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TABURAN POISSON TRANSMUTASI EKSPONEN BAGI DATA BILANGAN

YANG TERPENCONG, TERSERAK DAN TERLEBIH SIFAR

ABSTRAK

Dengan mengandaikan taburan Poisson klasik untuk data bilangan, ia
berkemungkinan salah dalam kebanyakan kes kerana ia mengandaikan serakan yang
sepadan, sedangkan data bilangan biasanya terlebih terserak. Dalam sains aktuari,
kekerapan tuntutan biasanya merupakan unimodal, terpencong, terlebih terserak, dan
dengan kekerapan bilangan sifar yang lebih tinggi; oleh itu, dengan andaian taburan
Poisson boleh menyebabkan model tersalah dinyatakan. Kajian ini memperluaskan teori
dan skop taburan diskret untuk pemerhatian bilangan yang terpencong dan terlebih
terserak dengan lebihan bilangan sifar dalam proses Poisson tercampur dengan
mengubahsuaikan sifat unimodal dan terpencong taburan eksponen secara lanjut.
Transmutasi  kuadratik dan transmutasi dua-kubik digunakan untuk menerbitkan
taburan eksponen, taburan eksponen berwajaran, dan taburan eksponen berwajaran
yang baru. Taburan selanjar yang diperoleh diandaikan sebagai taburan tercampur untuk
parameter taburan Poisson dalam prosess Poisson tercampur. Sembilan taburan Poisson
tercampur yang baru dan bentuk terlebih sifar masing-masing dicadangkan dari taburan
tercampur. Sifat bermatematik yang berasaskan momen yang berbeza yang baru
dicadangkan telah diperoleh. Algoritma yang berbeza digunakan untuk menilai
anggaran kebolehjadian maksimum bagi menganggar parameter. Newton-Raphson dan
Nelder-Mead, dengan lelaran minimum bagi nilai penumpuan terhadap log
kebolehjadian, memberikan nilai anggaran yang terbaik. Cadangan baru tersebut telah
dinilai dengan taburan diskrit yang lain terhadap pelbagai cerapan bilangan terlebih
serak dalam kehidupan sebenar dengan terlebih sifar. Cadangan baru tersebut
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menunjukkan prestasi yang baik dalam pelbagai senario dan boleh menjadi model
alternatif untuk menganalisa cerapan bilangan yang terlebih serak dengan terlebih sifar.
Hasil kajian juga menunjukkan bahawa cadangan baru tersebut mengatasi bentuk model
yang terlebih sifar ketika dinilai pada data bilangan yang disifatkan dengan terlebih

sifar.



POISSON TRANSMUTED EXPONENTIAL DISTRIBUTION FOR COUNT

DATA WITH SKEWED, DISPERSED AND EXCESS ZERO

ABSTRACT

Assuming Poisson distribution for count data may be misleading in most cases
because it assumes equidispersion, whereas count data is usually overdispersed. In
actuarial science, claim frequencies are usually unimodal, skewed, overdispersed, and
with a higher frequency of zero counts; hence, assuming the Poisson distribution may
lead to model misspecification. This study expands theories and scopes of discrete
distributions for skewed and overdispersed count observations with excess zero
frequency in the mixed Poisson process by leveraging extended exponential
distributions' unimodality and skewness properties. Three transmutation maps are used
to extend the exponential distributions, the weighted exponential distribution, and the
new weighted exponential distribution. The obtained distributions are assumed as
mixing distributions for the parameter of the Poisson distribution in the mixed Poisson
process. Nine new mixed Poisson distributions and their respective zero-inflated forms
are proposed from these mixing distributions. Different moment-based mathematical
properties of the new proposed distributions are obtained. Different algorithms are used
to assess the maximum likelihood estimates for the parameters of the proposed
distributions. The Newton-Raphson and the Nelder-Mead, with minimum iterations for
convergence and log-likelihood values, provide optimum estimates. The new proposed
distributions are assessed with other discrete distributions on various real-life dispersed
count observations with excess zero. The new proposed distributions perform well in
diverse scenarios and can be better alternatives to analyzing overdispersed count
observations with excess zero. Results also show that the new proposed distributions
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outperform their zero-inflated forms when assessed on count data plagued with excess

Zero counts.
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CHAPTER 1

INTRODUCTION

1.1  Background of the Study

In fitting distributions for count observations, a major demerit of the classical Poisson
distribution is its inability to efficiently fit dispersed count data. This is rooted in the
distribution’s assumption of equality of mean and variance for count data which is rare
for real-life observations. This has given rise to various modifications to the
distribution. The mixed Poisson process, is prominent among these modifications,
usually applied for fitting claim frequency in actuarial science (Karlis, 2005). These
distributions arise from the variations inherent in the mean fluctuation of the Poisson
random variable by assuming a continuous distribution (mixing distribution) for the

distribution’s parameter.

Several mixed Poisson distributions exist in the literature to provide more efficiency in
fitting count observations. In most of these propositions, the mixing distributions are
obtained from the exponential-related distributions. The classical exponential
distribution is suitable for systems with constant failure rates (not minding the effect of
time or accumulated age). This is a significant shortcoming in its general application
hence, the introduction of several forms of its extensions. Extending a classical
distribution is usually achieved by adding extra shape parameter(s) using different
compounding techniques (Karina et al., 2019). Applications of compounded
exponential distributions pervade almost all aspects of life, including but not limited to
economic, reliability, environmental, industrial, and engineering spaces (Aguilar et al.,

2019; Mohammed et al., 2015; Rasekhi et al., 2017).



This research extends the exponential distribution and other two forms of its
generalization wusing three transmutation maps to obtain a new set of mixing
distributions to derive new Poisson distributions and their respective zero-inflated
forms. The new proposed distributions’ Vvarious moment-based mathematical and
statistical properties are obtained, and different algorithms for maximum likelihood
estimation are assessed. Performances of the new proposed distributions are compared
with other refereed count distributions using the negative log-likelihood, the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC), and the chi-
square statistics as selection criteria. Real-life applications are examined with count
data, mostly from actuarial science, and more generally with skewed, unimodal, and

over-dispersed count observations with excess zero.

Generally, variances of all mixed Poisson distributions exceed their means (Karlis &
Xekalaki, 2005); hence, they are more efficient in fitting dispersed observations.
Therefore, the new proposed distributions are expected to give more flexibility and

general applicability to over-dispersed count observations with excess zeros.

1.2 Problem Statement

Attempts to obtain distributions that provide better explanations for real-life data are
continuous search in distribution theories and applications. Distributions that appeared
best in the past have been extended to allow for more flexibility in recent studies.
Because of its relative simplicity and broad applicability, the Poisson distribution is at
the forefront in fitting count observations. The distribution is best assumed for count
data when equi-dispersed (equal variance and mean). Model misspecification arises
when the distribution is assumed for heterogeneous count data (Asamoah, 2016).

Researchers over the years have developed distributions that can provide a good fit for



over-dispersed observations using the Poisson-Exponential relationships (Bhati et al.,
2015, 2017; Das et al., 2018; Sankaran, 1970; Zakerzadeh & Dolati, 2009). First among
many of these propositions is the negative binomial (NB) distribution (Greenwood &
Yule, 1920), obtained by assuming the gamma distribution for the parameter of the

Poisson distribution.

Assuming continuos distributions for the Poisson parameter in the mixed Poisson
process may ensure adequate flexibility in fitting count data. The general applicability
of the generalized exponential distributions transcends reliability, lifetime, engineering,
and actuarial modellings. Additional shape parameters in these classes of exponential
distributions ensure efficient fitting of dispersed observations (Karina et al., 2019).
Generally, count observations in actuarial science are often dispersed and plagued with
an excess frequency of zero (Adcock et al., 2015; Adetunji & Sabri, 2021; Khan &

Khan, 2010; Omari et al., 2018).

Since its variance exceeds its mean, the NB distribution has been used to fit
overdispersed count observations (Greenwood & Yule, 1920; Klugman et al., 2012;
Sankaran, 1970; Srivastava, 2016). However, its efficiency in fitting unimodal, skewed,
and overdispersed count data is yet to be reported to our best knowledge (Altun, 2021,
Nikoloulopoulos & Karlis, 2008). Hence, this study is aimed at proposing discrete
distributions that can provide a good fit for count observations that are unimodal,
skewed and overdispersed. These properties characterize claim frequency in actuarial
science. This will be achieved by exploring some of these properties that characterize
compounded exponential distributions by utilizing advantages inherent in extending
classical exponential distribution and two of its extensions (weighted exponential
distribution and new weighted exponential distribution) to obtain a new set of mixing

distributions assumed for the Poisson parameter in the mixed Poisson process.



1.3 Research Objectives

Using extended exponential distributions as the mixing distributions assumed for the
parameter of the Poisson distribution, this research aims to develop new count
distributions that can fit dispersed and skewed count data with excess zero in the mixed

Poisson process. Specific objectives are:

I. toobtain a new set of mixed Poisson distributions and their mathematical properties
using extended exponential distributions as the mixing distributions.

ii. to obtain zero-inflated forms of the new proposed distributions for fitting count
observations with excess zero.

iii. to assess the asymptotic characteristics of the new proposed distributions.

iv. to compare the performance of the new proposed distributions in fitting count
observations with different proportions of zero counts.

V. to investigate the new proposed distributions’ performances compared to refereed

count distribution for skewed and dispersed observations with excess zero counts.

1.4 Motivation for the Study

Developments in distribution theories have shown that data fitting can continuously be
improved upon since most of the new proposed distributions have extra parameters that
improve flexibility and can better fit real-life observations. This research attempts to
improve the fitting of count data using new mixing distributions to obtain a new set of
mixed Poisson distributions. The new proposed distributions aim to provide alternatives

for fitting skewed and dispersed count observations with excess frequencies of zero.

Extensions of various continuous distributions have been reported to give better
performance over the baseline distributions (Alsikeek, 2018; Bhatti etal., 2018; Elgarhy

et al., 2017; Kemaloglu & Yilmaz, 2017; Ogunde et al., 2020). Therefore, the new



proposed distributions are expected to provide better fits with higher efficiencies than
some of the established discrete distributions in actuarial science in particular and

dispersed count observations with excess zero in general.

1.5  Significance of the Study

In general data fitting, the aim is to assume a probability distribution with the propensity
to provide the best fit for any observations of interest. Several techniques are employed
to introduce new probability distributions to achieve this. In most cases, introducing a
new probability distribution involves extending the baseline distributions by adding
extra parameter(s). The resulting new distribution tends to incorporate dynamism absent
in the baseline distribution to better fit the observation of interest. Extending distribution
procedures are more pronounced in the continuous distributions process than the

discrete distributions.

Recent advancements in computing power and statistical software have made
estimating parameters in multi-parameter continuous distributions less strenuous. For
continuous distributions, different four-parameter distributions (Alizadeh et al., 2016;
Hamed et al., 2020; Handique & Chakraborty, 2021); five-parameter distributions (Al-
Babtain et al., 2014; Tharshan & Wijekoon, 2020); and six-parameter distributions
(Alshkaki, 2021; Yousof & Afify, 2016) have been introduced. Techniques of obtaining
multi-parameter discrete distributions have gained little patronage. This study presents
an approach to generalizing discrete distributions that can be used to obtain multi-
parameter discrete distributions. Apart from being able to provide efficient fit for
skewed and dispersed count observations with excess zero, the new proposed
distributions can also be assumed in regression modelling of relationships between

skewed and dispersed count observations and other covariates.



1.6 Scope of the Study

The study uses the classical exponential distribution and its two generalized forms, the
weighted exponential distribution (Gupta & Kundu, 2009), and the new weighted
exponential distribution (Oguntunde et al., 2016), as baseline distributions. Three one-
parameter transmutation maps (Al-kadim, 2018; Rahman et al., 2019; Shaw & Buckley,
2007) are used to extend these baseline distributions to obtain nine transmuted
exponential distributions. The resulting distributions are assumed for the parameter of
the Poisson distribution to serve as mixing distributions. Using these mixing
distributions, anew set of mixed Poisson distributions and their respective zero-inflated

forms are obtained.

From unlimited choices of baseline distributions and compounding techniques that
could be considered, this study compares three forms of exponential distributions and
three one-parameter transmutation maps, leveraging the characteristics of count
observations in actuarial sciences. A noticeable characteristic of most mixed Poisson
distributions is that they are unimodal (Bhati et al., 2017). Therefore, the proposed
distributions in this study may be less efficient in fitting multimodal count data. This
study's major applications are in claim frequency (although other refereed dispersed and
unimodal count data are assessed). Getting primary data on claim frequency from
insurance companies is herculean; hence, real-life applications in the study are limited
to available secondary data extracted from different sources, including highly refereed

journals.

1.7  Zero-Modified Count Distribution
The nature of some count data may cause observations to be plagued with an unusual

frequency of zero. Results of count data fitting may therefore become unreliable if there



are too few zero frequencies (zero-deflation) or too many zero frequencies (zero-
inflation). Zero-deflated features occur when the observed frequency of zero in a count
data is much lower and inconsistent with the expected frequency. This scenario is
typically less reported in the literature (Angers & Bsiswas, 2003; Dietz & Bohning,
2000) than in instances where zero frequency is substantially larger (Conceicdo et al.,
2017). In the literature, two-part and mixture models have been used to treat count data
with zero inflation. There are two processes in a finite mixture model, one with a zero
output (resulting in a count of zero) and the other with a standard count distribution
(Heilbron, 1994; Mullahy, 1986). The zero-hurdle models combine a binary model with
a zero-truncated count data model for positive outcomes. This formulation is based on
the assumption of a Bernoulli variable (with a zero or a positive realization). The
“hurdle” is crossed if the realization is positive (Mullahy, 1986), and the zero-truncated

distribution is used to derive the conditional distribution of positives.

Most count data assumed Poisson distribution, but there are perceived reasons not to
utilize the distribution in many situations. The usual circumstances are when the data
are dispersed, or there are too many (or too few) zero counts. Dietz and Bohning (2000)

reported some conditions that may warrant many zeros in count observations.

(D All members of a study population may not be concerned in responding to the
Poisson process; hence, zero inflation develops as a result of the unaffected
members.

(i) During sampling, some conditions can increase (or decrease) the likelihood of
having zero counts. This situation creates room for zero inflation (or zero

deflation).



(iif)  There may be no chance of observing zero counts in the study. Hence, if zeros
are found in the observations, they need to be truncated. This is the case with the

positive count process.

Generally, any of the zero-modified distributions is assumed when zero counts in a
dataset are assumed to be beyond (or below) average. The zero-modified distribution
involves special attention to zero frequency in count observations. Among the standard
techniques for zero modifications are the zero-truncated (ZT), the zero-hurdle (ZH), and

the zero-inflated (ZI) distributions.

1.8  Thesis Organization

Chapter 1 provides a detailed background to the study. Problem statements, objectives,
and significance of the study are stated. The scopes covered by the study and the
accompanying limitations are also stated. Some basics of zero-modifications in count

data are also presented.

In Chapter 2, the procedures of compounding classical distributions are reviewed.
Recent advancements and studies in the mixed Poisson process are also revised.
Background studies on the rank transmutation maps used in extending the considered

exponential distributions are presented.

In the third Chapter, nine mixing distributions are obtained. Some basic properties and
shape characteristics of these distributions are also shown. Some background on
characterizing discrete distributions and extimating parameters of zero-modifications
are also presented. Different algorithms for estimating the parameters of the proposed
distributions in the maximum likelihood estimation process are also discussed.

Techniques of simulating random variables to assess the behaviour of the new proposed



distributions are also discussed. Finally, four selection criteria used in this study are

presented.

Chapters 4, 5, and 6 present the Poisson transmuted distributions for the exponential,
weighted exponential, and new weighted exponential distributions, respectively.
Properties like the PMF, the CDF, the hazard function, the survival function, the
Moment Generating Function (MGF), the Probability Generating Function (PGF), the
skewness, the kurtosis, and the shapes of the PMFs are obtained for each distribution in
each Chapter. Mathematical expressions for the maximum likelihood estimation of

these distributions are also presented.

Real-life count datasets used in the study, results and discussions of each proposed
distribution with competing distributions are presented in Chapter 7. The general
performance of the best three distributions for each dataset are also discussed. The
results obtained are ranked according to the baseline distributions and according to the
transmutation maps, and the owverall performance of each category on the dataset is

assessed.

The summary, conclusion, and recommendations for further studies are presented in the

eighth Chapter.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction
This chapter reviews recent trends in discretizing random variables from continuous
distributions. Special attention is given to the techniques of extending continuous

distributions and some common generalizations in the mixed Poisson process.

2.2 Discretizing Continuous Distributions

The technique of discretizing continuous distributions was developed to fit discrete
observations with similar shapes to the respective continuous distributions. Nakagawa
and Osaki (1975) first applied the technique to the Weibull distribution. Since then,
many techniques of obtaining discrete analogous to continuous distributions have been
developed (Chakraborty, 2015; Roy, 2002; Tovissodé et al., 2021; Drezner & Zerom,
2016), but using the survival function of the continuous distribution has received the
major attentions in the literature. According to Roy (2004), the probability mass
function (PMF) of a new discrete distribution using survival function S(x) of its

continuous equivalent is defined in equation (2.1) as:

PX =x) =S(x)—S(x+1), x=0,1,2,.. (2.2)

where

S() =1-F(x|0) = P(X = x) 2.2)

F(x|®) is the CDF of a continuous distribution. Table 2.1 shows some discrete

distributions obtained using the equation (2.1).
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Table 2.1 Some discretized continuous distributions

Distribution Reference

Weibull Nakagawa and Osaki (1975)

Lindley Gomez-Déniz and Calderin-Ojeda (2011)
Generalized Exponential Nekoukhou et al., (2013)

Lomax Para and Jan (2016)

Gompertz Exponential Eliwa et al., (2020)

Marshal-Olkin Generalized Exponential | Almetwally et al., (2020)

Weibull Marshal-Olkin Exponential Gillariose et al., (2021)

Marshall-Olkin Inverted Topp—Leone Almetwally et al. (2022)

2.3  Compounding Distribution
Several techniques exist for extending classical distributions to obtain more effic ient
and flexible distributions. This section explores some of the developments in

compounding baseline continuous probability distributions.

2.3.1 General Compound Distribution

Several extensions of different classical probability distributions have been proposed.
Most of these extensions improve the flexibility and general applicability of the classical
distributions. Applications of these principles are usually on the continuous probability
distribution with very little attention to the discrete distribution. Few among many
inexhaustible techniques of extending continuous distributions are the quadratic
transmutation map (Shaw & Buckley, 2007); the Kumaraswamy G distributions
(Cordeiro & de Castro, 2011); the beta extended G distributions (Cordeiro et al., 2012);
the gamma G distributions (Risti¢ & Balakrishnan, 2012); the generalized beta G
distributions (Alexander et al., 2012); the beta exponential G distributions (Alzaatreh
et al., 2013); the exponentiated exponential Poisson G distribution (Risti¢ & Nadarajah,
2013); the exponentiated generalized G distributions (Cordeiro et al., 2013); the
modified beta G distributions (Nadarajah et al., 2014); the exponentiated transmuted G

type 2 (Merovci et al., 2016); the alpha-power transformation (Mahdavi & Kundu,
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2017); the Weibull G family (Bourguignon et al., 2014); and the cubic rank
transmutation maps (Al-kadim, 2018; Aslam et al., 2018; Granzotto et al., 2017;

Rahman et al., 2019).

Detailed literature on many distributions due to the transmuted families are provided by
Alzaatreh et al., (2013); Tahir and Cordeiro (2016); and Klakattawi and Aljuhani

(2021), while Ali and Athar (2021) explored recent trends in transmutation maps.

2.3.2 Quadratic Transmutation Map
Suppose a baseline continuous distribution has the CDF ¢(x), the Quadratic
Transmuted (QT) family of distributions (Shaw & Buckley, 2007) with the

transmutation parameter p has the CDF:

F(x) = 1+ p)e) —ple)’; xeRlpl<1 (2.3)

Due to inherent transformations of the baseline distributions from the continuous to
discrete cases, the conditions imposed on the transmutation parameter (|p| < 1) may

not always hold in the mixed Poisson process. An extensive work on transmutation

parameters was done by Hameldarbandi and Yilmaz (2020).

2.3.3 Cubic Transmutation Maps

In some cases, the QT family may not capture the complexity of observations of interest;
hence, the development of the Cubic Rank Transmutation (CRT) with additional shape
parameter which improves flexibility and general applicability. Several CRT techniques
pervade the literature (Al-kadim, 2018; Aslam et al., 2018; Granzotto et al., 2017;

Rahman et al., 2019), with each proposed distribution adding extra shape parameter(s)
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to baseline distributions. Rahman et al., (2020) provides a list of extended distribution

using the CRT technique.

This study focuses onthe CRT techniques that add only one shape parameter to baseline
distributions (Al-kadim, 2018; Rahman et al.,, 2019) to avoid the challenges of
estimating too many parameters. Also, these techniques have been reported to perform
creditably well (Adetunji & Ademuyiwa, 2020), like those with two additional shape

parameters (Aslam et al., 2018; Granzotto et al., 2017; Rahman et al., 2018).

Given that a baseline continuous distribution has the CDF of the form ¢(x), the CRT

map due to Al-kadim (2018) is given as:

F(x) = 1+ 2)p @) - 2p(0(0)" + p(0)°,  x20lpl<1 (2.4)

The CDF of another CRT map due to Rahman et al., (2019) has the form:

F(x) = (1-p)o(x) +3p(p(0))* = 2p(0(0))’, x = 0,Ipl <1 (2.5)

2.4 Mixed Poisson Distributions

Since the pioneering works on the compound Poisson distributions (Greenwood &
Yule, 1920; Holgate, 1970; Maceda, 1948; Willmot, 1986), the mixed Poisson
distribution has received attention with applications in count observations in general
and claim frequencies fitting in particular. lyer-Biswas and Jayaprakash (2014); Das et
al., (2018); Simeunovi¢ et al., (2018), and Ong et al., (2021) provide references,
properties, applications, and recent trends in mixed Poisson distribution. Among many

mixed Poisson distributions, the most refereed ones are elucidated below.
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2.4.1 Poisson-Exponential Distribution
If N|Y~Poisson(Y) and Y~Exponential(a), N has a Poisson-Exponential

distribution with its PMF obtained as:

_ @ : — . 2.6
Pn—m, n=0,1.,2,..;a>0 ( )

Equation (2.6) has a geometric distribution.

2.4.2 Poisson-Lindley Distribution

The Poisson-Lindley distribution (Sankaran, 1970) is a mixture of the negative binomial

(Zﬁ) distribution, and the geometric ( ) distribution with (La) as the mixing

a
1+a 1+

proportion. The PMF is defined as:

a’n+a+2) (2.7
Pn:W' n=0,1,2,3,...; a>0

This distribution has enjoyed patronage by researchers since its introduction. Ghitany
and Al-Mutairi (2009) investigated some of its mathematical properties. Mahmoudi and
Zakerzadeh (2010) proposed the two-parameter discrete Lindley distribution with the
generalized Lindley distribution (Zakerzadeh & Dolati, 2009) as the mixing
distribution. Bhati et al., (2015) used the two-parameter Lindley distribution (Shanker
et al.,, 2013) as the mixing distribution. Another generalization of the Lindley
distribution (Das et al., 2018) was used to derive a three-parameter Poisson-Lindley

distribution.

2.4.3 Poisson-Gamma Distribution
If N|Y~Poisson(Y) and Y~Gamma (a,B), a discrete random variable N has a

Poisson-Gamma distribution if its PMF is defined as:
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The PMF obtained has a negative binomial (NB) distribution with p = (ﬁ) Various

generalizations of this distribution can be found in Albrecht (1984); Willmot (1993),
and Sastry et al., (2016). The distribution has been used in modelling (i) wind speed
data (Cakmakyapan & Ozel, 2016); (i) rainfall data (Dzupire et al., 2018); and (iii)
claim premium (Wu, 2020). Various properties of distribution are studied by Cha and

Mercier (2021).

Table 2.2 shows some mixing distributions that have been utilized to obtain different

mixed Poisson distributions.

Table 2.2 Mixing distributions for some mixed Poisson distributions
Mixing Distributions References
Gamma Greenwood and Yule (1920)
Uniform Bhattacharya (1966)
Lindley Sankaran (1970)
Lognormal Bulmer (1974)
Truncated Gamma Willmot (1993)
Pareto Willmot (1993)
Lindley-Beta Gomez-Déniz etal., (2012)
Generalized Gamma Sastry et al., (2016)
Marshall-Olkin-Generalized Exponential | Gomez—Déniz and Calderin—Ojeda (2015)
Three-Parameter Lindley Das et al., (2018)

From the above, several baseline continuous distributions have been used as mixing
distributions in the mixed Poisson process by assuming them for the Poisson parameter.
This research explores discrete distribution space by extending the search for the mixing

distributions to be used in the mixed Poisson process.

Many studies (Bertoli et al., 2021; Dzupire et al., 2018; Meytrianti et al., 2019;

Nikoloulopoulos & Karlis, 2008; Sharker et al., 2020) have assessed over dispersion in
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count data but these data, especially in actuarial sciences are not only dispersed but also
skewed, unimodal, and plagued with excess frequency of zero (Adetunji & Sabri, 2021;
Atikankul et al., 2020; Bhaktha, 2018; Emilio Gomez-Déniz & Calderin-Ojeda, 2018;
Tlzen et al., 2020). This study presents a technique of obtaining discerete distributions
that can efficiently provide adequate fits to count data which are not only overdispersed

but also skewed, unimodal and have excess zero frequency.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1  Introduction

If N|Y~Poisson(Y)and Y~m(0) where (0) is the probability distribution function
(PDF) of a distribution with positive supports assumed for Y, a mixed Poisson
distribution with the mixing distribution 7(©) is obtained by finding the unconditional

distribution for N.

b= [ 1oy n(o) ay @)
0

Different choices for the mixing distribution, m(®), have been reported in the literature
(see Table 2.2 for some choices of (@) in the literature). Karlis and Xekalaki (2005)
reported that the shape of a mixing distribution resembles the shape of the equivalent
mixed Poisson distribution with appropriate adjustment of its parameters. In addition,
the tail properties of a mixed Poisson distribution have similarities with the tail
properties of the mixing distribution producing it (Rémillard & Theodorescu, 2000;

Willmot, 1990).

In this study, we utilize the quadratic transmutation map (Shaw & Buckley, 2007) and
two cubic rank transmutation maps (Al-kadim, 2018; Rahman et al., 2019) on the
exponential distribution, the weighted exponential distribution (Gupta & Kundu, 2009),
and the new weighted exponential distribution (Oguntunde et al., 2016) to obtain a new
set of mixing distributions which are assumed for the parameter of the Poisson
distribution. Various mathematical properties and characteristics of the new proposed

distributions are explored using different properties earlier applied to similar
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distributions (Feller, 1968; Holgate, 1970; Karlis & Xekalaki, 2005; Maceda, 1948;

Shaked, 1980).

With additional shape parameter (p) called the transmutation parameter, transmutation
maps add flexibility to baseline distributions. If @(y) is the CDF of the baseline
distribution, the QT map (Shaw & Buckley, 2007) has the form given in the equation

(3.2):

FO) = 1+ o) —p(9®));  yeRIpl<1 (3.2)

Among many CRT maps, the one-parameter ones due to Al-kadim (2018) and Rahman
et al, (2019) are receiving many considerations largely due to their ease of
representation and relatively good performance when compared with those with two
extra parameters (Adetunji & Ademuyiwa, 2020). If the CDF of a baseline continuous
distribution is given as ¢ (y), the CRT map introduced by Al-kadim (2018) and Rahman

et al., (2019) are respectively given as:

F(iy) =+ po) —2p(e)’ + ple)’,  y=0lpl<1 (33)

Fy) = (1= p) o) +3p(0))* —2p(e)’, y=0,1pl <1 (3.4)

Note: Equations (3.2), (3.3), and (3.4) reduce to ¢ (y) when p = 0.

3.2  Transmuted Exponential Distribution and Properties

3.2.1 Exponential Distribution
If 0 is the scale parameter, then CDF of the Exponential Distribution (ED) is given in

equation (3.5) as:

18



p(y) =1—e"% (3.5)

Among numerous parametric distributions in probability theory, equation (3.5) is
widely used in diverse fields of study. The distribution has played an important role in
probability theory (Yang etal., 2021). Applications of its extended forms span various
fields of endeavour, including environmental, economic, reliability, engineering, and

industrial (Aguilar etal., 2019; Rasekhi et al., 2017).

3.2.2 Quadratic Transmuted Exponential Distribution
To obtain the Quadratic Transmuted Exponential Distribution (QTED), we insert
equation (3.5) into (3.2). Therefore, the CDF and PDF of the QTED are respectively

obtained as:

F(y)=1—e™% — pe 2% 4 pe= (3.6)
f()=0e(1—p+2pe) (3.7)

The corresponding survival and hazard functions are:

S) =e (1 - p+pe®) (3.8)
_0(1—p+2pe™®) (3.9)
hy) = 1—p+pe®
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Figure 3.1 shows the shapes of both PDF and HRF of the QTED for constant 6 and
different values of p. The PDF of the distribution has an inverted J-decreasing shape.
For constant 6, the distribution gives a higher probability to zero as p — 1, except for

» = 0 (constant HRF for the exponential distribution). The HRF is a monotonically

Figure 3.1 Shapes of the PDF and HRF of the QTED

decreasing function.

3.2.2.1 rth Moment of the QTED

Proposition 3.2.1: Assume a random variable Y has the QTED as given in equation

(3.7), the r'» moment is obtained as:
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EON = (1-p+ 2) (3.10)

67'
Proof:
E(y") = f Y fy)dy = f y" (0e=9Y — pOe=0Y + 2p0e=20)dy
0 0

=0 f y e % dy — pb f y e % dy + 20 f yTe 2%V dy
0 0 0

=—-—"—+
or 67 ' (20)7

rt prt  pr! pN\T!
=(1-r+3)5

3.2.2.2 Moment Generating Function of the QTED
Proposition 3.2.2: Given that a random variable Y has the QTED, the MGF is obtained

as:

0 0 2p0
E(e™) = _r + r (3.11)
Proof:
E(et) = f ety f(y)dy = f ty (§e=9Y — phe=0 + 2phe~20Y)dy

Gfe G go@fe (6-0y dy +2;76.I-e (26-8y dy
0

N

_ »0 4 2p0
-t O-t 20—t

Hence, the mean and variance of QTED are:

2=-p
EY) =—5- (3.12)
4—2p— p?
Var(Y) = T (313)

21



3.2.3 Cubic Rank Transmuted Exponential Distribution |
The Cubic Rank Transmuted Exponential Distribution 1 (CRTED 1) using the CRT map
of Alkadim (2018) is obtained by inserting (3.5) into (3.3). Therefore, the CDF and

PDF of the CRTED | are obtained as:
Fiy) =1—e"% + pe=2Y — pe=30y (3.14)

f(y) =0e (1 - 2peb + 3pe=267) (3.15)

The survival and hazard rate functions are given as:
S(y) =e 0 — pe=29Y + pe=3by (3.16)

0(1 —2pe~% +3pe2%7)

1—pe=% + pe=20y G17)

h(y) =
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Figure 3.2 Shapes of the PDF and HRF of the CRTED |

For different values of 8 and p, Figure 3.2 shows that the PDF of the CRTED | is a
monotonically decreasing function. The HRF is also decreasing except when the

exponential distribution (p = 0) is attained.

3.2.3.1 rth Moment of the CRTED I

Proposition 3.2.3: If a random variable Y has a CRTED I, the r'" moment is defined as:

r!
EG = (1 _§+§)E (3.18)

Proof:
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[00] [o¢]

EGm) = f Y ) dy = f v (0e7 — 2p0e™20 + 3phe20Y )dy
0 0

=0 f y e % dy — 20 f yTe 2%V dy + 3399[ y"e 3% dy
0 0 0

o 2oy T Goy

P

7! pr! pr! _( _? p);'r

3.2.3.2 Moment Generating Function of the CRTED I
Proposition 3.2.4: If a random variable Y has a CRTED I, the MGF is defined as:

200  3p0

E(ety) = —
) =g~ 25t"35 ¢

(3.19)

Proof:
E(ety) — -[ ety (ge—ey — 2pee—29y + 3p03—39y) dy
o o _
= Qf e~ (6-t)y dy — ngf e~ (260-t)y dy +3p6 f e—(30-0y dy
0 0 0

0 2p0 N 3p0
06—t 20—t 30—t

Hence, the mean and variance of CRTED | are:

6—p

E) =—5

(3.20)

36+ 2p — p?

Var(Y) = 3607

(3.21)

3.2.4 Cubic Rank Transmuted Exponential Distribution 11
The Cubic Rank Transmuted Exponential Distribution 1l (CRTED II) using the CRT
map of Rahman et al., (2019) is obtained by inserting (3.5) into (3.4). Hence, the CDF

and PDF of the CRTED Il are respectively obtained as:
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