FATIGUE FAILURE ANALYSIS OF CFRP COMPOSITE LAMINATES USING MODIFIED STIFFNESS DEGRADATION METHOD

NABILAH BINTI AZINAN

UNIVERSITI SAINS MALAYSIA

FATIGUE FAILURE ANALYSIS OF CFRP COMPOSITE LAMINATES USING MODIFIED STIFFNESS DEGRADATION METHOD

by

NABILAH BINTI AZINAN

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

ACKNOWLEDGEMENT

In the name of Allah, the most beneficent and the most merciful

Firstly, I wish to thank Allah Subhanahu Wa Taala and the Prophet Rasulullah Sallallahu 'Alaihi Wassalam for allowing me to embark on my Ph.D. and for completing this long and challenging journey successfully. I would like to express my sincere gratitude to my supervisor Professional Engineer (PE) Dr A. Halim Kadarman and Dr. Aslina Anjang Ab Rahman for providing invaluable guidance, comments, and suggestions throughout from the beginning until the final stage of the research study and thesis writing.

I also thank to Dean, lecturers, and administrative staff for their various contributions to ease this project. Also, thank to School of Aerospace Engineering for allowing me to use their equipment.

A special word of thanks to my lovely husband, Mohammad Yusran Bin Gonnong, my mom, Salasiah Binti Yusoff, my mother in law, Haimah Binti Dinnil, my lovely dad Azinan bin Zakaria, my father in law, Gonnong bin Albaris, my lovely brother Mohd Anis Bin Azinan, my lovely sister-in-law Zuraini Binti Othman, and all my family who encouraged me and prayed for me throughout the time in this journey. This thesis is a victory dedicated to all of them. Last but of course not least, I wish to thank all those who shared their experience, knowledge, and opinions with me which helped me to complete my thesis. Thank you so much and I pray that Allah always blesses all of them in this life.

TABLE OF CONTENTS

ACF	KNOWLEDGEMENT	i
TAB	BLE OF CONTENTS	ii
LIST	T OF TABLES	V
LIST	T OF FIGURES	vii
LIST	T OF SYMBOLS	X
LIST	T OF ABBREVIATIONS	xii
LIST	T OF APPENDICES	xvii
ABS	STRAK	xiv
ABS	STRACT	xvi
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem statement	8
1.3	Objectives	11
1.4	Research outline	12
1.5	Scope of thesis	13
CHA	APTER 2 LITERATURE REVIEW	16
2.1	Introduction	16
2.2	Damage mechanism in composite laminate materials	16
2.3	Damage modelling of composite laminate materials	20
2.4	Linear elastic model	22
2.5	Stiffness degradation model for composite materials	28

	2.5.1 S-N curve-based fatigue life models	28	
	2.5.2 Residual strength degradation models	35	
	2.5.3 Stiffness degradation model	39	
	2.5.4 Progressive damage models	46	
	2.5.5 Physically based damage models	47	
	2.5.6 Continuum damage mechanics (CDM) models	48	
СНА	PTER 3 METHODOLOGY	50	
3.1	Introduction	50	
3.2	Linear elastic model	52	
3.3	Modified stiffness degradation model	61	
	3.3.1 Modified model Stage 1	87	
	3.3.2 Modified model Stage I to Stage III	89	
3.4	Percentage difference calculation between the analytical model and exp	erimental	
	data	76	
СНА	PTER 4 RESULT AND DISCUSSION	78	
4.1	Introduction	78	
4.2	Linear elastic model results		
4.3	Specific parameters of modified model86		
4.4	Analytical versus experimental results	89	
	4.4.1 Analytical result versus experimental result for [0,±45] _s	90	
	4.4.2 Analytical result versus experimental result for [0,90 ₂] _s	96	
	4.4.3 Analytical result versus experimental result for [0,±45,90] _s	103	
4.5	The analytical results of normalized shear modulus	104	

CHA	PTER 5	CONCLUSION AND RECOMMENDATIONS	111
5.1	Conclus	sions	111
5.2	Recomm	mendations	113
REFERENCES115			
APPI	ENDICES		
LIST	OF PUBI	LICATIONS	

LIST OF TABLES

Page	
2.1 Summary S-N curve model from the previous research	able 2.1
(Azinan et al.,2021)	
2.2 Summary of residual strength degradation model	able 2.2
(Azinan et al., 2021)	
Summary of the stiffness degradations model (Salkind., 1976)45	able 2.3
Materials properties of the graphite/epoxy fiber-reinforced composite	able 3.1
lamina from the experimental data (Reifsnider & Jamison 1982)70	
1.1 Coefficients results of the lamina/ply	able 4.1
Stiffness results in composite laminate	able 4.2
Mechanical properties of undamaged composite laminate	able 4.3
Stress applied for composite laminate (Reifsnider & Jamison.,1982)100	able 4.4
The results of normal stress, normal strain, shear stress, and shear	able 4.5
strain components for each lamina of [0,±45] _s composite structure10	
The results of normal stress, normal strain, shear stress, and shear	able 4.6
strain components for each lamina of [0,90 ₂] _s composite structure102	
The results of normal stress, normal strain, shear stress, and shear	able 4.7
strain components for each lamina of [0,90,±45] _s composite	
structure	
Value of the specific parameters for Equation (51) and Equation (52) 106	able 4.8
Proposed value for specific parameters for Equation (53)	able 4.9

Table 4.10	The percentage difference between experimental data and analytical model data for stage I [0,±45] _s CFRP composite laminate
Table 4.11	Percentage difference between experimental data and analytical model data for stage I to stage III of [0,±45] _s CFRP composite laminate
Table 4.12	Percentage difference between experimental data and analytical model data for stage I of [0,90 ₂] _s CFRP composite laminate
Table 4.13	Percentage difference between experimental data and analytical model data for stage I to stage III of [0,90 ₂] _s CFRP composite laminate118
Table 4.14	Percentage difference between experimental data and analytical model data for stage I of [0,90,±45] CFRP composite laminate
Table 4.15	Percentage difference between experimental data and analytical model data for stage I to stage III of [0,90,±45] CFRP composite laminate126

LIST OF FIGURES

	Page
Figure 1.1	Market expansion of CFRP materials in the advanced industry (Global
	Carbon Fiber Market Analysis Report by Raw Material., 2022)2
Figure 1.2	Application of composite materials in the aerospace industry3
Figure 1.3	Damage mechanism under cyclic loading of carbon fiber
	reinforced polymer (CFRP) (Blythe et al., 2022)5
Figure 1.4	Types of failure analysis for composite laminate materials6
Figure 1.5	Schematic diagram of multiple fiber orientations of a composite
	laminate subjected to uniaxial loading9
Figure 2.1	Different stages of damage mechanism in fiber-reinforced composite
	laminate materials (Talreja., 1994 & Reifsnider., 1990)17
Figure 2.2	Evolution of damage in composite laminate materials under fatigue loading
	and related damage mechanisms (Duchene et al., 2018)
Figure 2.3	Example of a stress-strain curve (Byju's web)24
Figure 2.4	Comparison between linear elastic model results and experimental
	Results for polyethylene materials (Bergstrom., 2015)27
Figure 2.5	Stress in the coordinate system of materials (Talreja & Varna., 2016)29
Figure 2.6	Stiffness degradation curve (Vassilopoulos)
Figure 2.7	Damage evolution mechanism in transverse plies/lamina of composite
	laminate materials (Lurie and Minhat., 2015)42
Figure 3.1	Schematic diagram for $[0,\pm 45]_s$, $[0,90_2]_s$, and $[0,90,\pm 45]_s$ structures50

Figure 3.2	Flow chart represents the general strategy to calculate the stiffness degradation of the CFRP composite laminate materials51
Figure 3.3	A unidirectional composite lamina with 0° fiber orientation angle
	under in-plane loading conditions
Figure 3.4	Schematic illustration of an [0,90,±45] _s CFRP composite laminate
	materials structure under load along direction-x53
Figure 3.5	Schematic illustration of the [0,90,±45] _s fiber-reinforced composite
	laminate structure with typical laminate in x, y and z directions55
Figure 3.6	Schematic illustration of the fiber orientation angle, φ_i , between
	materials axes and global axes
Figure 3.7	Schematic diagram of the specimen size (Reifsnider&Jamison.,1982)58
Figure 3.8	Shape of the curve when the value of K_{E_0} is higher and lower from the
	baseline value parameters
Figure 3.8	Shape of the curve when the value of the b_e is higher and lower from the
	baseline value parameters
Figure 4.1	Graph of comparison between analytical and experimental results for [0,±45] _s composite structure for stage I
Figure 4.2	Graph of comparison between analytical and experimental results for [0,±45] _s composite structure from stage I to stage III93
Figure 4.3	Graph of comparison between analytical and experimental results for [0,90 ₂] _s composite structure for stage I
Figure 4.4	Graph of comparison between analytical and experimental results for [0,90 ₂] _s composite structure from stage I to stage III
Figure 4.5	Graph of comparison between analytical and experimental results for [0,90,±45] _s CFRP composite laminate for stage I

Figure 4.6	Graph of comparison between analytical analysis and experimental results
	for $[0,90,\pm45]_s$ composite structure from stage I to stage III108
Figure 4.7	Comparing the analytical results of normalized shear modulus [0,±45] _s ,
	[0,90 ₂] _s , and [0,90,±45] _s , fiber-reinforced composite laminate structure for
	stage I111

LIST OF SYMBOLS

 $ar{E}_{1b,2b}$ Inverse moduli of elasticity $ar{arphi}_4$ Deplanation function h_i Thickness of lamina

 h_r Thickness of the panel of the corresponding r-th panel

 h_t Thickness of laminate

Percent

%

 B_{pq} Stiffness coefficients in terms of the laminate

 E_{x_n} Modulus of elasticity at n^{th} load cycle

 E_1 Young's modulus in longitudinal direction

 E_2 Young's modulus in transverse direction

E_o Initial or undamaged Young's modulus

 E_x , G_{xy} Stiffness component for laminate structure

 G_{xy_n} Shear modulus at n^{th} load cycle

 G_{12} Shear modulus in 1-2 plane

 b_{pq}^{i} Stiffness coefficients in terms of the lamina

 v_{12} Poisson's ratio

 φ_i Fiber orientation angle

< Less than

= Equal

≠ Not-equal

> Greater than

± Plus-minus

 \approx Almost equal

≡ Identical

o Degree

1,2,3 Dimensional coordinates with respect to width, height, and length of

lamina

GPa Giga pascal

MPa Mega pascal

R Stress ratio

γ Gamma (shear strain)

 ε Epsilon (strain)

 θ Theta

 σ Sigma (stress)

τ Tau (shear stress)

 ω Double of area of the analyzed contour

A Surface area

E Young's modulus (modulus of elasticity)

km Kilometres

m Meter

mm Millimetres

n Number of cycles

nm Nanometres

x, y, z Dimensional coordinates with respect to the width, height, and length of

the box beam

μm Micrometers

LIST OF ABBREVIATIONS

2D Two-dimensional

AS4/3501-6 Carbon epoxy composite

AS4/PEEK Polyether ether ketone

BDID Barely detectable impact damage

BEM Boundary element method

BVID Barely visible impact damage

CDM Continuum damage mechanics

CFRP Carbon fiber-reinforced polymer

CNT Carbon nanotube

DQM Differential quadrature method

FDM Finite difference method

FEA Finite element analysis

FEM Finite element method

FRP Fiber-reinforced polymer

MAPLE Multi-paradigm programming language

NDT Non-destructive technique

RPIM Radial point interpolation method

SDM Simplified direct method

S-N Stress-failure

T300/5280 Graphite epoxy composite

XFEM Extended finite element method

LIST OF APPENDICES

Appendix A	The relationship between elastic modulus and shear modulus at the lamina and laminate levels
Appendix B	Example of MAPLE Coding of $[0,90,\pm45]_s$ from stage I to stage III
Appendix C	Example of Vlasov's stress-form coding (MAPLE) for x^2y^3

ANALISIS KEGAGALAN KELESUAN LAMINAT KOMPOSIT CFRP MENGGUNAKAN KAEDAH DEGRADASI KEANJALAN YANG DIUBAHSUAI

ABSTRAK

Struktur lamina komposit gentian karbon bertetulang polimer (CFRP) telah digunakan secara meluas dalam pelbagai aplikasi industri disebabkan oleh sifat mekanikalnya yang sangat baik. Dalam kajian ini, degradasi kekakuan pada lamina komposit CFRP yang tertakluk kepada keadaan beban kitaran telah dianalisis menggunakan dua model analitik iaitu model ubah suai Peringkat I dan model ubah suai dari Peringkat I hingga Peringkat III. Kedua-dua model ini dibangunkan berdasarkan model asal oleh Lurie dan Minhat, yang kemudiannya diubah suai dengan penambahan beberapa parameter khusus bagi meningkatkan ketepatan ramalan antara hasil analitik dan data eksperimen. Penggunaan model keanjalan linear membolehkan sifat mekanikal bahan CFRP ditentukan sebagai input kepada model ubah suai tersebut. Model ubah suai Peringkat I digunakan untuk menganalisis degradasi kekakuan semasa peringkat awal kerosakan, iaitu semasa berlakunya retakan matriks. Lengkung degradasi kekakuan yang diperoleh secara analitik kemudiannya dibandingkan dengan lengkung hasil eksperimen. Seterusnya, model ubah suai dari Peringkat I hingga Peringkat III diaplikasikan untuk menilai degradasi kekakuan yang merangkumi keseluruhan proses kerosakan bahan, iaitu daripada peringkat awal hingga ke peringkat akhir (seperti kerosakan gentian). Bagi menilai ketepatan kedua-dua model ini, peratusan perbezaan antara hasil analitik dan data eksperimen telah dikira untuk ketiga-tiga konfigurasi lamina CFRP yang dikaji, iaitu [0,±45]s, [0,90]₂s, dan [0,90,±45]s. Secara keseluruhan, hasil kajian menunjukkan bahawa model ubah suai Peringkat I memberikan ketepatan ramalan yang paling tinggi apabila dibandingkan secara langsung dengan data eksperimen, terutamanya bagi peringkat awal kerosakan. Kesederhanaan struktur model serta kesesuaiannya dengan data eksperimen menjadikan ia sangat berkesan dan boleh dipercayai untuk meramalkan kerosakan akibat keletihan pada peringkat awal hayat struktur. Walau bagaimanapun, untuk memberikan gambaran yang lebih menyeluruh terhadap tingkah laku degradasi kekakuan sepanjang hayat perkhidmatan bahan, model ubah suai dari Peringkat I hingga Peringkat III menawarkan kompromi yang baik antara ketepatan ramalan dan keupayaan menggambarkan keseluruhan proses kerosakan. Oleh itu, pemilihan model yang sesuai haruslah bergantung kepada keperluan aplikasi. Bagi tujuan penilaian jangka pendek atau pemantauan kerosakan awal, model Peringkat I adalah paling sesuai. Sebaliknya, bagi ramalan jangka panjang yang melibatkan penilaian ketahanan struktur secara keseluruhan, model dari Peringkat I hingga Peringkat III boleh digunakan kerana ia menunjukkan tahap ketepatan dan keterangkuman yang hampir menyamai data eksperimen.

FATIGUE FAILURE ANALYSIS OF CFRP COMPOSITE LAMINATES USING MODIFIED STIFFNESS DEGRADATION METHOD

ABSTRACT

Carbon fibre reinforced polymer (CFRP) composite laminates have been extensively utilised in various industrial applications due to their outstanding mechanical properties. In this study, the stiffness degradation behaviour of CFRP laminates subjected to cyclic loading conditions was analysed using two analytical models: the Modified Stage I model and the modified Stage I to Stage III model. Both models were developed based on the original model proposed by Lurie and Minhat, and subsequently enhanced through the introduction of several specific parameters to improve the predictive accuracy between analytical results and experimental data. The application of a linear elastic model facilitated the determination of the mechanical properties of the CFRP materials, which served as input parameters for the modified models. The modified Stage I model was employed to evaluate stiffness degradation during the initial damage phase, particularly matrix cracking. The resulting analytical stiffness degradation curves were compared with the experimental curves. Subsequently, the modified Stage I to Stage III model was applied to assess the full spectrum of stiffness degradation, encompassing damage evolution from the initial stage to the final stage, including fibre breakage. To evaluate the accuracy of both models, the percentage difference between the analytical model and experimental data was calculated for all three CFRP laminate configurations investigated in this study, namely $[0,\pm 45]_s$, $[0,90_2]_s$, and $[0,90,\pm 45]_s$. Overall, the findings indicate that the Modified Stage I model offers the highest predictive accuracy when directly compared with experimental data, particularly for early-stage damage. The simplicity of its formulation and its strong agreement with empirical results render it highly effective and reliable for predicting fatigue-induced damage in the initial service life of the structure. However, to provide a more comprehensive representation of the material's stiffness degradation behaviour throughout its service life, the modified Stage I to Stage III model presents a balanced compromise between predictive accuracy and the ability to capture the complete damage progression. Therefore, the selection of the most appropriate model should be guided by the intended application. For short-term assessments or early-stage damage monitoring, the Stage I model is the most suitable. Conversely, for long-term durability predictions involving comprehensive structural integrity evaluation, the Stage I to Stage III model is more appropriate, as it demonstrates a high level of accuracy and inclusiveness that closely aligns with experimental observations.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Heterogeneous engineering materials have existed in nature for millions of years. Composite materials are a prime example of heterogeneous engineering materials created by combining two or more different materials, which are known as the matrix and reinforcing materials, to produce a new material with good mechanical properties. Composite materials are extremely versatile materials that are formed by combining distinct constituents with different physical and chemical properties to form a new material that exhibits excellent mechanical properties compared to conventional materials. The matrix material acts as a binder and surrounds the reinforcement, providing support, protection, and transferring loads between the reinforcement materials.

Among the popular composite materials is carbon fiber reinforced polymer, known as CFRP. Carbon fiber reinforced polymer (CFRP) has emerged as a prominent material in various industries due to its exceptional mechanical properties, low weight, corrosion resistance, and fatigue endurance. This composite material is formed by combining carbon fibers as a continuous fiber reinforcement phase with a polymer matrix phase, typically epoxy resin. The carbon fibers, which constitute the reinforcement, are highly crystalline and possess a high aspect ratio (length-to-diameter ratio). This elongated structure imparts exceptional tensile strength, stiffness, and modulus to the composite. The matrix also provides the composite with its bulk properties, such as density and thermal conductivity.

The microstructure of CFRP is influenced by several factors, including fiber orientation, fiber volume fraction, and matrix properties.

Two primary configurations commonly employed in CFRP structures are sandwich and laminate structures. CFRP with the composite laminate structure typically consists of multiple layers, where each layer is composed of a combination of reinforcing fibers and a matrix material. These layers are stacked together and bonded to form a laminate structure (Hull & Clyne., 1996; Norisam & Abdullah., 2019). CFRP laminate materials are commonly used in aerospace, automotive, and marine industries for components such as aircraft wings, car body panels, boat hulls, and others. Figure 1.1 shows the Market expansion of CFRP materials in 2022 in the advanced industry, including wind turbines, sports, automotive, and others.

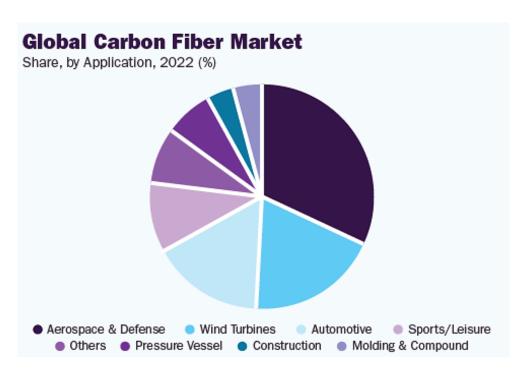


Figure 1.1. Market expansion of CFRP materials in the advanced industry (Global Carbon Fiber Market Analysis Report By Raw Material, 2022).

The orientation of the fibers within each ply has a crucial impact on the mechanical behavior of CFRP composite laminates. Due to their different fiber orientation, a number of typical laminate structures, including angle ply, cross-ply, balanced, symmetric, and asymmetric, exhibit different mechanical properties. Different fiber orientations can result in varied mechanical properties in CFRP composite laminate materials. The common configurations used in composite laminate lay-ups for aircraft component manufacturing, as well as in other engineering applications, are [0/+45/-45/90] and [0,90]. These configurations are commonly used in aerospace applications because they offer good mechanical properties, such as stiffness and strength (Mouritz., 2012). The selection of the orientation of the fiber in CFRP composite laminate structure lay-ups for aircraft applications is a critical aspect of the design process. Engineers carefully consider various factors such as the specific requirements of the component, anticipated load conditions, desired mechanical properties, weight constraints, manufacturing feasibility, and costeffectiveness. Figure 1.2 shows an example of CFRP composite laminate materials applied in the part of the aerospace body in the aerospace industry.

Figure 1.2. Application of composite materials in the aerospace industry.

However, under various loading conditions, such as fatigue loading, the mechanical properties of the CFRP composite laminate materials, including strength and stiffness, can be reduced and affect the mechanical properties of these materials. Fatigue loading is an important factor to consider when developing and applying composite laminate materials since it has a substantial impact on the performance and lifespan of the composite laminate materials, including the CFRP materials. This load is known as a repeated application of stress to a material, which can lead to failure even if the maximum stress is below the ultimate tensile strength of the material. In CFRP composite laminate materials, fatigue loading can be particularly problematic to the mechanical properties of the composite laminate materials, which is it can reduce the strength, stiffness and damage accumulation process of the CFRP composite laminate materials. Fatigue loading can lead to a decrease in the stiffness of these types of materials, making them more susceptible to deformation under load and increasing the risk of failure in the CFRP composite materials structure. The repeated stress cycles can cause damage to accumulate in the composite laminate material, leading to progressive degradation of its mechanical properties.

Fatigue damage in CFRP composite laminate materials is a progressive process that can lead to material degradation and failure under repeated cyclic loading. This process can be divided into three primary stages, namely matrix cracking (stage I), delamination (stage II), and fiber fracture (stage III). These three types of damage can occur individually or in combination, and their severity can vary depending on the specific material, loading conditions, and environmental factors. To obtain a comprehensive understanding of damage evolution in CFRP composite laminates, it is often necessary to combine multiple methods. Experimental methods can provide valuable data on damage initiation and propagation, while analytical and numerical methods can help to interpret

and predict damage behavior. As is known, CFRP fatigue damage is a gradual process that triggers material weakening and ultimately destruction when subjected to fatigue loads. The development of damage mechanisms in CFRP composite laminate materials is a complicated process. One of the factors contributing to this complexity is the heterogeneity and anisotropy of the fiber-reinforced composite laminate materials. Figure 1.3 shows the damage mechanism of CFRP composite materials under fatigue loading conditions. This figure (Blythe et al., 2022) shows the three stages of the damage evolution process under fatigue load for the CFRP composite materials.

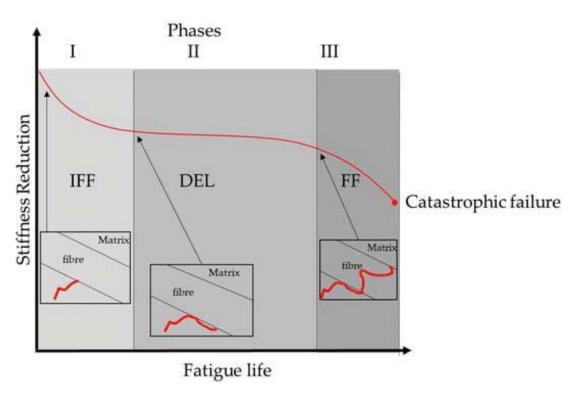


Figure 1.3 Damage mechanism of CFRP composite materials under fatigue loading conditions (Blythe et al., 2022).