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ANALISIS KEGAGALAN KELESUAN LAMINAT KOMPOSIT CFRP 

MENGGUNAKAN KAEDAH DEGRADASI KEANJALAN YANG DIUBAHSUAI 

 

ABSTRAK 

Struktur lamina komposit gentian karbon bertetulang polimer (CFRP) telah 

digunakan secara meluas dalam pelbagai aplikasi industri disebabkan oleh sifat 

mekanikalnya yang sangat baik. Dalam kajian ini, degradasi kekakuan pada lamina 

komposit CFRP yang tertakluk kepada keadaan beban kitaran telah dianalisis 

menggunakan dua model analitik iaitu model ubah suai Peringkat I dan model ubah suai 

dari Peringkat I hingga Peringkat III. Kedua-dua model ini dibangunkan berdasarkan 

model asal oleh Lurie dan Minhat, yang kemudiannya diubah suai dengan penambahan 

beberapa parameter khusus bagi meningkatkan ketepatan ramalan antara hasil analitik dan 

data eksperimen. Penggunaan model keanjalan linear membolehkan sifat mekanikal bahan 

CFRP ditentukan sebagai input kepada model ubah suai tersebut. Model ubah suai 

Peringkat I digunakan untuk menganalisis degradasi kekakuan semasa peringkat awal 

kerosakan, iaitu semasa berlakunya retakan matriks. Lengkung degradasi kekakuan yang 

diperoleh secara analitik kemudiannya dibandingkan dengan lengkung hasil eksperimen. 

Seterusnya, model ubah suai dari Peringkat I hingga Peringkat III diaplikasikan untuk 

menilai degradasi kekakuan yang merangkumi keseluruhan proses kerosakan bahan, iaitu 

daripada peringkat awal hingga ke peringkat akhir (seperti kerosakan gentian). Bagi 

menilai ketepatan kedua-dua model ini, peratusan perbezaan antara hasil analitik dan data 

eksperimen telah dikira untuk ketiga-tiga konfigurasi lamina CFRP yang dikaji, iaitu 

[0,±45]s, [0,90]₂s, dan [0,90,±45]s. Secara keseluruhan, hasil kajian menunjukkan bahawa 
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model ubah suai Peringkat I memberikan ketepatan ramalan yang paling tinggi apabila 

dibandingkan secara langsung dengan data eksperimen, terutamanya bagi peringkat awal 

kerosakan. Kesederhanaan struktur model serta kesesuaiannya dengan data eksperimen 

menjadikan ia sangat berkesan dan boleh dipercayai untuk meramalkan kerosakan akibat 

keletihan pada peringkat awal hayat struktur. Walau bagaimanapun, untuk memberikan 

gambaran yang lebih menyeluruh terhadap tingkah laku degradasi kekakuan sepanjang 

hayat perkhidmatan bahan, model ubah suai dari Peringkat I hingga Peringkat III 

menawarkan kompromi yang baik antara ketepatan ramalan dan keupayaan 

menggambarkan keseluruhan proses kerosakan. Oleh itu, pemilihan model yang sesuai 

haruslah bergantung kepada keperluan aplikasi. Bagi tujuan penilaian jangka pendek atau 

pemantauan kerosakan awal, model Peringkat I adalah paling sesuai. Sebaliknya, bagi 

ramalan jangka panjang yang melibatkan penilaian ketahanan struktur secara keseluruhan, 

model dari Peringkat I hingga Peringkat III boleh digunakan kerana ia menunjukkan tahap 

ketepatan dan keterangkuman yang hampir menyamai data eksperimen. 
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FATIGUE FAILURE ANALYSIS OF CFRP COMPOSITE LAMINATES USING 

MODIFIED STIFFNESS DEGRADATION METHOD 

 

ABSTRACT 

Carbon fibre reinforced polymer (CFRP) composite laminates have been 

extensively utilised in various industrial applications due to their outstanding mechanical 

properties. In this study, the stiffness degradation behaviour of CFRP laminates subjected 

to cyclic loading conditions was analysed using two analytical models: the Modified Stage 

I model and the modified Stage I to Stage III model. Both models were developed based 

on the original model proposed by Lurie and Minhat, and subsequently enhanced through 

the introduction of several specific parameters to improve the predictive accuracy between 

analytical results and experimental data. The application of a linear elastic model 

facilitated the determination of the mechanical properties of the CFRP materials, which 

served as input parameters for the modified models. The modified Stage I model was 

employed to evaluate stiffness degradation during the initial damage phase, particularly 

matrix cracking. The resulting analytical stiffness degradation curves were compared with 

the experimental curves. Subsequently, the modified Stage I to Stage III model was applied 

to assess the full spectrum of stiffness degradation, encompassing damage evolution from 

the initial stage to the final stage, including fibre breakage. To evaluate the accuracy of 

both models, the percentage difference between the analytical model and experimental data 

was calculated for all three CFRP laminate configurations investigated in this study, 

namely [0,±45]s, [0,902]s, and [0,90,±45]s. Overall, the findings indicate that the Modified 

Stage I model offers the highest predictive accuracy when directly compared with 
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experimental data, particularly for early-stage damage. The simplicity of its formulation 

and its strong agreement with empirical results render it highly effective and reliable for 

predicting fatigue-induced damage in the initial service life of the structure. However, to 

provide a more comprehensive representation of the material’s stiffness degradation 

behaviour throughout its service life, the modified Stage I to Stage III model presents a 

balanced compromise between predictive accuracy and the ability to capture the complete 

damage progression. Therefore, the selection of the most appropriate model should be 

guided by the intended application. For short-term assessments or early-stage damage 

monitoring, the Stage I model is the most suitable. Conversely, for long-term durability 

predictions involving comprehensive structural integrity evaluation, the Stage I to Stage 

III model is more appropriate, as it demonstrates a high level of accuracy and inclusiveness 

that closely aligns with experimental observations. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Heterogeneous engineering materials have existed in nature for millions of years. 

Composite materials are a prime example of heterogeneous engineering materials created 

by combining two or more different materials, which are known as the matrix and 

reinforcing materials, to produce a new material with good mechanical properties. 

Composite materials are extremely versatile materials that are formed by combining 

distinct constituents with different physical and chemical properties to form a new material 

that exhibits excellent mechanical properties compared to conventional materials. The 

matrix material acts as a binder and surrounds the reinforcement, providing support, 

protection, and transferring loads between the reinforcement materials.  

Among the popular composite materials is carbon fiber reinforced polymer, known 

as CFRP. Carbon fiber reinforced polymer (CFRP) has emerged as a prominent material 

in various industries due to its exceptional mechanical properties, low weight, corrosion 

resistance, and fatigue endurance. This composite material is formed by combining carbon 

fibers as a continuous fiber reinforcement phase with a polymer matrix phase, typically 

epoxy resin. The carbon fibers, which constitute the reinforcement, are highly crystalline 

and possess a high aspect ratio (length-to-diameter ratio). This elongated structure imparts 

exceptional tensile strength, stiffness, and modulus to the composite. The matrix also 

provides the composite with its bulk properties, such as density and thermal conductivity. 



2 
 

The microstructure of CFRP is influenced by several factors, including fiber orientation, 

fiber volume fraction, and matrix properties.  

Two primary configurations commonly employed in CFRP structures are sandwich 

and laminate structures. CFRP with the composite laminate structure typically consists of 

multiple layers, where each layer is composed of a combination of reinforcing fibers and 

a matrix material. These layers are stacked together and bonded to form a laminate 

structure (Hull & Clyne., 1996; Norisam & Abdullah., 2019). CFRP laminate materials are 

commonly used in aerospace, automotive, and marine industries for components such as 

aircraft wings, car body panels, boat hulls, and others. Figure 1.1 shows the Market 

expansion of CFRP materials in 2022 in the advanced industry, including wind turbines, 

sports, automotive, and others. 

 

 

Figure 1.1. Market expansion of CFRP materials in the advanced industry (Global 

Carbon Fiber Market Analysis Report By Raw Material, 2022). 
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The orientation of the fibers within each ply has a crucial impact on the mechanical 

behavior of CFRP composite laminates. Due to their different fiber orientation, a number 

of typical laminate structures, including angle ply, cross-ply, balanced, symmetric, and 

asymmetric, exhibit different mechanical properties. Different fiber orientations can result 

in varied mechanical properties in CFRP composite laminate materials. The common 

configurations used in composite laminate lay-ups for aircraft component manufacturing, 

as well as in other engineering applications, are [0/+45/-45/90] and [0,90]. These 

configurations are commonly used in aerospace applications because they offer good 

mechanical properties, such as stiffness and strength (Mouritz., 2012). The selection of the 

orientation of the fiber in CFRP composite laminate structure lay-ups for aircraft 

applications is a critical aspect of the design process. Engineers carefully consider various 

factors such as the specific requirements of the component, anticipated load conditions, 

desired mechanical properties, weight constraints, manufacturing feasibility, and cost-

effectiveness. Figure 1.2 shows an example of CFRP composite laminate materials applied 

in the part of the aerospace body in the aerospace industry.  

 

  
 

Figure 1.2. Application of composite materials in the aerospace industry. 
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However, under various loading conditions, such as fatigue loading, the 

mechanical properties of the CFRP composite laminate materials, including strength and 

stiffness, can be reduced and affect the mechanical properties of these materials. Fatigue 

loading is an important factor to consider when developing and applying composite 

laminate materials since it has a substantial impact on the performance and lifespan of the 

composite laminate materials, including the CFRP materials. This load is known as a 

repeated application of stress to a material, which can lead to failure even if the maximum 

stress is below the ultimate tensile strength of the material. In CFRP composite laminate 

materials, fatigue loading can be particularly problematic to the mechanical properties of 

the composite laminate materials, which is it can reduce the strength, stiffness and damage 

accumulation process of the CFRP composite laminate materials. Fatigue loading can lead 

to a decrease in the stiffness of these types of materials, making them more susceptible to 

deformation under load and increasing the risk of failure in the CFRP composite materials 

structure. The repeated stress cycles can cause damage to accumulate in the composite 

laminate material, leading to progressive degradation of its mechanical properties.  

Fatigue damage in CFRP composite laminate materials is a progressive process 

that can lead to material degradation and failure under repeated cyclic loading. This 

process can be divided into three primary stages, namely matrix cracking (stage I), 

delamination (stage II), and fiber fracture (stage III). These three types of damage can 

occur individually or in combination, and their severity can vary depending on the specific 

material, loading conditions, and environmental factors. To obtain a comprehensive 

understanding of damage evolution in CFRP composite laminates, it is often necessary to 

combine multiple methods. Experimental methods can provide valuable data on damage 

initiation and propagation, while analytical and numerical methods can help to interpret 
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and predict damage behavior. As is known, CFRP fatigue damage is a gradual process that 

triggers material weakening and ultimately destruction when subjected to fatigue loads. 

The development of damage mechanisms in CFRP composite laminate materials is a 

complicated process. One of the factors contributing to this complexity is the heterogeneity 

and anisotropy of the fiber-reinforced composite laminate materials. Figure 1.3 shows the 

damage mechanism of CFRP composite materials under fatigue loading conditions. This 

figure (Blythe et al., 2022) shows the three stages of the damage evolution process under 

fatigue load for the CFRP composite materials.  

 

 
 

Figure 1.3 Damage mechanism of CFRP composite materials under fatigue loading 
conditions (Blythe et al., 2022).    

 
 
 

 


