettt 20
2.2.3(a) Crop Monitoring and Yield Estimation........................ 20
2.2.3(b) Disease and Pest Detection..........c.coecvvveeeecveeeencneneenns 21
2.2.3(c) Resource Optimization (Water, Fertilizer) .................. 22
2.2.4 Limitations of Deep Learning in Plantation Management ............. 22
Current Techniques for Palm Oil Detection and Counting............cccccevneee... 23
2.3.1 Traditional Detection Techniques in Palm Oil Production ............ 24
2.3.2 Remote Sensing and Image Processing Techniques...................... 25
233 Advanced Sensors and IoT Devices for Palm Oil Detection ......... 26

234 Machine Learning and Al-based Techniques for Palm Oil

COUNLING ..teieeiiiiieeciieee ettt e et ee e e et e e e eaeeeesiaaeeeesnaeeeessnreeeeennns 26
Deep Learning Models for Object Detection...........ccceeeeeveieeiiiiieeeniieeeeeee, 28
2.4.1 Overview of Object Detection in Agriculture ...........ccceeeeeeennnnnn. 28
2.4.2 Convolutional Neural Networks (CNN) ........cccovveiriiiienniieeeeeee, 29
2.4.2(a) Structure and working of CNN .........cccoiiiiiiiiiiiines 29
2.4.2(b) Applications of CNN in Object Detection.................... 30
2.4.3 YOLO (You Only LOOK ONCe)....veeveveriiieiiiiieeeiiie e 31
2.4.3(a) Overview of YOLO Architecture ..........ccccvvveeeeennnnnnn. 31

v



2.4.3(b) Advantages of YOLO in Real-time Detection in

agriculture applications ..........ccceceeeeeeiiiieeenieee e 34
2.4.4 Single Shot Multibox Object Detector (SSD) ......coovvuviiieviiereennnne. 36
2.4.4(a) Structure and Functioning of SSD ..........cccccevveveinnenns 36

2.4.4(b) Applications and Limitations of SSD in Agriculture.... 37

2.5  Comparative Studies in Agriculture Applications .............cceeveeeeerenvereennnenn.. 39

2.5.1 Comparison of Traditional and Al-based Techniques in
AGTICUITUTC. ..ot 39

252 Comparative Analysis of Deep Learning Models in
Agricultural Object Detection ...........cccceeeveiiieeeiiiieeeiiee e 41

2.5.3 Efficiency of Different Techniques for oil palm tree detection
ANA COUNLING ...oviiiiiiiiieeeiiieeeeieee et e e e e e e e e erreeeesenreeeeenens 42

2.5.4 Case Studies of Successful Applications in Palm Oil and Other
(0570 L USRS 46
2.5.5 Research Gap AnalysiS......c.c.ceeevviieieiciiieeiciiee e 49

2.5.6 Importance of Using YOLO and SSD MobileNet V2 FPN-Lite
Models in Deep Learning and Their Comparative Analysis.......... 51
2.6 SUNMIMATY ...eeeeeee e e ettt e e e e e ettt e e e e e sttt eeeeeeeeennnneeees 52
CHAPTER 3 METHODOLOGY ...ucconiiniiisuecsrensensseccssessncssaccssesssnssssscssesssases 54
3.1 INErOUCION ...ttt 54
3.1.1 YOLOVS Model Architecture............covveeriieenieeniieeniieenieeeeen 55
3.1.2 YOLOV7 Model Architecture.........cooeeeieeriiiieeeiiiee e 56
3.1.3 YOLOV8 Model ArchiteCture.........cceeveerveeiienieeniinieenieenieeieens 57
3.14 SSD MobileNet V2 FPN-Lite (2021) ...oooveeviiniiiiienienieeieeneene 59
3.2 Study Area and Data ColleCtiOns ...........cecoueieeeiiiiireeiiiiee e 61
3.3 Data Preparation and PreproCessing..........ccveeeervieeeeivieeeenineeeeeineeeesnnieeennns 65
3.4  YOLO Model Development ...........cccvieeeeiiieeeniiiee e eeiieee e e 69
3.5 SSD Model Development .............ceeeeeieiiiiiiieee e e e ee e e 72
3.6 Evaluation MEtriCS .....cocuiiiiiiiiiiiiiiieiiciecce et 73
3.7 SUNMMATY ...ttt eee ettt e e e e e ettt ee e e e e e sttt eeeeeeeeannaeeeas 76



CHAPTER 4 RESULT AND ANALYSIS .iiiiiiiiicnnneicnneencnsneeeccssnseneens 77

4.1 INErOAUCHION ..ottt 77

4.2 Training RESUILS .....cc.evviiiiiiiiiiee e e 77

4.2.1 LOSS CUTVES ...t 80

4.3 Testing RESUILS ......oeiiiiiiiiee et e 85

43.1 Comparison of Model Efficiency in Palm Tree Detection............. 85

4.3.2 Comparison of YOLO Models ........ceeveveiiiiieniiieeiieeeeieee e 90
4.3.2(a) Precision Performance Comparison of YOLO

MOAEIS ..o 93

4.3.2(b) Recall Performance Comparison of YOLO Models ..... 94

4.3.2(c) F1-Score Analysis of YOLO Models........ccceevuuernnnnee 95

4.3.2(d) Detection Time Evaluation of YOLO Models (D.T).... 96

433 DISCUSSION. .ttt ettt 97
4.4 Performance in Sparsely Populated Areas...........ccceeveiiiiiiiiiiiiniieeeee, 98
4.5  Performance in Densely Populated Areas ..........ccoceveeeevviieiniiieieciieeeene. 99
4.6  Performance in Overlapping Conditions ...........cccceereeriiiieeieiiiee e, 100
4.7  Performance with Closely Related Vegetation ............cccceeviiieniiiinnennnee. 101
4.8  Comparative analysis between existing studies and our model................... 103
4.9 SUNMMATY ...ttt ettt e ettt e e e e e ettt e e e e e e e annbbbeeeeaeeeannnnnes 105

CHAPTER 5 CONCLUSION AND FUTURE RECOMMENDATIONS....107

5.1  Conclusion 0f Research ..........ccoceviiiiiiiiiiniiiiiiiiiccceccece e 107
5.2 Contribution 0f Research ..........cocceeviiiiiiiiiiiiiiiiiiicicecceecce 108
5.3  Recommendations for Future Research.............cccccooiiiiiiiiiiiiiiiiie. 109
REFERENCES .....uuoiiiiiiitiininneicniissisnensssisssesssessssssssessssssssssssessssssssssssesssssssns 111
APPENDICES

LIST OF PUBLICATIONS

vi



Table 2.1

Table 2.2

Table 2.3

Table 3.1

Table 3.2

Table 4.1

Table 4.2

Table 4.3

Table 4.4

LIST OF TABLES

Summary of YOLO Versions and Key Features.............ccccceeeennneee. 32

Techniques and Findings in Oil Palm Tree Detection Using

Remote Sensing and Deep Learning............cccceeeevevieeeniieeeenineneenns 45

Case Studies of Successful Applications in Palm Oil and Other

YOLO Models Hyperparameter Setting for Training and
Validation .....cooviiiiiiiiiii e 71

Hyperparameter Settings for SSD Models.........cccceeevviiiiiiiiiieennnnnns 73

The Optimal YOLO Model based on the Training and Validation

Datasets ......ueeeiiiiiii et 80
Testing Results Comparison of YOLO and SSD Models................. 86
YOLO models’ evaluation and comparison............cceeeecueeeeenieeeennnss 92

Comparison of Model Performance: Current vs Existing Research 104

vil



Figure 2-1
Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9

Figure 2-10

Figure 2-11

Figure 2-12

Figure 2-13

Figure 2-14

Figure 2-15

Figure 2-16

LIST OF FIGURES

Page
Key Components and Applications in Precision Agriculture ........... 12
Distinct Functions of Precision Agriculture Technologies ............... 14

Benefits, Challenges, and Future Prospects of Precision

Agriculture in Palm Oil........c.ccoooiiiiiiiiiee e, 18

Introduction to Deep Learning Applications in Agricultural

MaANAZEIMENL ... .vvviieeeeisiiiiiereeeeeeitrrreereeeeesarrreeeeeeessssssraraeeeesessnnnes 19
Key Areas Enhanced by Deep Learning in Agriculture ................... 20
Key Components of Plantation Management in Agriculture............. 22
Limitations of Deep Learning in Plantation Management................ 23
Timeline of the Evolution of Palm Oil Detection Techniques.......... 24

Complexity vs. Effectiveness of Palm Oil Detection Techniques .... 27

Deep Learning Models and Their Applications in Agriculture
(Magalh@es et al., 2021) ..cc.ueiiieiiiieeiie e 29

Structural Representation of a Convolutional Neural Network

(CNN)(S. Mukherjee et al., 2025) ...cccviveeieiiieeeieee e 30

Workflow and Architecture of YOLO for Object Detection(Z. Q.
Zhao et al.,, 2019) ..cccciiiiiiiiee e 32

Key Features and Advantages of YOLO in Object
Detection(Redmon et al., 2016).........cceeeeiiiiiiiiiiiiieeeiiiiiiieee e, 36

Structure and Workflow of SSD for Object Detection(W. Liu et al.,

Applications and Limitations of SSD in Agriculture ....................... 39

Comparison of Traditional and Al-Based Techniques in

AGTICUITUTE ...ooiieiiiiieeiiie et e e e e e 40

viii



Figure 2-17

Figure 2-18
Figure 2-19
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7

Figure 3-8

Figure 3-9

Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 4-1
Figure 4-2

Figure 4-3

Figure 4-4
Figure 4-5
Figure 4-6

Figure 4-7

Performance Comparison of Deep Learning Models in Agriculture

....................................................................................................... 42
Techniques and Findings in Oil Palm Tree Detection...................... 44
Applications in Palm Oil and Other Crops ........cccceevvveeeiiieeeennnen.. 47
Research Methodology Flowchart.............coceviiiiiiiiiiiniiieeccieeee, 55
Architecture of YOLOVS Model .......ccocoviiiniiiiniiiiiiiinieciiceen 56
Architecture of YOLOV7 Model .......ccccooieviiniiiiniiniiiiiiiicnics 57
Architecture of YOLOVE Model .......oooviiiiiiiiiiiiiiiie e, 59
Architecture of SSD MobileNet V2 FPNIite.........ccccoocveeviiienineennne. 60
SUAY ATCA..ueiiiiieeiiiiiiiieee e ettt e e e e e e e e e abrr e e e e e e e e seannaees 62
Drone Specifications...........ccuviieeriiieeeiiiee e eeeee e 63
Drone Mapping of Palm Oil Tree Data Collection Site at USM

Engineering Campus...........cccveeeeeuvieeeiiiieeeeiiieeeesieeeeesireeeesnneeeeeans 64
Sample Images of Palm Oil Tree Data Collected from Drone

SUIVEYS ..ttt ettt e e e et e e e e e e e 65
Data PreproCeSSiNg ....cuvvveeieveieeeiiiieeeiiieeeesieeeeesieeeeeeereeeeeereeeeenes 66
Data Labelling by using YOLO Label v1.2.1 ...ccccociiiiiiiiiiee, 68
Sample Images for YOLO Model Development (640x640 size)...... 70
Sample Images for SSD Model Development (320x320 size).......... 72
Loss Curves for Different version ............cccoecueervieeniiceniecinieennnen. 85
Confusion Matrices of Object Detection Models.............cccvvernnnee.. 87
Model Performance Comparison in Terms of Precision, Recall, F1-

Score, and Detection TIME .......uueveeeiiiiiiiiiieeeeeeeeeeeeeee e 88
Confusion Matrix for YOLO Models ........cccceeviiiniiiiniiiiniieniieene 91
Model vs Precision Comparison between YOLO Models................ 94
Model vs Recall Comparison between YOLO Models .................... 95
Model vs F1-Score Comparison of YOLO Models.............cccuveee.nne. 96

X



Figure 4-8

Figure 4-9

Figure 4-10

Figure 4-11

Figure 4-12

Model vs Detection Time Comparison between YOLO Models ...... 97

Performance in Sparsely Populated Area a) YOLOv5x b)
YOLOvV7x ¢) YOLOv7D6 d) YOLOvVSs e¢) YOLOvS8] and f)

Performance in Densely Populated Area a) YOLOv5x b)
YOLOvV7x ¢) YOLOv7D6 d) YOLOv8s e¢) YOLOVSI and f)

Performance in Overlapping Conditions a) YOLOv5x b)
YOLOvV7x ¢) YOLOvV7D6 d) YOLOv8s e) YOLOVSI and f)

Performance with Closely Related Vegetations a) YOLOvVS5x b)
YOLOv7x ¢) YOLOv7D6 d) YOLOvVSs e¢) YOLOVS8I and f)



GT
TP
FP
FN

Precision (%)

Recall (%)

F1-S

D.T.

N_grayscale

IoU

LIST OF SYMBOLS

Ground Truth (Total number of instances in the dataset)

True Positives (Correctly detected instances)

False Positives (Incorrectly detected instances)

False Negatives (Missed detections)

Measure of correctly identified positive instances compared to
total predicted positives

Measure of correctly identified positive instances compared to
total actual positives

core (%) — Harmonic mean of precision and recall, representing the
overall detection accuracy

(sec) — Detection Time (Processing time per image or batch in
seconds)

Number of grayscale images in the dataset, (where N=total number
of images)

Intersection over Union

X1



LIST OF ABBREVIATIONS

Al Artificial Intelligence

AUC Area Under the Curve

BPNN Backpropagation Neural Network

CNN Convolutional Neural Networks

CNN4SVM Convolutional Neural Networks combined with Support
Vector Machine

D.T Detection Time (in seconds)

F1 Score - F1-Score

FN False Negatives

FP False Positives

FPR False Positive Rate

GIS Geographic Information Systems

GPS Global Positioning Systems

GT Ground Truth

IoT Internet of Things

IoU Intersection over Union

LIDAR Light Detection and Ranging

mAP Mean Average Precision

HAPSO Mean Average Precision at Intersection over Union threshold
0.5

MAPE Mean Absolute Percentage Error

ML Machine Learning

NDVI Normalized Difference Vegetation Index

OA Overall Accuracy

OBIA Object-Based Image Analysis

P Precision

PA Precision Agriculture

PSNR Peak Signal-to-Noise Ratio

R Recall

R-CNN Region-Based Convolutional Neural Network

X1i



ROC
RS
SAR
SNR
SSD
SVM
SW26010
TN

TP
TPR
UAV
YOLO

Receiver Operating Characteristic
Remote Sensing

Synthetic Aperture Radar
Signal-to-Noise Ratio

Single Shot Multibox Detector
Support Vector Machine

A processor model used in parallel processing
True Negatives

True Positives

True Positive Rate

Unmanned Aerial Vehicle

You Only Look Once

Xiii



Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Appendix J

LIST OF APPENDICES

Google COLAB Settings

Training Results Samples for YOLOVS

Training Results Samples for YOLOv7

Training Results Samples for YOLOVS

Labels

Confusion Matrix Based on YOLO Testing Results
Pre-Processing Settings

Installation Of YOLO and SSD

Mms Algorithms Sample

The Data Collection Sites

X1v



ANALISIS PRESTASI MODEL DEEP LEARNING BERASASKAN YOLO
DAN SSD UNTUK PENGESANAN POKOK KELAPA SAWIT DALAM IMEJ

DRON

ABSTRAK

Kajian ini meneliti penggunaan model pembelajaran mendalam yang canggih bagi
tujuan pengesanan dan pengiraan pokok kelapa sawit dalam bidang pertanian tepat,
dengan menggunakan imej resolusi tinggi yang diperoleh melalui dron. Motivasi
kajian ini berasal daripada kelemahan kaedah pemantauan manual yang lazimnya
memakan masa, mudah terdedah kepada ralat, serta tidak efisien untuk ladang berskala
besar. Memandangkan Malaysia merupakan antara pengeluar utama minyak sawit di
peringkat global, sistem pengesanan automatik yang cekap amat diperlukan bagi
menyokong pengurusan ladang yang mampan.

Cabaran utama adalah untuk mengenal pasti pokok kelapa sawit secara tepat dalam
keadaan yang kompleks seperti kanopi bertindih, vegetasi yang padat, pencahayaan
tidak seragam, serta kewujudan tumbuhan lain yang serupa. Faktor-faktor ini
mengehadkan keberkesanan kaedah pemprosesan imej secara tradisional, justeru
mendorong kepada penerokaan rangka kerja pembelajaran mendalam yang lebih
mantap dan berupaya mengendalikan keadaan lapangan sebenar.

Empat model pengesanan objek termaju telah dinilai dalam kajian ini, iaitu YOLOV5Xx,
YOLOV7, YOLOVS, dan SSDv2FPN. Model-model ini dipilih berdasarkan keupayaan
pengesanan masa nyata serta kebolehan dan ketepatannya dalam persekitaran
pertanian. Dua set data telah digunakan: satu set kecil terdiri daripada 10 imej dron
dengan 79 pokok kelapa sawit yang telah dilabel, dan satu set data berskala besar yang

mengandungi 482 imej dengan sejumlah 5,233 pokok.
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Penilaian dibuat berdasarkan metrik seperti Positif Benar, Positif Palsu, Negatif Palsu,
Ketepatan , Kadar Kepekaan, Skor F1, dan Masa Pengesanan. Model SSDv2FPN
mencatatkan ketepatan sempurna iaitu 100% dengan Skor F1 sebanyak 89.49%,
namun memerlukan masa 83 saat untuk memproses setiap imej, menjadikannya
kurang sesuai untuk aplikasi masa nyata. Sebaliknya, model YOLOvV5x, YOLOV7X,
dan YOLOVS8x berjaya mengesan pokok dalam masa yang lebih pantas iaitu masing-
masing 16, 12, dan 14 saat, dengan YOLOv5x mencatatkan Skor F1 tertinggi iaitu
97.36%. Keputusan ini menunjukkan dengan jelas kelebihan dari segi kelajuan yang
dimiliki oleh model-model YOLO

Bagi set data yang lebih besar, model-model YOLOvV8 menunjukkan prestasi terbaik
berbanding model lain, dengan pencapaian Skor F1 antara 97.36% hingga 99.31%,
nilai ketepatan antara 99.27% hingga 99.70%, dan kadar kepekaan antara 95.89%
hingga 99.36%. Dalam kalangan varian YOLOv8, model YOLOv8s dan YOLOv&n
mencatatkan masa pengesanan terpantas iaitu masing-masing 28 dan 33 saat, sekali
gus menawarkan keseimbangan antara kelajuan dan prestasi pengesanan yang tinggi.
Justeru, model-model ini dianggap paling sesuai untuk aplikasi pemantauan pertanian

secara praktikal.
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PERFORMANCE ANALYSIS OF YOLO AND SSD-BASED DEEP
LEARNING MODELS FOR DETECTION OF OIL PALM TREES IN

DRONE IMAGES

ABSTRACT

This study explores the use of advanced deep learning models for detecting and
counting oil palm plants in precision agriculture using drone-based high-resolution
images. The motivation stems from the limitations of manual monitoring methods,
which are time-consuming, error-prone, and not feasible for large-scale plantations.
Given Malaysia’s significant role in global palm oil production, efficient and
automated detection systems are essential to support sustainable plantation
management. The primary challenge is to accurately identifying oil palm trees in
complex conditions, such as overlapping canopies, dense vegetation, varying lighting,
and similar surrounding plants. These factors limit traditional image processing
techniques, prompting the use of robust deep learning frameworks. This study
evaluates four state-of-the-art object detection models: YOLOvS5x, YOLOV7,
YOLOVS, and SSDv2FPN, selected for their real-time detection capabilities and
accuracy in agricultural environments. Two datasets were used: a smaller set of 10
drone images containing 79 annotated palm trees, and a larger dataset of 482 images
with 5,233 trees. Evaluation metrics included True Positives, False Positives, False
Negatives, Precision, Recall, F1-Score, and Detection Time. SSDv2FPN achieved
perfect precision at 100% with an F1-Score of 89.49%, but required 83 seconds per
image, which limits its suitability for real-time applications. In contrast, YOLOvV5X,
YOLOvV7x, and YOLOVS8x detected palm trees in relatively lower execution time of

16, 12, and 14 seconds respectively, with YOLOv5x achieving an F1-Score 0f97.36%.
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These results demonstrate the clear advantage of YOLO models with regard to high
speed execution. On the larger dataset, YOLOv8 models outperformed other
frameworks, thereby achieving F1-Scores between 97.36% and 99.31%, precision
values ranging from 99.27% to 99.70%, and recall rates between 95.89% and 99.36%.
Among the YOLOVS variants, YOLOvV8s and YOLOv8n demonstrated the fastest
detection times of 28 and 33 seconds, respectively, effectively balancing rapid
inference and detection performance. This makes them ideal for deployment in

practical agricultural monitoring systems.
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CHAPTER 1

INTRODUCTION

1.1 Significance of Palm QOil in Malaysia

The rising global demand for sustainable food sources, bio-based industrial products,
and environmentally responsible agriculture, palm oil has emerged as a vital crop
requiring efficient management and monitoring solutions. Its economic value, coupled
with environmental implications, has made it a focal point for precision agriculture
technologies and scientific research. The stemless monocot family, which includes
palm oil plants, is an important component of tropical ecosystems and is well-known
for its role in biodiversity conservation. These monocots are abundant in tropical
places, particularly in Southeast Asia, Africa, and Latin America (Wilcove & Koh,
2010). Palm oil plants are highly appreciated for their function as primary producers
of vegetable oils, having a significant impact on agricultural production around the
world. The oil derived from these plants is used in a variety of food, cosmetics, and
industrial items (I. Mukherjee & Sovacool, 2014). As a result, palm oil has risen to
prominence in the global market.

Indonesia is the world's largest producer of palm oil, followed by Malaysia, Thailand,
Nigeria, and numerous Latin American countries (Obidzinski et al., 2012). The
expansion of palm oil plantations has had a tremendous impact not only on economic
development but also on a variety of developmental domains. These contributions
include better agricultural methods, poverty reduction, infrastructural development,
and the rise of diverse enterprises (Gatto et al., 2015). While these advancements are
significant, they also bring to light the challenges of sustaining such growth in the long
run. However, the recent rapid increase of oil palm farming has prompted serious

concerns regarding the long-term management of palm oil plants. Concerns over



deforestation and habitat degradation, as well as labor and social issues, have
heightened scrutiny of palm oil production (Union et al., 2018). In this regard, the
European Union has introduced the EU Deforestation Regulation (EUDR) to prevent
the import of commodities linked to deforestation, including palm oil. This is because
deforestation, while it may offer short-term economic benefits through land clearing
and increased agricultural output, contributes to biodiversity loss, greenhouse gas
emissions, and long-term environmental degradation, ultimately undermining
sustainable development and global climate goals. The EUDR, which is set to take
effect in 2025, requires companies to ensure their supply chains are deforestation-free,
presenting compliance challenges for Malaysian palm oil producers, particularly
smallholders who contribute significantly to the nation’s output. While initially viewed
as discriminatory, the regulation has prompted Malaysia to enhance traceability and
promote sustainable practices to align with these requirements (Reuters, 2024; SCMP,
2023).

As a result of these problems, it is critical to adopt accurate and fast monitoring
systems to ease worries and assist informed decision-making. This is because earlier
monitoring practices, though useful at a smaller scale, are no longer sufficient to
manage large plantations efficiently, given the demand for real-time data, scalability,
and precision. Traditional techniques of monitoring palm oil farms, such as tree
counting and tree identification, have relied mainly on manual labor (Petri et al., 2022).
While these traditional approaches are beneficial for smaller plantations, they are
essentially insufficient for bigger, commercial-scale enterprises (Tang & Al Qahtani,
2020). They are biased, time-consuming, and frequently produce erroneous results.
Furthermore, they necessitate large personnel, thereby limiting the frequency and

extent of monitoring operations. Given these constraints, the use of modern technology



such as remote sensing, drones, and machine learning has gained traction in the
monitoring of palm oil farms (N. Khan et al., 2021). These tools not only improve
operational efficiency but also offer strategic advantages to stakeholders by enabling
timely decision-making, reducing manual workload, and supporting environmental
compliance and sustainability certification. Recent studies published in the ISPRS
Journal of Photogrammetry and Remote Sensing have begun exploring automated
detection using UAVs and Al (J. Zheng et al., 2020), but few directly address scalable
real-time object detection tailored to plantation environments. This research fills that
gap by evaluating real-time deep learning models for palm detection under diverse
field conditions, making it highly relevant to current agricultural monitoring needs.

These technologies make data collection and processing more accurate and efficient.
They can give plantation managers and environmental authorities a real-time data into
plantation health, tree density, and land use changes, thereby allowing them to make
informed decisions about sustainable practices (Khuzaimah et al., 2022). Palm oil
plantations are critical to both global agriculture production and tropical local
economies (Ayompe et al., 2021). While they have provided enormous benefits, they
have also generated questions about their long-term viability and environmental
impact. To address these challenges and promote sustainable management practices in
the palm oil business, accurate and timely monitoring systems are required (Ahmad et
al.,, 2023). The shift from manual labor-intensive approaches to technology-driven
solutions has the potential to increase the accuracy and efficiency of palm oil

plantation monitoring dramatically.



1.2 Significance of Palm Tree Detection by UAV

The accurate detection of palm trees is fundamental for effective yield estimation,
plantation planning, and early intervention strategies. As plantations scale up in size
and complexity, traditional ground-based methods become inefficient, making aerial-
based solutions essential for timely and comprehensive monitoring. The use of
unmanned aerial vehicles, or drones, has emerged as a transformational instrument
among these technical breakthroughs (Chowdhury et al., 2022). Furthermore, the
unrivaled speed with which drones collect data enables constant and real-time
monitoring operations, allowing for the early detection of deviations from the norm,
such as disease outbreaks, insect infestations, and illicit activities (L. Wang et al.,
2022). Drones equipped with advanced sensors, such as multispectral, hyperspectral,
and thermal cameras, can capture high-resolution images and provide detailed insights
into the health and spatial distribution of palm trees (Adado et al., 2017). These
capabilities allow plantation managers to assess tree vitality, monitor stress levels, and
identify potential threats, ensuring timely intervention. Additionally, UAVs can access
hard-to-reach areas within plantations, overcoming physical barriers that would
otherwise impede ground-based inspections (Ghazali et al., 2022).

The integration of UAVs with machine learning and computer vision algorithms has
further enhanced their utility. Automated systems can process drone-acquired imagery
to detect, classify, and count palm trees with high precision, reducing human error and
labor costs (X. Liu et al., 2021). Furthermore, drones facilitate the creation of precise
geospatial maps, enabling plantation managers to implement precision agriculture
practices such as targeted irrigation, fertilization, and pest control (Puri et al., 2017).
As a sustainable and cost-effective approach, UAV-based monitoring significantly

contributes to improving plantation management efficiency. By optimizing resource



utilization and minimizing environmental impact, this technology supports the broader

goals of sustainable agriculture and food security (Reddy Maddikunta et al., 2021).

1.3 Computer Vision Techniques of Palm Tree Detection

Artificial intelligence (Al)-driven object detection frameworks, especially those built
on deep learning, have become effective methods for tackling these issues in recent
years. Traditional computer vision techniques, such as sliding window approaches and
handcrafted feature extraction using algorithms like HOG (Histogram of Oriented
Gradients) and SIFT (Scale-Invariant Feature Transform) (Dalal et al., 2005; Lowe,
2004; Ortiz Laguna et al., 2011) , were the mainstay of object detection prior to the
development of sophisticated deep learning models. These methods were
computationally demanding, involved a lot of human labor, and frequently had issues
with scalability and real-time processing. When machine learning was introduced,
handcrafted features were combined with techniques like Random Forests and Support
Vector Machines (SVM) to improve the system (Jamie Shotton et al., 2008; Jin et al.,
2020; Vapnik, 1999; Zhang Hao, Berg A. , Maire M., 2006). Although these methods
increased accuracy, they were still constrained by their reliance on pre-established
feature sets, which made it difficult for them to generalize effectively across a variety
of datasets or intricate situations like occlusions and changing environmental
conditions.

With Convolutional Neural Networks (CNNss) allowing models to automatically build
hierarchical feature representations directly from data, the move towards deep learning
marked a revolutionary step in object detection (Chauhan et al., 2018). By introducing
region proposal networks and simplifying the detection procedure, frameworks such

as R-CNN (Regions with CNN features) (Girshick et al.,, 2014), Fast R-CNN



