
EFFECTS OF MACHINE-LEARNING
PROGRAMMING SIMULATOR ON

PERFORMANCE, ENGAGEMENT AND
PERCEIVED MOTIVATION OF UNIVERSITY
STUDENTS IN LEARNING PROGRAMMING

PUTRI TANSA TRISNA ASTONO

UNIVERSITI SAINS MALAYSIA

2024

	

EFFECTS OF MACHINE-LEARNING
PROGRAMMING SIMULATOR ON

PERFORMANCE, ENGAGEMENT AND
PERCEIVED MOTIVATION OF UNIVERSITY
STUDENTS IN LEARNING PROGRAMMING

by

PUTRI TANSA TRISNA ASTONO

Thesis submitted in fulfilment of the requirements

for the degree of
Doctor of Philosophy

August 2024

	 ii	

ACKNOWLEDGEMENT

I would like to express my gratitude to Allah SWT, the Most Gracious, the Most

Merciful, who has given me the opportunity to obtain a doctorate degree, and given

me the courage, fortitude and determination to undertake this difficult and protracted

journey. My deepest gratitude goes to my supervisors, Professor Dr. Wan Ahmad

Jaafar Wan Yahaya, Dr. Nur Azlina and Professor Dr. Sriadhi for their unwavering

guidance, tolerance, inspiration, and vast knowledge. I was able to finish the study and

write this thesis thanks to his insightful advice. In addition to my supervisor, my

family, particularly my parents Lili Astono and Ida Royani, my brother and my sister

Geniung and Rastra, and also my loyal supporter Hanapi Hasan deserve my sincere

appreciation. They have been a pillar of support and a place of refuge as I complete

my doctorate. I would also like to thank Universitas Negeri Medan for always

supporting me to do this research. Last but not least, I would like to thank everyone

who helped me on this journey. I would not have been able to do this without all of

you.

	 iii	

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. ii

TABLE OF CONTENTS ... iii

LIST OF TABLES .. viii

LIST OF FIGURES .. xi

LIST OF APPENDICES .. xiii

ABSTRAK ... xiv

ABSTRACT ... xvi

CHAPTER 1 INTRODUCTION .. 1

1.1 Overview .. 1

1.2 Background of Study .. 2

1.3 Problem Statement .. 9

1.3.1 Preliminary Study ... 13

1.4 Research Objective ... 16

1.5 Research Question .. 16

1.6 Hypotheses .. 17

1.7 Significance of The Study .. 18

1.8 Research Framework .. 19

1.9 Theoretical Framework ... 21

1.10 Limitations .. 24

1.11 Operational Definitions .. 25

CHAPTER 2 LITERATURE REVIEW .. 28

2.1 Introduction .. 28

2.2 Performance .. 28

2.3 Engagement .. 29

2.4 Perceived Motivation .. 31

	 iv	

2.5 Anxiety in Programming .. 33

2.6 Constructivist in Teaching and Learning Programming 34

2.7 Problem Based Learning .. 37

2.8 Persuasive Technology ... 40

2.8.1 Principles of Persuasive Technology ... 44

2.8.1(a) Principle of Similarity ... 44

2.8.1(b) Principle of Suggestion ... 45

2.8.1.(c) Principles of Tailoring ... 45

2.8.2 Persuasive Technology in Education ... 45

2.8.3 Persuasive Technology as a Tools .. 46

2.9 Learning Theories and Design Model .. 48

2.9.1 Cognitive Theory of Multimedia Learning (CTML) 48

2.9.2 Multimedia Learning Principles ... 49

2.10 Machine-learning .. 51

2.11 Programming Simulator ... 60

2.12 Summary ... 65

CHAPTER 3 METHODOLOGY .. 66

3.1 Introduction .. 66

3.2 Research Design ... 66

3.3 Research Population and Sample ... 68

3.3.1 Sample Distribution according to Moderating Variables 69

3.4 Descriptive Analysis ... 70

3.5 Inference Statistics .. 72

3.5.1 Parametric ... 74

3.5.2 Non-Parametric .. 75

3.6 Research Variables ... 76

3.7 Research Instruments .. 78

	 v	

3.7.1 Test for Programming Performance ... 78

3.7.2 Reeve’s Engagement Questionnaire ... 78

3.7.3 Keller's IMMS .. 79

3.7.4 Computer Programming Anxiety Questionnaire 81

3.7.5 Reliability of Instrument .. 82

3.7.6 Reeve’s Engagement Questionnaire ... 82

3.7.7 Instructional Materials Motivational Survey 83

3.7.8 Computer Programming Anxiety Questionnaire 83

3.8 Content Validity of Instrument ... 84

3.9 Internal Validity of Study ... 85

3.10 Experiment Protocol ... 86

3.11 Threats to Validity .. 87

3.11.1 Internal Validity Threats .. 87

3.11.2 External Validity Threats ... 88

3.12 Pilot Test ... 89

3.13 Research Procedure .. 91

3.14 Data Collection and Analysis ... 93

3.15 Summary ... 96

CHAPTER 4 DESIGN AND DEVELOPMENT ... 97

4.1 Introduction .. 97

4.2 Instructional Design and Development Model ... 97

4.3 Planning Phase .. 100

4.3.1 Determining the Scope ... 100

4.3.2 Indentifying Learner Characteristics .. 100

4.3.3 Establishing Constraints ... 100

4.3.4 Collecting Materials ... 101

4.3.5 Producing a Planning Document .. 102

	 vi	

4.4 Design Strategies .. 102

4.4.1 Initial Content Ideas ... 103

4.4.2 Task and Concept Analysis .. 110

4.4.3 Program Description ... 110

4.5 Development ... 111

4.5.1 Production of Text .. 112

4.5.2 Production of Graphics ... 112

4.5.3 Production of Video ... 112

4.5.4 Alpha Testing ... 113

4.5.5 Evaluation ... 115

4.5.6 Beta Testing .. 117

4.5.7 Continuous Improvement ... 120

4.6 Summary ... 120

CHAPTER 5 RESULTS AND FINDINGS .. 122

5.1 Introduction .. 122

5.2 Characteristic of the Sample ... 126

5.3 Homogeneity of the Two Experimental Group .. 126

5.4 Test of Normality .. 127

5.4.1 Test of Normality of Performance Score 128

5.4.2 Test of Normality of Engagement Score 129

5.4.3 Test of Normality of Perceived Motivation Score 131

5.5 Statistical Analysis of Results Corresponding to Research Question 132

5.5.1 Testing of Hypothesis H01 ... 133

5.5.2 Testing of Hypothesis H02 ... 142

5.5.3 Testing of Hypothesis H03 ... 150

5.5.4 Testing of Hypothesis H04 ... 151

5.5.5 Testing of Hypothesis H05 ... 152

	 vii	

5.5.6 Decision Tree Analysis .. 153

5.6 Summary of Research Findings .. 156

5.7 Summary ... 159

CHAPTER 6 DISCUSSION AND CONCLUSION .. 160

6.1 Introduction .. 160

6.2 Design and Development of Machine Learning Programming Simulator . 160

6.2.1 Design Strategies .. 161

6.2.2 Development Strategies .. 163

6.3 Discussion of the research findings .. 164

6.3.1 Effects of ML programming simulator and noML programming
simulator on students’ performance, engagement and pereived
motivation in programming course .. 164

6.3.2 Effects of ML programming simulator and noML programming on
performance, engagement and pereived motivation of students
between high and low anxiety .. 167

6.3.3 The relationship between students’ engagement and performance in
learning programming course that used ML programming simulator
 .. 169

6.3.4 The relationship between students’ engagement and perceived
motivation in learning programming course that used ML
programming simulator and no ML programming simulator 170

6.3.5 The relationship between students’ performance and motivation in
learning programming course that used ML programming simulator
and noML programming simulator .. 171

6.3.6 Predictive models of using ML programming simulator 172

6.4 Implication of the Study ... 174

6.5 Recommendation for Future Study ... 178

6.6 Conclusion .. 180

REFERENCES ... 182

APPENDICES

LIST OF PUBLICATIONS

	 viii	

LIST OF TABLES

Page

Table 2. 1 Principles of Multimedia Implemented in This Study 50

Table 2. 2 Study Analysis of Machine Learning Implementation 58

Table 2. 3 Study Analysis of Programming Simulator 63

Table 3. 1 Research Design ... 68

Table 3. 3 Sample Distribution ... 69

Table 3. 4 Internal Validity Threats of Study ... 88

Table 3. 5 External Validity Threats of Study .. 89

Table 3. 6 Descriptive Statistic of Performance in Pilot Testing 90

Table 3. 7 Descriptive Statistic of Engagement in Pilot Testing 91

Table 3. 8 Descriptive Statistic of Motivation in Pilot Testing 91

Table 3. 9 Technique for Research Question ... 94

Table 5. 1 Research Objective, Research Question and Hypotheses 122

Table 5. 2 Characteristic of Sample ... 126

Table 5. 3 Homogeneity Test of Experimental Group 127

Table 5. 4 ANOVA test of Experimental Group .. 127

Table 5. 5 Normality Test of Students' Performance 128

Table 5. 6 Normality Test Result of Students' Engagement 130

Table 5. 7 Normality Test Result of Students' Motivation 131

Table 5. 8 Results of Students’ Performance of NoML Programming

Simulator and ML-Programming Simulator 134

Table 5. 9 Levene's Test of Performance Score ... 134

Table 5. 10 ANOVA Test of Performance Score ... 135

Table 5. 11 t-Test of Performance Score .. 136

	 ix	

Table 5. 12 Results of Students’ Engagement of NoML Programming

Simulator and ML-Programming Simulator 137

Table 5. 13 Levene's Test of Engagement Score .. 137

Table 5. 14 ANOVA Test of Engagement Score ... 138

Table 5. 15 t-Test of Engagement Score .. 139

Table 5. 16 Results of Students’ Motivation of NoML Programming Simulator

and ML-Programming Simulator .. 140

Table 5. 17 Levene's Test of Motivation Score .. 140

Table 5. 18 ANOVA Test of Motivation Score ... 141

Table 5. 19 t-Test of Motivation Score .. 142

Table 5. 20 Results of Students’ Anxiety of Programming Performance 143

Table 5. 21 Levene's Test of Students' Anxiety in Programming Performance

 ... 143

Table 5. 22 ANOVA Test of Students' Anxiety in Programming Performance

 ... 144

Table 5. 23 t-Test of Students' Anxiety in Programming Performance 144

Table 5. 24 Results of Students’ Anxiety of Programming Engagement 145

Table 5. 25 Levene's Test of Students' Anxiety in Programming Engagement

 ... 146

Table 5. 26 ANOVA Test of Students' Anxiety in Programming Engagement

 ... 146

Table 5. 27 t-Test of Students' Anxiety in Programming Engagement 147

Table 5. 28 Results of Students’ Anxiety of Programming Motivation 148

Table 5. 29 Levene's Test of Students' Anxiety in Programming Motivation 148

Table 5. 30 ANOVA Test of Students' Anxiety in Programming Motivation 149

	 x	

Table 5. 31 t-Test of Students' Anxiety in Programming Motivation 150

Table 5. 32 Pearson Correlation of Students Performance and Engagement in

Programming ... 150

Table 5. 33 Pearson Correlation of Students Engagement and Motivation in

Programming ... 151

Table 5. 34 Pearson Correlation of Students Perceived Motivation and

Performance in Programming ... 152

Table 5. 35 Decision Tree Summary Result ... 154

Table 5. 36 Accuracy Performance of Decision Tree Model 154

Table 5. 37 Score Category for Performance Test ... 156

Table 5. 38 Summary of Research Findings .. 156

	 xi	

LIST OF FIGURES

Page

Figure 1. 1 Questionnaire Data - Difficult Concept to Learn for Students 14

Figure 1. 2 Difficult Issues in Learning Programming Course 15

Figure 1. 3 Questionnaire Data - Moment When Student Feel Difficult in

Learning Programming .. 16

Figure 1. 4 Research Framework ... 20

Figure 1. 5 Theoretical Framework ... 21

Figure 2. 1 Machine Learning Life Cycle…………...………………………..53

Figure 2. 2 Predictive Programming Simulator Workflow 62

Figure 3. 1 Research Variables of Study .. 77

Figure 3. 2 Research Procedure of Study .. 92

Figure 4. 1 Alessi and Trollip Model .. 99

Figure 4. 2 Screenshot of Online Editor in Programming Simulator 104

Figure 4. 3 Screenshot of the Suggestion from Programming Simulator 105

Figure 4. 4 Screenshot of Programming Simulator using Indonesian Languages

 ... 105

Figure 4. 5 Screenshot of Video Tutorial of Coding using Looping 107

Figure 4. 6 Screenshot of Theories of While - Looping 108

Figure 4. 7 Screenshot of Theories of Do While – Looping 108

Figure 4. 8 Screenshot of Theories of For - Looping 109

Figure 4. 9 Screenshot of Theories Foreach - Looping 109

Figure 5. 1 Normality Histogram of Students' Performance 129

Figure 5. 2 Q-Q Plot of Students' Performance ... 129

	 xii	

Figure 5. 3 Normality Histogram of Students' Engagement 130

Figure 5. 4 Q-Q Plot of Students' Engagement .. 131

Figure 5. 5 Normality Histogram of Students' Engagement 132

Figure 5. 6 Q-Q Plot of Students' Engagement .. 132

Figure 5. 7 Decision Tree Model ... 155

	 xiii	

LIST OF APPENDICES

APPENDIX A TEST FOR PROGRAMMING PERFORMANCE

APPENDIX B REEVE’S ENGAGEMENT QUESTIONNAIRE

APPENDIX C KELLER’S INSTRUCTIONAL MATERIAL MOTIVATION

SCALE

APPENDIX D COMPUTER PROGRAMMING ANXIETY QUESTIONNAIRE

APPENDIX E INSTRUMENT VALIDITY

	 xiv	

KESAN SIMULATOR PENGATURCARAAN BERASASKAN

PEMBELAJARAN MESIN TERHADAP PRESTASI, PENGLIBATAN DAN

MOTIVASI PELAJAR UNIVERSITI DALAM PEMBELAJARAN

PENGATURCARAAN

ABSTRAK

Memandangkan sistem maklumat digunakan untuk menyokong orang ramai

dalam banyak aspek kehidupan mereka, pengaturcaraan atau pemrograman adalah

penting. Tetapi berbanding negara lain, Indonesia mempunyai kadar kelulusan yang

sangat rendah untuk sains, teknologi, kejuruteraan, dan matematik (STEM).

Persekitaran moden menjadikan kebolehan pengaturcaraan semakin diperlukan untuk

pelajar. Kemahiran pengaturcaraan sangat dihargai dalam banyak bidang, termasuk

pembangunan perisian, perbankan, penjagaan kesihatan, dan juga hiburan. Dengan

menggunakan reka bentuk kuasi-eksperimen, kajian ini bertujuan untuk mereka

bentuk, membangun, dan mengkaji kesan simulator pengaturcaraan aplikasi

pembelajaran multimedia persuasif terhadap prestasi pelajar universiti, penglibatan,

dan persepsi motivasi terhadap bahan pembelajaran. Dua teknologi—Simulator

Pengaturcaraan Pembelajaran Mesin (Simulator Pengaturcaraan ML) dan Simulator

Pengaturcaraan Bukan Mesin (Simulator Pengaturcaraan NoML)—adalah

pembolehubah bebas dalam kajian ini. Prestasi pelajar, penglibatan, dan persepsi

motivasi berkenaan dengan bahan kursus adalah pembolehubah bersandar. Aliran

pengajian pelajar, yang dibahagikan dengan kebimbangan pelajar, berfungsi sebagai

pembolehubah moderator. Secara keseluruhan, kajian ini melibatkan seorang pelajar

universiti daripada universiti awam di Indonesia. Ujian ANOVA, teknik statistik

deskriptif dan inferensi, digunakan untuk menganalisis data kajian. Dapatan kajian

	 xv	

menunjukkan bahawa, dari segi penglibatan, prestasi, dan persepsi motivasi untuk

subjek, pelajar yang menggunakan Simulator Pengaturcaraan ML mengatasi mereka

yang menggunakan Simulator Pengaturcaraan NoML. Menurut kajian ini, prestasi

pelajar universiti, penglibatan, dan persepsi motivasi terhadap bahan kursus semuanya

telah meningkat hasil daripada aplikasi simulator pengaturcaraan dalam persekitaran

bilik darjah. Di samping itu, penciptaan Simulator Pengaturcaraan ML untuk

penyelidikan ini membantu mengembangkan kumpulan aplikasi mudah alih dan web

yang meningkatkan keberkesanan bilik darjah kursus pengaturcaraan.

	 xvi	

EFFECTS OF MACHINE-LEARNING PROGRAMMING SIMULATOR ON

PERFORMANCE, ENGAGEMENT AND PERCEIVED MOTIVATION OF

UNIVERSITY STUDENTS IN LEARNING PROGRAMMING

ABSTRACT

Since information systems are used to support people in many aspects of their

life, programming is essential. But compared to other nations, Indonesia has a very

low graduation rate for science, technology, engineering, and mathematics (STEM).

The modern environment is making programming abilities more and more necessary

for students. Programming skills are highly valued in many areas, including software

development, banking, healthcare, and even entertainment. Using a quasi-

experimental design, the study set out to design, develop, and examine the effects of

the persuasive multimedia learning application programming simulator on university

students' performance, engagement, and perceived motivation towards the learning

material. The two technologies—Machine Learning Programming Simulator (ML-

Programming Simulator) and Non Machine Learning Programming Simulator

(NoML-Programming Simulator)—were the independent variable in this study.

Students' performance, engagement, and perceived motivation with regard to the

course material were the dependent variables. Students' study streams, which are

divided by students anxiety, served as the moderator variable. In all, the study involved

one university students from the public university in Indonesia. The ANOVA test, a

descriptive and inferential statistical technique, was employed to analyze the study's

data. The study's findings indicate that, in terms of engagement, performance, and

perceived motivation for the subject matter, students who utilized the ML

	 xvii	

Programming Simulator outperformed those who used the NoML Programming

Simulator. According to this study, university students' performance, engagement, and

perceived motivation toward the course material have all increased as a result of the

programming simulator application in the classroom environment. In addition, the

creation of the ML Programming Simulator for this research helped to expand the pool

of mobile and web applications that enhance the effectiveness of the programming

course classroom.

	 1	

CHAPTER 1

INTRODUCTION

1.1 Overview

These days, programming is crucial as information systems are utilized to

support individuals in many facets of their lives. Our lives have been significantly

impacted by programming and associated technologies, which include web

applications, games, social media, online communication, and cloud storage. In order

to create a system, programming must take use of technological advancements like

artificial intelligence, machine learning, virtual and augmented reality, mobile

programming, the Internet of things, and more. By employing technology, we are able

to create any form of technology for any kind of area of life. Education is one area

where technology is being used.

Students' need for programming skills is growing in the current climate. In a

variety of industries, including software development, banking, healthcare, and even

entertainment, the ability to program is highly prized. Students that study

programming may find a wide range of employment opportunities. Students need to

think critically and creatively in order to solve problems (Baist & Pamungkas, 2017).

This ability is helpful in many other facets of life than computer science. As

technology evolves and becomes more embedded into our daily lives, programming

will become an increasingly important ability. Students may future-proof themselves

for the employment market by studying programming now. Learning to code can assist

students in developing computational thinking, which is breaking down large

problems into smaller, more manageable portions. This ability is transferable to many

other areas of education and life. Programming may provide students with a creative

	 2	

outlet by allowing them to design their own programmes, games, and websites. This

can aid in the development of their creativity and problem-solving abilities.

When studying programming, there are still several aspects of programming

that need to be enhanced in order to investigate certain groups of learners that have not

been previously studied by researchers. Lecturers use technology to teach

programming should examine important elements such as performance, engagement,

and perceived motivation in order to enhance the effectiveness of instruction.

In subsequent sections of this chapter, the researcher provides a comprehensive

analysis of the study's background, statement of the problem, research aims, research

questions, and the study's importance. This chapter additionally presents a theoretical

framework, constraints, and operational specification for the study carried out by the

researcher. Finally, the researcher presents a concise overview of this chapter.

1.2 Background of Study

Computer programming course is important for computer major students.

Undergraduate students of computer science can get basic knowledge from the course

that is delivered in college. Then they can implement that knowledge in business

activity after they graduated. Students who are not proficient in the fundamentals of

computer programming may find it challenging to get employment, particularly for

developers or software developers. Students majoring in computer sciences are

required to take the course programming. Nowadays, reading, writing, and

fundamental math skills are required of all students majoring in computers, in addition

to having a minimum of basic computational thinking abilities (Angeli & Valanides,

	 3	

2020). They have to seize those skills to be able to survive in computer science major

in university, and to be able to keep pace with lecturers’ and their study material.

Computer programmers' employment will fall by 10% between 2021 and 2031,

according to the US Bureau of Labour Statistics. Despite this drop, they anticipate

9,600 additional computer programming job opportunities per year owing to

individuals who will shift to other industries or retire. As businesses continue to

automate basic or repetitive processes, the jobs of people who used to do these tasks

become redundant. However, this opens up opportunities for those with diverse skill

sets. While simpler jobs may be automated, there will be a greater demand for strategic

responsibilities. To remain competitive, programmers must upskill in order to

complete these duties.

According to the latest report from the Agency for the Assessment and

Application of Technology (2023), Indonesia needs around 600,000 programmers by

2025. However, the number of programmers currently available is only around

100,000 people. This condition shows that Indonesia is still far from the target set and

requires concrete action to overcome the programmer HR crisis. Therefore, more

guidance is required throughout the lecture session to develop programmers who are

capable and skilled. The number of highly qualified programmers that come out of

higher education is predicted to rise as a result of employing technology in

programming course instruction. Additionally, technology may be utilized to support

the teaching of programming courses through gamification, evaluation tools, and other

techniques like visualization.

Learning programming is a complicated challenge for beginner college

students. It isn't pretty much mastering programming language syntax. It additionally

	 4	

entails the college students` capacity to increase a set of rules that might resolve a

given trouble situation (Umar & Hui, 2012). The problems that students face in phrases

of knowledge the primary programming due to the fact they're now no longer but

acquainted with a specific programming language (Baist & Pamungkas, 2017). In

learning programming course, students often make a mistake in making a correct code

for a current problem. They do not understand a line that they are writing. They just

write the code without even know or understand the code about, for example concept

of variables that might be different from one problem to other problem. Students might

only memorized the coding, not the logic. So, when lecturer gave other problem but

still the same concept of problem, students could not solve it.

It is reported by study done by Alturki (2016) that only some college students

reap complete marks whilst many fail to by skip or drop the course (as much as 65%).

Nikula et al. (2011) suggested that greater than 30% computer science undergraduate

students around the world dropped out or failed in programming course. Malcolm et

al. (2010) associated the failure to release the introductory program with the

cancellation of the diploma. These bulging dropout and failure rates must be a major

problem for institutions, teachers, and students. The desire of students to eschew

classes, which are necessary for all computer majors at universities, will cause

problems since it will delay graduation owing to failure. In order to assist college

students learn programming better, teachers spend a lot of time and effort on lectures

and laboratories. However, considering the high costs of failure and attrition, these

efforts may seem useless.

Some students of university in Indonesia feel the same problems in learning

programming course. The problems that students face in terms of basic knowledge are

	 5	

because they are not yet familiar with a particular programming language (Baist &

Pamungkas, 2017). In addition, students need to become proficient in three

interconnected areas: programming language syntax, design, and programming

structure. The same challenges are encountered by Indonesian public university

students when taking programming courses. Students pursuing a degree in electronics

engineering must complete the programming course. Beginning college students have

a challenging task while learning programming. It's not only about learning the syntax

of programming languages. It also involves the ability of college students to develop

a set of guidelines that might potentially address a particular problem (Umar & Hui,

2012). Some basic concepts that students may encounter in the course such as

variables, arrays, and iteration. Students tend to engage in some bad programming

behaviors in their attempt to pass the assignments (Preliminary Study).

Student engagement refers to the degree of attentiveness, curiosity, interest,

optimism, and enthusiasm students demonstrate when learning or teaching.

Uninteresting is not limited to programming, as research shows that students in all

subject areas often experience a lack of participation that is marked by boredom and

alienation (Mann & Robinson, 2009). Pessimist in the context of programming leads

to high education dropouts (Bennedsen & Caspersen, 2007). Very few students have

found themselves committed as the teacher gave in particular by introducing new

concept of programming (Isiaq & Jamil, 2017). Engagement is often not clearly

defined in studies of engagement in computer science education, and it is measured

through indirect observation (Edwards et al., 2020). The concept of 'student

engagement' has expanded to encompass the level of active participation and interest

that students demonstrate in their learning, as well as their level of attachment to their

classes, institutions, and peers (Axelson & Flick, 2010).

	 6	

For this study, a public university in North Sumatra is taken for experiment

because it has Information Technology and Computer Education study program in it.

Information Technology and Computer Education study program is the part of

Electronics Engineering major. That study program offers Bachelor Degree in

Informatics and Computer. From the first semester to the seventh semester, students

learn about the basic programming until developing a complete information system.

To build a complete information system, students also learn about the database,

programming structure, and the architecture of the system such as language

programming and server. Students need to decide the concept of system, whether it is

desktop or web application and also application requirement. So, the basic

programming concepts from students need to be strong.

Based on the prelimiary study, they need a tool that can help them to learn

programming alone. Because from the researcher’s experience, some students will

give up easily when they can not find out the question of their answer regarding to

learn programming when they are doing self-studying. They also do not know about

the use of array, iteration or looping. So, when they meet an error exception that is

thrown by the programming editor, they do not know how to handle it correctly. In the

age of advanced technology, it has become common to utilize technology as a means

of influencing and altering people's behavior and attitudes. Persuasive technology

refers to an interactive computer system specifically designed to modify individuals'

attitudes and behaviors (Fogg, 2003). Within the field of persuasive technology, there

exists a convergence between computers and the act of influencing called captology,

which is an abbreviation for 'computer as persuasive technology.' Captology is a field

that specifically deals with the development, study, and evaluation of interactive

	 7	

computer products that are designed to influence and modify people's attitudes or

behaviors (Fogg, 2003).

Simulation tools are developed to help students understand the concept of

programming, by showing the structure of coding. Hopefully, they can implement the

concept and structure of any problem in any different situations. A study was

performed by Medvediev (2019) that determined a tool called E-olymp as a practical

teaching aid to prepare students for programming courses. It also can be used in sports

as an expert as a computer technology teacher, encouraging independent learning and

self-improvement. And also study by Zinovieva et al. (2021) had a look at that the use

of simulators in the learning process as an additional tool for the formation of expert

competencies provides deeper student involvement in the process of writing code and

the practical application of existing knowledge in a more relaxed and more practical

higher education environment. A study conducted by Staubitz et al. (2016) found that

due to the large number of courses, training groups were unable to manually review,

comment on, or vet contributor submissions. So, they resulted a CodeOcean that gives

the contributors with right automatic remarks in a well timed way and is capable of

examine the given programming duties in an automatic way. Based on study by (Budi

et al., 2021) stated that simulation software using Proteus contributes significantly to

improving student learning outcomes. Teaching complex subjects involves

microcontroller programming, and simulation software should be used to enable

students to become more passionate, have more experimentation and develop

creativity. Students still experience some difficulties in learning programming courses

even though there are some previous studies. In previous studies, there has been no

simulator that focuses on the PHP programming language. So, students who study PHP

programming in their courses cannot use applications that have been developed by

	 8	

previous studies. So, this study focuses on helping students learn basic knowledge and

programming concepts, by understanding the mistakes they may make during their

study time.

This study also implements machine-learning knowledge to complete the

simulator. The machine learning skills on programming simulators have long been

expected to allow simulators to solve problems based solely on their previous

expertise, not just the facts stored in them. According to Wang (2019), machine

learning can, for example, evaluate data from students over the past year, learning

status and outcomes, and produce corresponding written reports. This important data

can be used by teachers and learners to investigate learning difficulties and causes and

provide the learning programs and support strategies they need.

This study aims to help students in learning programming course. This study

develops a machine-learning simulator that is used as helping tools to teach

programming. Since in reality, there are some difficulties in learning programming

course for students. According to study by Tan et al. (2009) that it's miles crucial to

focus on the reasons that lead undergraduates to carry out poorly in analyzing

programming. Solution and opportunity analyzing technique can be applied on the way

to help them whilst analyzing programming. Simulation tools may be very beneficial

in teaching programming, mainly due to the fact their principal reason is to facilitate

students` expertise of code execution through guiding them via a sequence of lively

techniques (Hundhausen et al., 2002; Mulholland, 2014). To help students’ learning in

programming, lecturers always try to provide them with a recent teaching

methodology. One of the methodologies is using tools to enhance students in learning

programming course. There are some tools that could be used for students, that are

	 9	

visualization, gamification, pair and collaborative technique, robot programming and

assessment tools (Kanika et al., 2020).

From the previous studies that have been described briefly above, simulator is

the best strategy that could be implemented to help students in learning programming

course. This study introduces a novel simulator technology that is anticipated to

outperform existing simulators. This technology is more recent in comparison to past

studies that created simulators for the purpose of teaching programming. With

machine learning in a programming simulator, it is expected that simulator can solve

problems based on previous knowledge not only on data that is stored in that simulator.

Machine-learning has been extensively used in lots of realistic programs which

includes statistics mining, textual content processing, sample recognition, and clinical

picture analysis, which frequently depend upon huge statistics sets (Ji et al., 2020;

Kumar et al., 2021). From using label information, characteristic choice algorithms are

in particular classified as filters or wrapper approaches (L. Sun et al., 2021; Zhao et

al., 2020). The wrapper-primarily based totally techniques are typically used to

complete the category task (Liu & Zhao, 2012). The essential step consists of

classifiers, assessment standards of features, and locating the ultimate features (Al-

Tashi et al., 2019). Implementing machine learning in a programming simulator is the

new strategy to create a simulator that can solve more various problems in coding for

students.

1.3 Problem Statement

Programming is a crucial subject that majors in computer engineering must

complete in order to graduate. In actuality, however, lecturers and universities face

problems when students fail their programming courses. Teaching methods,

	 10	

instructors' subject-matter expertise, students' knowledge and proficiency in

cryptography, students' self-discipline, the learning environment, and student market

resources are some of the factors contributing to low student performance in

programming (Alturki, 2016). It is shown also in preliminary study that undergraduate

students felt difficult in some topics of programming, looping topic being the most

difficult topic of programming course.

Computer anxiety has been demonstrated to influence computer skills

(Owolabi et al., 2014). There is a negative link between mathematics anxiety and

academic success (Ashcraft & Kirk, 2001). It found that mathematics anxiety impacts

a negative attitude towards computers, which is likely to have a significant impact on

computer programming performance (Owolabi et al., 2014). Students who are more

comfortable when presented with programming-related activities outperform those

who are somewhat anxious about programming in any programming course. As a

result, there is every reason to suppose that the degree of worry whether computer

anxiety, programming anxiety, or mathematics anxiety should be kept to a minimum

in order to accomplish effective programming results.

From the researcher’s experience in teaching programming and interview from

lecturers, students often make a mistake in making a correct code for a current

problem. They do not understand a line that they are writing. They just write the code

without even know or understand the code about, for example concept of variables that

might be different from one problem to other problem. There had been instances

wherein college students could research massive fragments of software code through

rote, with none or with infrequently any understanding. There had been additionally

college students who wrote massive software code with none syntax and logical

	 11	

testing, which produced a big wide variety of errors, discouraging the scholars from

programming altogether (Radošević et al., 2009). They also do not know about the use

of array, iteration or looping. So, when they meet an error exception that is thrown by

the programming editor, they do not know how to handle it correctly.

If students are willing to learn, the key issue is whether they are motivated (a

side effect for instructors is that highly motivated students are more likely to be helpful

in teaching). Students need to be motivated to succeed in their studies. It was reported

that more students have a negative and neutral preliminary perception that the

programming course is easy to understand and has good grades (Zainal et al., 2012).

Technology may be used as an aid to assist teach programming concepts

including gamification, evaluation tools, and visualization, among other strategies.

Nonetheless, the use of technology in higher education programming courses is still

somewhat restricted. Because programming is a fixed skill that requires a lot of

practice, most college students learn it by reading analytical texts or paying attention

to their instructors, this leads to less than ideal results (Harimurti et al., 2021).

Computer programming needs complicated cognitive competencies. Planning is one

of the factors required for studying programming courses; problem solving and logical

thinking are other important components of the process of becoming proficient in

programming. It's important for instructors and educational institutions to consider

these factors and create an environment that fosters high performance, engagement,

and perceived motivation in a programming course. This can involve designing

interactive and relevant learning experiences, providing support and resources,

offering opportunities for collaboration and hands-on practice, and fostering a positive

learning community.

	 12	

In order to help lecturer to increase students’ outcomes in programming course,

simulation tools might be help. To decide whether students need simulator for

programming course or not, also becomes a consideration for the lecturers. Since there

are some of students that have a good result even without the simulator. Through a

comprehensive analysis of existing literature on the programming course environment,

the researcher identified that engagement and perceived motivation has a significant

impact on performance in this domain. The determining factor is the level of students'

involvement in the programming class environment.

Simulation tools can also be very helpful in teaching programming, especially

since their main reason is to facilitate students' experience in executing code by

guiding them through a series of animated techniques (Hundhausen et al., 2002;

Mulholland, 2014). However, studies on simulation in programming courses are still

few. (Radošević et al., 2009) presented an application to simulate a C++ programming

for students named Verificator. This study provided a tool to visualize coding to be

easier for students by identifying the mistakes that student made in their coding. But

again, not every university using C++ as the programming language in its course. In

public university of Indonesia, they use PHP also as the programming language. And

studies on PHP simulators in programming are still few.

In developing a programming simulator, we can use any technology that can

support the simulator to perform better. Machine learning can also be implemented to

make a simulator performs dynamically based on its previous knowledge. Previously,

machine-learning techniques were used only for marketing, finance,

telecommunications, and network analysis. In marketing, machine-learning

technology is used for classification and related activities. In finance, machine-

	 13	

learning technology is used for predictive tasks. Related activities in the field of

network analysis use machine-learning techniques. In the field of communications,

machine learning technology is used for classification, prediction, and espionage tasks

(Wang et al., 2009). According to the literature review, there is currently a paucity of

research on the use of machine-learning technologies in simulator programming to aid

in training. In order to develop a simulator, the machine learning technology on

programming simulators have been expected for some time to allow simulators to

solve problems based exclusively on their earlier experience, not only the facts stored

in them.

1.3.1 Preliminary Study

To ensure that there is a problem in programming course, researcher has

conducted a preliminary study that was helped by 31 students of public university of

Indonesia. The study used questionnaire to analyze the difficulties in learning

programming course from students’ point of view. The questionnaire consists of 4

(four) parts that are profile, performance, technology and anxiety. By answering the

questionnaire, we could conclude that some students felt difficult in learning

programming course. Besides that, the researcher also collected preliminary research

data by doing interview to the lecturers to see their points of view regarding teaching

and learning programming course. 3 (three) lecturers from programming expertise

were chosen to answer questions from the researcher.

	 14	

Error management ranks #1 among issues that students find most challenging

to master, according to 67% of student correspondents. This is consistent with the

information from the student questionnaire on Figure 1.1 about the subjects that they

find challenging. Loop structures is the second most challenging topic on the list. After

error handling, loop structures were evaluated as the second most difficult topic by 12

out of 30 students taking a programming course. For now, this is rudimentary

programming expertise.

In addition, based on the results of the questionnaire Figure 1.2 that has been

conducted by this preliminary study, learning programming syntax is the most difficult

thing in studying programming courses for students. As many as 67% of student

respondents chose it as a problem in studying programming courses. This is related to

students' skills in handling errors. If they do not master programming syntax, they will

0

5

10

15

20

25

Variables
(lifetime,
Scope)

Selection
Structures

Loop
Structures

Arrays Parameters Error
Handling

Using
Language
Libraries

Rank	of	Difficult	Programming	Concepts	For	Students

Figure 1. 1 Questionnaire Data - Difficult Concept to Learn for Students

	 15	

not be able to handle errors that may appear in their coding. This is in line with the

problems that the researcher mentioned earlier.

Figure 1. 2 Difficult Issues in Learning Programming Course

Figure 1.3 revealed that 64.5% of student responders find learning

programming courses challenging when they study on their own. Similar issues with

studying programming courses by college students have also been found in earlier

research. Maybe all those students learned was the coding, not the reasoning.

Therefore, students were unable to answer the lecturer's other problems that had the

same notion. Thus, they require a tool that will enable them to explore programming

on their own. Based on the researcher's experience, some students tend to lose up easily

when they are unable to locate the answer to a topic pertaining to learning

programming during their self-study sessions.

	 16	

1.4 Research Objective

Objectives of this study are determined to acknowledge research questions.

The main purpose of this study is to design and develop a programming simulator that

used machine-learning technology that can facilitate learning programming course in

order to increase students’ outcomes in programming course. Below are the research

objectives of this study:

1. To design and develop ML programming simulator to enhance students’

performance, engagement and perceived motivation in learning programming.

2. To investigate the effect of ML programming simulator on performance,

engagement and perceived motivation with different level of anxiety.

3. To identify the relationship between student engagement and student

performance, engagement and perceived motivation, performance and

perceived motivation.

4. To propose predictive models of ML programming simulators in the process of

learning programming course that is expected to enhance students’

performance.

1.5 Research Question

This study is specially designed to answer this question.

Figure 1. 3 Questionnaire Data - Moment When Student Feel Difficult in Learning Programming

	 17	

1. Are there any difference in (a) performance, (b) engagement and (c) perceived

motivation between students that used machine-learning simulator and noML

programming simulator?

2. Are there any difference in (a) performance, (b) engagement and (c) perceived

motivation between high anxiety students and low anxiety students that used

machine-learning simulator and noML programming simulator?

3. Is there any relationship between students’ engagement and students’

performance in learning programming course that used machine-learning

simulator and noML programming simulator?

4. Is there any relationship between students’ engagement and students’

perceived motivation in learning programming course that used machine-

learning simulator and noML programming simulator?

5. Is there any relationship between students’ performance and students’

perceived motivation in learning programming course?

6. How is the predictive model of using ML programming simulators in the

process of learning programming course to classify students that use ML

programming simulator and noML programming simulator?

1.6 Hypotheses

Based on research question, there are some hypotheses that can be produced.

H01 : There is no difference in (a) performance, (b) engagement and (c)

perceived motivation between students that used machine-learning

simulator and noML programming simulator.

H02 : There is no difference in (a) performance, (b) engagement and (c)

perceived motivation between high anxiety students and low anxiety

	 18	

students that used machine-learning programming simulator and non-

machine learning programming simulator.

H03 : There is no relationship between students’ engagement and students’

performance in learning programming course that used machine-

learning programming simulator and non-machine learning

programming simulator.

H04 : There is no relationship between students’ engagement and students’

perceived motivation in learning programming course that used

machine-learning programming simulator and non-machine learning

programming simulator.

H05 : There is no relationship between students’ performance and students’

perceived motivation in learning programming course that used

machine-learning programming simulator and non-machine learning

programming simulator.

1.7 Significance of The Study

This study develops a machine-learning simulator that can help lecturers teach

programming and help students understand more about basic programming concepts.

This simulator is an additional tool in teaching and learning process in higher

education. The simulator uses machine learning knowledge to make it more dynamic

in solving problems in helping students learning programming course.

This study also measures the effectiveness of using simulator. The researcher

compares the performance, engagement and perceived motivation of students that used

simulator in programming course. Furthermore, students are classified into two

	 19	

treatment groups that use machine-learning simulator and noML simulator. This study

defines the best formula to teach programming concept in class.

The findings of this study contributes in giving the best strategy in teaching

and learning programming course in order to produce skilled programmers from higher

education to business environment. Lecturers from public and private universities of

Indonesia can adapt this strategy to improve performance, engagement and pereived

motivation of computer science and information technology students. The simulator

that is developed through this study can also be used as a tool in teaching and learning

basic concept of programming course.

The results of this study can also be adopted by the Ministry of Higher

Education as an appropriate way to teach the concept of computer programming at

Indonesian universities, which can deepen their understanding of programming and

improve programming performance. In addition, this study may serve as the basis for

further research on the impact of methods and educational strategies used to improve

college learning.

1.8 Research Framework

Based on Figure 1.4, this study develops a machine-learning simulator and

noML simulator as the comparison treatment that are used for students in learning

programming course. We check the difference between a group of students that use a

machine-learning simulator in programming course and a group of students that use a

noML simulator in programming course. The parameters to see the difference are

performance, engagement and pereived motivation of students. Besides that, students

	 20	

are chosen randomly by their cognitive and anxiety. Anxiety is known to contribute to

programming ability (Owolabi et al., 2014). Programming anxiety has been described

as a worry of doing programming, or fearing the opportunity of the use of coding.

Anxiety is maintained through incorrect or dysfunctional appraisal of a situation.

Therefore, programming anxiety takes place for college students due to an incorrect

evaluation in their capacity to analyze laptop programming (Connolly et al., 2009).

Cognitive turned into discovered to be a full-size getting to know function that ought

to be considered whilst the usage of virtual video games to study programming

(Theodoropoulos et al., 2016).

Figure 1. 4 Research Framework

	 21	

1.9 Theoretical Framework

The theoretical framework of this study showed in Figure 1.5. Machine

Learning theory by Sun et al. (2021), simulator technology by Isiaq & Jamil (2017),

constructivism theory by Xu (2018), students’ engagement by Dixson (2015),

students’ performance by Alturki (2016) and students’ perceived motivation by Keller

(2018) are the fundamental theories used in this study. The development of ML

programming simulator as the strategy of teaching and learning programming course

in this study followed the theories of machine learning theory by Sun et al. (2021) that

is planted on the simulator by Isiaq & Jamil (2017) as the technology and method in

developing a tool in helping students using the constructivism strategy by Xu (2018)

based on their engagement using study by Dixson (2015), motivation study by Berg

(2005) and performance study by Alturki (2016) in programming course.

Strategy that is used to implement machine-learning technology in learning

environment in this study is constructivism. Based on this strategy, knowledge is built

Figure 1. 5 Theoretical Framework

	 22	

by people through interaction with environment and each other, rather that waiting to

be discovered (Xu, 2018). In Xu's (2018) constructivist learning environment, there

has been a significant shift in the roles of teachers and students as compared to the

traditional teaching style. The constructivist learning paradigm prioritizes the

perspective of students, regarding them as the primary agents of cognition and as

active creators of information and its significance. Teachers solely facilitate and foster

the process of students' production of meaning and are not obligated to directly

transmit knowledge to students. The constructivist learning theory promotes a student-

centered approach to learning, with teachers providing guidance. Machine learning

technology serves as a tool to assist pupils in acquiring new knowledge. The four

components, namely teacher, student, teaching content, and learning media, each play

distinct roles and exhibit interdependencies when compared to conventional teaching

approaches.

The machine learning fits into the study and acted as an intelligent tool for

calculating new learning cases or problem similarity values presented to the

application in database-stored cases. The problem that is inputted by students is solved

using the same knowledge as in the previous case. Machine learning is used in

application development because they can intelligently provide solutions for a

particular problem based on previous data. Machine learning in this study provides

immediate automatic feedback, reducing the burden on crowded science classroom

teachers. Based on study by Sun et al. (2021) theory, this study makes the first decision

to create an automated feedback prototype based on established learning theory,

available research, and previous experience in developing feedback. Next, it tests and

refine the feedback system based on an analysis of the data collected in the classroom.

	 23	

Repeating the cycle of design, testing and improvement can complete an automated

feedback system.

In constructivism study by Xu (2018), students tend to be active builders of

knowledge rather than passive receivers of external stimuli. Teachers are not

knowledge teachers, but facilitators of the educational process. The knowledge given

by the textbook is no longer the content of the teacher's teachings, but the purpose of

building a positive meaning for the students. The learning media is not a means of

helping teachers convey knowledge, but a means of creating a co-learning situation.

Conversation is used as one of the student's collaborative and exploratory learning

tools. The four elements of teacher, student, teaching material, and learning media

have their own roles and interrelationships compared to traditional teaching methods.

In this study, constructivism is implemented as a strategy to help students create

co-learning situation. Students use machine-learning simulator to learn programming

course by themselves, besides that students also join in-class programming course with

a lecturer. We conduct four elements in this study to support constructivism strategy;

those are lecturer, students, teaching material and machine-learning simulator as the

learning media. All of the elements related to each other to create co-learning situation.

According to study by Alturki (2016), the most reliable way to get a relatively

objective measurement is to use student grades before and during the course. Students

are assessed and graded using a variety of instruments: midterm exams, quizzes,

homework, projects, attendance, lab exams, and final exams. Using these assessment

items to assess overall performance is very important to predict student performance

and provide appropriate support. Past college grades, high school grades, and

standardized tests can also help predict performance.

	 24	

Student involvement is essential for student learning, particularly in the digital

world, where learners usually feel excluded and detached. As a result, instructors and

researchers must be capable of evaluating student participation (Dixson, 2015).

Student engagement is often defined as the extent to what learners actually connect

with course materials, other learners in the course, and the teacher by researching,

discussing, and engaging.

An observe discovered that motivation affects the mindset of a students in which

the encouraged students extrade to a nice mindset at the same time as the much less

encouraged college students may be converted right into a bad mindset (Berg, 2005).

Positive attitudes are; observe tough and now no longer surrender even fail. Students

are extra encouraged and live encouraged, pushed with the aid of using intrinsic

rewards together with optimistic complaint than extrinsic, together with excellent

grades (Ryan & Deci, 2000). This is due to the fact the intrinsic rewards provide extra

pride than the extrinsic rewards

1.10 Limitations

The scope of this study was limited to students of computer and information

technology. Sample data was taken from selected public university in North Sumatra

of Indonesia. This study focused on the teaching methods used and was not aimed at

examining the outcomes of programming course between genders. Learning content

that is used in this study was limited to basic programming concepts of PHP.

Therefore, there are two courses – Web Programming and Algorithm and Basic

Programming that selected to be studied. The topic selected for this study was about

the "error handling" that forms the basic components of the basic web-programming

