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ALGORITMA MULTI-OBJEKTIF PILIHAN KLON PERDUAAN 

DALAM FASA PEROLEHAN SEMULA RANGKAIAN DISKRET NEURAL 

HOPFIELD DENGAN SATISFIABILITI PEMBERAT SISTEMATIK 

ABSTRAK 

Kestabilan rangkaian diskret neural Hopfield bergantung kepada kebolehan 

rangkaian untuk mengawal hubungan neuron yang menyebabkan beberapa isu untuk 

timbul seperti taburan rawak literal positif dan negatif dan keadaan neuron akhir 

berpadanan. Oleh itu, tesis ini mencadangkan peraturan logik Satisfiabiliti sistematik 

yang baharu iaitu 2 Satisfiabiliti Sistematik Berpemberat yang menggunakan ciri 

berpemberat untuk mengawal taburan literal negatif. Logik yang dicadangkan telah 

dimasukkan ke dalam rangkaian diskret neural Hopfield dan pengoptimuman fungsi 

multi-objektif telah diambil kira untuk mengesan keadaan neuron akhir yang unggul. 

Algoritma Pilihan Klon Perduaan telah dicadangkan untuk memastikan penjanaan 

optimum keadaan neuron akhir yang unggul. Algoritma yang dicadangkan di dalam 

fasa perolehan semula telah menunjukkan prestasi yang optimum berbanding dengan 

algoritma asas. Peraturan logik dan algoritma yang baharu dicadangkan akan menjadi 

komponen-komponen dalam model perlombongan logik iaitu Analisis Berbalik Yang 

Terubahsuai Dengan 2 Satisfiabiliti Sistematik Berpemberat. Model perlombongan 

logik yang dicadangkan mampu memperolehkan semula logik teraruh terbaik yang 

mewakili corak optimum bagi set data. Berdasarkan penemuan, model perlombongan 

logik yang dicadangkan mengatasi perlombongan logik asas yang lain bagi semua 

metrik prestasi yang digunakan dalam set data repositori. Model perlombongan logik 

yang dicadangkan telah teruji dalam set data hidup nyata daripada Alzheimer’s Disease 

Neuroimaging Initiative dan telah menunjukkan prestasi yang unggul. 
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MULTI-OBJECTIVE BINARY CLONAL SELECTION ALGORITHM 

IN THE RETRIEVAL PHASE OF DISCRETE HOPFIELD NEURAL 

NETWORK WITH WEIGHTED SYSTEMATIC SATISFIABILITY 

ABSTRACT 

The stability of the Discrete Hopfield Neural Network is dependent on the 

ability of the network to govern the neuron connections that caused several issues to 

arise, such as random distribution of positive and negative literals and overfitting final 

neuron states. Therefore, this thesis proposes a new systematic Satisfiability logical 

rule namely Weighted Systematic 2 Satisfiability that uses a weighted feature to 

control the distribution of the negative literals. The proposed logic embedded into 

Discrete Hopfield Neural Network and considered the optimization of multi-objective 

function in the retrieval phase to locate superior final neuron states. A Binary Clonal 

Selection Algorithm is being proposed to ensure optimal generation of the superior 

final neuron states. The proposed algorithm in the retrieval phase showed optimal 

performance as compared to the baseline algorithms. The newly proposed logical rule 

and the algorithm will be the components in the logic mining model namely Weighted 

Systematic 2 Satisfiability Modified Reverse Analysis. The proposed logic mining 

model is able to retrieve best induced logic that represents the optimal patterns of the 

dataset. Based on the findings, the proposed logic mining model outperformed other 

baseline logic mining models for all the performance metrics used in the repository 

dataset. The proposed logic mining model was tested on a real-life dataset from the 

Alzheimer’s Disease Neuroimaging Initiative, and it showed superior performance.
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CHAPTER 1  
 

INTRODUCTION 

1.1 Overview 

Over the past decade, the rapid advancements of Artificial Intelligence (AI) 

have revolutionized numerous aspects of our daily lives, from how we interact with 

technology to how industries operate and innovate. The term “AI” is frequently applied 

to developing systems endowed with intellectual processes similar to human 

characteristics, such as the ability to reason, discover meaning, generalize, or learn 

from past experience. Within the field of AI, Artificial Neural Network (ANN) play a 

significant role in modelling complex relationships and patterns, making them an 

integral part of AI technology. In this chapter, the introduction on ANN is briefly 

explained which align with the context of this thesis. Next, the suggested approach to 

address the current challenges in ANN is critically explained. With thorough 

justification, this thesis highlighted the problem statements in creating optimal AI 

system. Following to that, the research objectives, research questions, and supported 

methodologies involved in this thesis are addressed. 

1.2 The Fundamentals of Artificial Intelligence 

Intelligence is defined as the ability to reason, plan, solve problems, think 

abstractly, comprehend complex ideas, learn quickly, and learn from experience. 

Intelligence can be reviewed from psychology and computer science perspectives, 

which correspond to human and artificial, respectively. Though there are many 

disagreement on what human intelligence (HI) is, there is broad agreement that HI is 

a psychological construct (Gignac & Szodorai, 2024). Psychological construct is an 

abstract, unobservable, hypothetical entity inferred from postulated thoughts and 
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observable behaviours, representing patterns of psychologically related phenomena. 

In plain language, a psychological construct is a concept developed to describe a 

specific aspect of the mind or behaviour that is not directly observable but is inferred 

from patterns in thoughts, feelings, and actions. In addition to intelligence, examples 

of well-established psychological constructs include anxiety, self-esteem (Pyszczynski 

et al., 2004), and motivation (Touré-Tillery & Fishbach, 2014). AI is not a 

psychological construct, as it does not originate from the same underlying human 

cognitive or emotional processes. Instead, AI may be considered as a computational 

construct, as it is inferred from the outcomes of simulated aspects of human thought 

and decision-making, which are facilitated by data processing, machine learning 

techniques, and algorithmic principles (Prasad et al., 2023). Additionally, AI has 

evolved through computer science and engineering advancements, marked by human-

initiated intervention, intellectual effort, and purposeful innovation. In recent years, AI 

has been making strides in transforming the way to understand intelligence. 

Particularly, AI is composed of many approaches that allow computer programs to 

address specific input and provide value-added output. These approaches refer to the 

methods, algorithms, and data science methods to perform tasks that traditionally 

require human beings.  

In simple terms, it has been suggested that AI is what one does when one does 

not know what to do. This highlights the importance of novelty to the entity when 

encountering and solving intellectual problems, a crucial component of valid 

intelligence testing in humans. Therefore, it is imperative to allow AI to be truly 

intelligent than humans which resulting to the  following perspective, 

“Scale up the intelligence of Artificial Intelligence.” 
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In literal terms, scale up means the process of increasing the size or scope of 

something. Scaling up commonly involves expanding operations or growing a venture 

to reach a larger audience or market. In this context, scaling up the intelligence of AI 

refers to improving the solutions retrieved by the network by adding an optimizer to 

make the AI model smarter than humans. This process enhances the capability of AI 

in producing optimal solutions and makes AI systems more robust and interpretable. 

By contributing to the advancements in AI, this helps pave the way for more intelligent 

and capable AI systems that can address complex challenges. One of the potential 

prospect of AI is through ANN. ANN are inspired by the way of biological nervous 

systems process information and gives appropriate feedbacks. Being a fundamental 

subset of AI, ANN is a computational model designed to simulate the way the human 

brain works in analyzing and processing information. ANN has a wide application that 

had been proposed in many areas in gathering knowledge by revealing patterns and 

relationships among data during learning. One of the variant in ANN is known as 

Discrete Hopfield Neural Network (DHNN). Throughout the years, DHNN has widely 

been applied to solve optimization problem. However, DHNN are limited in 

interpreting the output of the network to the user. Therefore, the following section will 

discussed in detail the challenges occurs in the existing DHNN. 

1.3 Existing Challenges in Discrete Hopfield Neural Network 

DHNN is one of the earliest ANN proposed by Hopfield and Tank (1985) to 

provide potential solution for Travelling Salesman Problem (TSP) through 

connectionist model. Generally, DHNN consists of fully interconnected neurons with 

input and output neurons without hidden layers. Each neuron is connected through 

synaptic weight, where synaptic weight measures the connection between the neurons. 
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The synaptic weights are the building block of Content Addressable Memory (CAM). 

Notably, the reason why CAM is called that way is because DHNN has the capability 

to access the memory address and search the closest match for the required pattern 

(Wen et al., 2009). Initially, each neuron fires and updates iteratively until the final 

neuron state converges towards the optimal solution. According to Bruck and Sanz 

(1988), the network can converge to a minimum from any initial neuron state which 

makes DHNN became attractive to various applications. Thus, each neuron update will 

enhance the synaptic weight among neurons until the optimal CAM is constructed. In 

addition, the quality of the neuron state in DHNN can be measured in terms of energy 

function which is always being minimized by the network. 

One of the perspective to improve the quality of the neuron state in DHNN is 

by implementing symbolic rule via logical rule. In 1992, Abdullah  propose a method 

of expressing special type logic namely Horn Satisfiability (HORNSAT) via DHNN. 

The main motivation behind the proposed work is to create a method of doing logical 

inference through minimization of logical inconsistencies on a symmetric neural 

network. In recent years, the development of logical rules has been proposed by many 

researchers, such as Jiang et al. (2024), Roslan et al. (2024), and Alway et al. (2022). 

However, the logical rules proposed focused more on higher-order logical rule. 

Higher-order logical rule is more complex compared to the lower-order. The 

complexity often leads to difficulty in decision-making, where the networks struggle 

to determine whether the statements are true or false. This can reduce the reliability 

and effectiveness of the system designed to reason and make decisions based on logical 

rules. Therefore, the lower-order logical rule is more efficient than the higher-order 

logical rule because it is less complex, and the network can ensure reliability and 

predictability.  
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Another perspective of DHNN that can be improved is by making the network 

more transparent. Like any other variants of ANN, the internal operation of the 

network is unknown due to the nature of the black box mechanism. Thus, any changes 

in the neuron connections that lead to the final output of the network cannot be tracked 

or detected. In reality, the neuron states in DHNN converges from an initial state into 

a final neuron state without knowing exactly which direction of the neuron signal. This 

showed that the existing DHNN is unable to detect which part of the network is 

successfully optimized and which of the network that is wrongly optimized. One of 

the approaches to improve the modelling of DHNN is by considering the neuro-

modelling technique using a sort of formal language via symbolic logic. According to 

Abdullah (1992), the role of logic in DHNN is to act as the governing rule in 

representing the neurons. In this context, the set of solutions that minimize the energy 

function in the network is equal to the set of truth assignments that satisfied the 

Satisfiability (SAT) logical rule. Therefore, the implementation of SAT into DHNN 

provided better understanding of the hidden units in the network. Due to these 

assumptions, several researchers choose for other neuro-symbolic models of SAT in 

DHNN (DHNN-SAT) by considering other possible satisfiable SAT structures such 

as 2 Satisfiability (2SAT) and 3 Satisfiability (3SAT). Ideally, the black box property 

of DHNN is further refined when considering the dynamic structure of satisfiable SAT 

as neuron representation in the network. This allows DHNN to have better neuron 

navigations with interpretable input and output for full transparency. 

 Another improvement that can be highlighted in the existing DHNN is the issue 

of diversity. Particularly when dealing with large-scale data, the performance of 

DHNN deteriorates as an excessive amount of learning data can cause overfitting. 

Several researchers, such as Karim et al. (2022) and Alway et al. (2023) focused on 
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improving the learning phase in order to overcome the overfitting issue. Consequently, 

this will increase the risk of retrieving overfitting final neuron states. This is because 

the production of final neuron states only relies on the random initial state in the local 

field and activation function. Hence, there is a high possibility that the same initial 

state is executed for the local field. Even though the final neuron state produces an 

optimal solution, there is no variety in the solution. This shows that with large-scale 

data, the network can only produce one pattern of solution. Ideally, the diversity of the 

final neuron state can be expanded by inserting a particular type of objective function 

that is able to offer a variety of solutions produced in the retrieval phase. This allows 

DHNN to produce a diversified final neuron state without relying on the local field 

and activation function. 

 Despite having numerous applicability, conventional DHNN is prone to 

storage capacity issues. This means that the number of stored memory patterns is 

severely limited because the network learns the data from one point of view. Most of 

the researchers (Alway et al., 2020; Kho et al., 2020; Jamaludin et al., 2023) focus on 

learning data that have positive outcomes in finding the best logic to represent the data. 

This will affect the performance of the model in learning the behaviour of the data 

because most of the real-world datasets often have imbalanced distributions, where 

one or more classes of outcomes may be underrepresented or overrepresented, which 

results in an uneven distribution of outcomes. This can lead to an ineffective model in 

classification, as minority classes may be overlooked due to having fewer data to learn 

from. This has been described in Ramyachitra and Manikandan (2014), where 

imbalanced datasets can affect the classification performance. Imbalance datasets can 

deteriorate the performance of the network because of the difficulty in learning and 

evaluating the data, which indicates the need to consider both positive and negative 
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outcomes of the data. This indirectly increases the ability of the network to find 

optimal induced logic because the network stored the pattern of the data in both 

perspectives of outcome.  

 Despite powerful feature extraction capabilities, DHNN is sensitive to input 

data quality and preprocessing. This means that the performance of DHNN heavily 

relies on the characteristics of the input data. Therefore, Kho et al. (2020) option for 

data dimensionality reduction to only bipolar inputs. Conjointly, binary inputs require 

several modifications in the units of the network. For example, the evaluation of the 

final energy by the existing Lyapunov energy function would always converge to zero. 

Consequently, the distinction of global and local minimum solutions of the final output 

cannot be detected. Building a model is one thing, but understanding the data that goes 

into the model is another. Ideally, DHNN can perform effective classification tasks 

when suitable data pre-processing is applied. This allows DHNN to produce a 

significant relationship between the attributes and the target variable. Based on all 

observations, this resulting to a broader philosophical standpoint, whereby: 

“The advancement of existing components in the DHNN with respect to diversity.” 

 In layman terms, DHNN can be deemed as one of the highly intelligent 

computational models when suitable mechanisms are added to the DHNN. One of the 

ways to make DHNN to be an intelligent computational model is by improving the 

existing components in the DHNN. This approach can increase the potential of DHNN 

as a robust optimization model that can be applied to other exciting applications. In 

this thesis, the improvements of the existing DHNN are based on various perspectives, 

such as the structure of the SAT logical rule, optimization in the retrieval phase, and 

logic mining. The discussion of each perspective will be covered in the problem 

statements section. 
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1.4 Problem Statements 

Problem Statement 1 

In practice, effective symbolic rule is essential to model the connection of the 

neurons in DHNN. Humans use this form of knowledge representation to make 

decisions according to various conditions. As an example, Satisfiability (SAT) 

formulation expressed in Conjunctive Normal Form (CNF) embodied decisions in the 

form of AND-OR rules. As an important type of cognitive intelligence, each structural 

component in SAT must be rightly represented before being encoded as symbolic rules 

into any computational system. An existing work by Kasihmuddin et al. (2017a) and 

Sathasivam et al. (2020a) first employed systematic and non-systematic SAT, known 

as 2 Satisfiability (2SAT) and Random 2 Satisfiability (RAN2SAT), respectively. 

Both of the works disregarded the distribution of positive and negative literals 

throughout respective SAT logical rules where the distribution is set randomly. When 

the SAT operates in DHNN, the network is unable to offer different variants of the 

logical rule and the composition of negative or positive literals is set at random. 

Therefore, it is quite impossible to understand the processing units of the neuro-

symbolic model comprehensively. In another development of the non-systematic SAT 

logical rule, existing work by Zamri et al. (2022a) proposed Weighted Random k 

Satisfiability (r2SAT), while Roslan et al. (2024) proposed conditional Random 2 

Satisfiability (CRAN2SAT). Both of the works by Zamri et al. (2022a) and Roslan et 

al. (2024) control the distribution of the negative literals in the logical rule. On the 

other hand, Guo et al. (2022) proposed another class of SAT that combines both 

features of systematic and non-systematic logical rule known as Y-Type Random 2 

Satisfiability (YRAN2SAT). Even though r2SAT and CRAN2SAT have specific 

features to control the distribution of the negative literals in the logical rule, all the 
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development of the non-systematic SAT possesses first-order logic that will degrade 

the quality of the logical rule as neuron representation. This is because first-order logic 

is unable to offer diversified solutions since there is only one exact states that will 

satisfy the clause. Even by acknowledging the importance of negative literals, the 

overfitting solutions cannot be avoided. Therefore, it is imperative to propose a 

systematic logic that consists of an additional feature to control the distribution of 

negative literals. The proposed logic must not contain first-order logic that possibly 

increases the overfitting issue. The only way to investigate the potential of the 

proposed logical rule as a neuron representation is by embedding the proposed logic 

into a neural network medium. 

Problem Statement 2 

Logical rule is needed to govern the neuron connection in the network due to 

the black box property of DHNN. The structural components of the logical rule are 

exceptionally important to ensure that the neuron is best represented. Ineffective 

implementation of the logical rule in DHNN highly contributed to the poor synaptic 

weight management and overfitting output whereby the network only converge to only 

one type of solution. The earliest SAT to be embedded in DHNN (DHNN-SAT) 

models was Maximum k Satisfiability (MAX-kSAT) in DHNN (DHNN-MAXkSAT) 

by Kasihmuddin et al. (2018). However, the structure of MAX-kSAT contains 

redundant literals which leads to ineffective synaptic weight. When redundant variable 

exist in the logical structure, the effect of the synaptic weight will be cancelled out 

which results in non-zero cost function. Thus, this will affect other processing units in 

the DHNN due to the nature of the logical rule is unsatisfiable. In the context of 

satisfiable logical rule in DHNN, existing works such as r2SAT in DHNN (DHNN- 

r2SAT) by Zamri et al. (2022a) and S-Type Random 2 Satisfiability ( 2 SAT ) in 
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DHNN (DHNN- 2 SAT ) by Abdeen et al. (2023) had an additional processes to 

generate the logical rule with desired number of negative literals. As a consequence, 

the practicality of adding an additional layer in DHNN is conflicted by high 

computational time. Therefore, it is imperative to proposed an additional feature to 

control the desire number of negative literals in the proposed logical rule without the 

needs of an additional layer. The additional feature  must have the ability to produce 

logical structure with any number of negative literals with unbiased distribution. 

Successful implementation of SAT into DHNN can be verified with high number of 

global minimum solutions. However, due to the feedback property of the DHNN, any 

improvements during the retrieval phase is commonly disregarded.  

Problem Statement 3 

The dynamic behaviours of DHNN model are strongly dependent on its 

network structure. The conventional DHNN has a high chance of being trapped in local 

minimum when the number of neuron increased due to lack of interpretability and 

variation. Over the time, several researchers have incorporated learning algorithm into 

the DHNN to increase the searching capability of the DHNN. This can be seen in the 

existing work by Zamri et al. (2020) employed Clonal Selection Algorithm (CSA) as 

the learning algorithm in the 3 Satisfiability (3SAT) in DHNN model which is known 

as DHNN3-SATCSA. The proposed DHNN3-SATCSA was compared to the 

conventional Exhaustive Search (ES) and showed acceptable results with 100% global 

minimum solutions retrieved. Unfortunately, the optimization in the learning phase 

disregards the solutions in terms of diversity. Hence, the network tends to produce 

overfitting solutions. As the number of neurons increase, the performance of the 

network degrades due to the existence of local minimum solutions. Subsequently, 

Karim et al. (2022) and Alway et al. (2023) attempted to address the issue of 
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overfitting by introducing the multi-objective function in the learning phase of the 

DHNN model. The proposed multi-objective function successfully produce multiple 

strings of neuron states that posses both high fitness and diversity. Both of the works 

attempted to produce diversified solutions by allowing multiple units of CAM in the 

learning phase of DHNN. However, the number of CAM are restricted to only five. 

Hence, the network has a tendency to retrieve repetitive final neuron states. The 

expansion of final neuron states with more variations and at the same time achieve 

global minimum solution is crucial to make DHNN as a highly intelligent optimization 

model.  In this context, multi-objective function should be initiated in the retrieval 

phase of DHNN to identify final neuron states that lead to high fitness, diversity and 

dissimilarity. The overall performance of the model must be assessed accordingly once 

all the components in the proposed model is established. The proposed model should 

be tested with real-life dataset like any other developing data mining models. 

Problem Statement 4 

Logic mining is a subset of data mining where the information from the 

datasets were extracting in the form of logical rule. Instead of becoming the black box 

model that delivers the final outcome, logic mining gives better representation by 

translating the final neuron state into logical rule. Sathasivam and Abdullah (2011) is 

the first work that introduces logic mining namely Reverse Analysis (RA) which 

incorporates DHNN and HORNSAT. The proposed RA only transformed the final 

neuron states that achieves global energy profile into the induced logic. However, the 

proposed RA prone to several weaknesses. First, the proposed RA has no capability to 

process continuous data because there is no data filtering mechanism before the data 

was converted into logical rule. Second, the proposed RA has no capability to create 

one induced logic because all the obtained induced logic is considered as the potential 
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behaviour to the datasets. By this standard, RA will produce thousands of unimportant 

induced logic that potentially creating overlapping induced logic. Third, there is no 

attempt to validate the performance of the induced logic. There is no proper validation 

metric to measure the quality of the induced logic. These weaknesses reduce the 

performance of the proposed RA as a classification model.  Recent attempts by Kho et 

al. (2020) and Zamri et al. (2020) were initiated to improve the existing RA by 

capitalizing 2SAT and 3SAT, respectively as the logical rule in DHNN. Both works 

are able to extract the best induced logic that represents the behaviour of the dataset 

by considering accuracy value as the validation metric. Unfortunately, these works 

only focused on data entries or patterns that is associated to success or 1. This will 

cause a creation of non-holistic classification model when dealing with imbalanced 

datasets because another pattern of the data entries are removed and disregarded. 

Consequently, the retrieved induced logic are biased to only true positive 

classification. Therefore, the improved logic mining model must have the ability to 

handle continuous raw entries and obtain single best induced logic that is able to 

represent both negative and positive outcomes of the dataset. The improved logic 

mining model should assess the impact of different performance metrics as best logic 

to the quality of the retrieved final induced logic. The validation of the induced logic 

based on different performance metrics gives different insights or undiscovered 

patterns of the dataset. 

Problem Statement 5 

 The production of the best logic is crucial as it demonstrates the optimal 

connections between neurons with the correct synaptic weight. The best logic will 

influence the quality of the retrieved induced logic because best logic learned the 

overall pattern of the dataset. Particularly for DHNN, optimal best logic allows the 
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network to learn the data effectively. This will increase the possibility of retrieving 

best induced logic in the retrieval phase. Generally, majority of the existing logic 

mining models such as Energy based k Satisfiability Reverse Analysis (EkSATRA) by 

Jamaludin et al. (2020), supervised 2 Satisfiability Reverse Analysis (S2SATRA) by 

Kasihmuddin et al. (2022), and Permutation 2 Satisfiability Reverse Analysis 

(P2SATRA) by Jamaludin et al. (2023) improved the existing logic mining by adding 

an additional components in the model. The additional components added to these 

works are energy based selection for the retrieved induced logic in EkSATRA, 

statistical-based attribute selection method in S2SATRA, and permutation of retrieved 

induced logic in P2SATRA. Even though all the mentioned works improved the logic 

mining to increase the performance of the induced logic produced, the works still not 

able to retain the highest accuracy. This is because there is no additional components 

or improvements were applied in the learning phase of these models, which led to a 

suboptimal learning phase. Note that, the pattern of the data is learned thoroughly in 

the learning phase of the logic mining. Therefore, it is imperative to discover multiple 

best logic that considers both true and false classification of learning data. Each best 

logic focuses on the highest value of performance evaluation with respect to the 

learning data. The performance evaluation considered in the best logic will affect the 

performance of the retrieved induced logic. The extracted best induced logic provides 

insightful knowledge of the dataset because extensive possibilities of the best logic 

were considered. 

1.5 Research Questions 

In order to clarify the consistency between the problem statements given in 

Section 1.4 and research objectives of this thesis, this section lay out several important 
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research questions to outline various aspects of the proposed study. Notably, these 

research questions are grounded on the following question, 

“How can the Discrete Hopfield Neural Network be scaled up to increase the 

solution space and achieve higher computational intelligence?” 

Therefore, the research questions involved in this thesis are listed as follows: 

(a) What is the structural component that can be implemented in the formulation 

of systematic logic to ensure the dynamic distribution of negative literals? 

(b) What is the alternative formulation and structure of the systematic logic that 

can control the distribution of negative literals and effectively represent the 

connection of the neuron in the Discrete Hopfield Neural Network? 

(c) What are the additional objective functions that can be considered in the current 

retrieval phase of the Discrete Hopfield Neural Network to ensure the network 

has the ability in generating diverse final solutions? 

(d) In the context of logic mining, how can the best logic be formulated based on 

the confusion matrix to ensure the best logic effectively extracts information 

of the dataset? 

(e) What approach can be developed in the current logic mining to produce a set 

of induced logic that has the ability to extract optimal patterns of the dataset 

and perform classification tasks? 

1.6 Research Objectives 

This thesis is addressed by modelling Discrete Hopfield Neural Network using 

systematic logical rule. The proposed model will be implemented with nature-inspired 

algorithm that has the ability to minimize the cost function of the model. In this 
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context, the proposed model must be computationally stable and has the capability to 

maximize the final solution. Therefore, the objective of this thesis are as follows: 

(a) To propose a variant of systematic logical rule namely Weighted Systematic 2 

Satisfiability. The proposed logical rule comprises of different number of 

negative literals. The number of negative literals generated is controlled by a 

weighted feature namely the ratio of negative literals. 

(b) To propose the implementation of Weighted Systematic 2 Satisfiability into 

Discrete Hopfield Neural Network as the symbolic rule. The minimization of 

the cost function corresponds to the satisfiable property of all clauses in the 

logical rule. Maximum number of satisfied clauses indicates optimal learning 

phase of the network. 

(c) To propose a multi-objective function during the retrieval phase of the Discrete 

Hopfield Neural Network to retrieve superior final neuron states that possessed 

high fitness, diversity, and dissimilarity coefficient value. A new retrieval 

algorithm namely the Binary Clonal Selection Algorithm will locate these 

superior final neuron states using several global and local search operators. 

Each string of superior final neuron states will depict optimal energy profile of 

the network. 

(d) To propose a new computation in generating the best logic during the learning 

phase of logic mining. The best logic will be extracted by considering the 

highest value of the selected performance metrics. These metrics are measured 

based on the classification between the actual outcome of the learning dataset 

to the logical outcome of the initial learning logic. The extracted best logic will 

represent the majority patterns of the dataset with respect to the selected 

performance metrics. 
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(e) To propose a logic mining namely Weighted Systematic 2 Satisfiability 

Modified Reverse Analysis in executing classification tasks for various real-

life datasets. Multiple best logic will configurate respective units of Discrete 

Hopfield Neural Network. The proposed logic mining will extract best induced 

logic that represent the overall behaviour of the analysed dataset. 

1.7 Methodology and Limitations 

Methodology and Limitation 1 

Recently, the number of SAT formulations have increased dramatically. 

Therefore, it is imperative to choose the optimal SAT representation that can 

effectively govern the ANN. In terms of new the SAT formulation, this thesis 

formulates the Weighted Systematic 2 Satisfiability by capitalizing the systematic 

SAT structure with 2 literals per clause. The basis of the proposed SAT formulation 

was inspired by the following works. First, an existing work by Krom (1970) expressed 

the general SAT formula in Conjunctive Normal Form (CNF). In this context, each 

clause in the proposed SAT will be connected with disjunction that contributed to the 

final outcome of the Weighted Systematic 2 Satisfiability. Additionally, the systematic 

manner of the proposed Weighted Systematic 2 Satisfiability took inspiration from the 

work by Kasihmuddin et al. (2017a) which proposes a fixed logical order which 

respect to the second-order. The existing work further suggested a feature of clausal 

weight to control the generation of non-monotonic clauses. In this case, a 

non−monotonic clause refers to the clause that contains all negative literals. Inspired 

from Zamri et al. (2022a), the proposed Weighted Systematic 2 Satisfiability is 

inclusive of a weighted feature in the form of ratio of negative literals or r to control 

the distribution of negative literals. The distribution of which literal to be negated is 
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set at random. According to Lallouet et al. (2020), appropriate method should be 

introduced to systematically tune the desired logical rule prior being a representation 

for a specific problem. Inspired from an idea expressed by Lallouet et al. (2020), this 

thesis implemented ES as a searching technique to generate the correct logical rule of 

Weighted Systematic 2 Satisfiability with respect to the desired ratio of negative 

literals. The implementation of ES is important to ensure that the correct structure of 

Weighted Systematic 2 Satisfiability is generated. In order to guarantee that DHNN 

learns the correct logical rule of Weighted Systematic 2 Satisfiability, the performance 

of the learning error is evaluated. 

While this methodology can be an optimal approach to generate the proposed 

Weighted Systematic 2 Satisfiability, there are several limitations applied to ensure the 

reproducibility of the first objective in this thesis. First and foremost, ES is only 

obligated to generate Weighted Systematic 2 Satisfiability with respect to the ratio of 

negative literals. The reason why the proposed logic focused on the negative literals is 

to promote more emphasis on the role of negative literals as neuron representation. 

According to Saribatur and Eiter (2021), researchers commonly neglect negative 

literals because negative literals usually associated to fault or error to the goal of a 

SAT formula. By recognizing this gap, the role of negative literals is vital to improve 

the interpretation of the SAT as logical rule in DHNN. Indirectly, the negative literals 

in the proposed logical rule will make it possible for DHNN to obtain diverse final 

neuron states without additional modifications in the units of the network. Secondly, 

the ratio of negative literals is set at a certain range with a predefined step size. This 

approach is taken into account to avoid any repetitive distribution of the negative 

literals. Specific amount of negative literals in the proposed Weighted Systematic 2 

Satisfiability will examine different complexity of the neuron connections in DHNN. 
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Methodology and Limitation 2 

The proposed Weighted Systematic 2 Satisfiability with DHNN requires 

effective and efficient learning phase as the number of neurons increased. After 

formulating the proposed Weighted Systematic 2 Satisfiability, each variable in the 

clause will represents the neuron in DHNN. The strength of the connection between 

the neuron denoted as synaptic weight will be computed using Wan Abdullah method 

(Abdullah, 1992). This can be achieved by computing the cost function that is 

associated with the proposed Weighted Systematic 2 Satisfiability and was compared 

with the Lyapunov energy function. In this thesis, the proposed DHNN incorporates 

with Weighted Systematic 2 Satisfiability will be represented in two phases which are 

learning and retrieval phase. To assess the compatibility of the proposed network, two 

perspectives was introduced. First, the learning phase of DHNN is required to ensure 

at least one satisfied interpretation is obtained. Notably, Election Algorithm (EA) was 

implemented as the learning algorithm for finding the satisfied interpretation as 

supported by Bazuhair et al. (2021). By obtaining satisfied interpretation that leads to 

zero cost function, the synaptic weight can be obtained effectively and stored as 

content addressable memory. In this context, learning error will be introduced to 

measure the distance between the ideal neuron fitness with the current neuron fitness. 

Secondly, the quality of the final neuron states produced in the retrieval phase of 

DHNN is measured in terms of energy profile and neuron variation. The energy profile 

of the retrieved final neuron states can be measured by examining the difference 

between the global minimum energy and local minimum energy. Worth mentioning 

that, the neuron variation is evaluated by capitalizing the formulation of similarity 

index. 
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While this methodology can be an optimal approach to pattern reconstruction, 

there are a few limitations to ensure the reproducibility of the objective in this thesis. 

First, the variable in each clause does not contain redundant variable and must be 

expressed in CNF. Following to the WA method, if both structural components are 

considered, this will affect the performance of the learning phase in DHNN which 

leads to non−zero cost function. Additionally, the smallest number of literals that can 

be initiated is ten. This approach was taken into consideration to ensure that at least 

one negative literal exists in the proposed logical rule. Third, the neuron states will be 

represented in bipolar forms of 1 and -1. According to Stern and Shea-Brown (2020), 

the dynamics of ANN that relied on Lyapunov energy function are not suitable to 

represent information in the form of binary (1 and 0). This is due to the possible 

elimination of important coefficients in the energy function. In this case, when the 

states are zero, the minimum energy of the network will always be zero. Hence, the 

actual minimum energy of the network cannot be determined. Fourth, the neuron 

update in the retrieval phase of DHNN will go through the local field computation that 

operates based on the Ising spin model by Sherrington and Kirkpatrick (1975). 

Notably, the wrong updating rule will reduce the effect of the synaptic weight obtained 

from the learning phase of DHNN. Hence, this will be difficult to avoid local optimal 

solutions. 

Methodology and Limitation 3 

In general, the investigation of multi-objective function in the retrieval phase 

of DHNN-SAT models is relatively new. According to Cuéllar et al. (2009), multi-

objective function give important advantages in optimization of ANN. This will force 

the search to return a set of optimal networks instead of a single one. In this thesis, the 

proposed multi-objective function during the retrieval phase of DHNN is responsible 
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to produce superior final neuron states that possess high fitness, diversity, and 

dissimilarity. The proposed multi-objective function in DHNN with Weighted 

Systematic 2 Satisfiability requires an effective and efficient retrieval phase as the 

number of neurons increases. To solve this, this thesis proposed a new retrieval 

algorithm, namely Binary Clonal Selection Algorithm that will locate the superior final 

neuron states. High fitness corresponds to the final neuron state that achieves a global 

minimum solution. This particular objective function is essential to ensure correct 

synaptic weight values are used during the computation of the local field. 

Subsequently, high diversity is attained based on the highest distribution of negative 

neuron states. As for diversity, this objective function is to promote more variations of 

final neuron states in terms of negativity. Additionally, high dissimilarity coefficient 

value indicates a significant difference between the superior final neuron state and 

initial final neuron state. Initial final neuron state correspond to the final neuron state 

before the implementation of Binary Clonal Selection Algorithm. The multi-objective 

functions are crucial to improve quality of the final neuron states produce by DHNN. 

Final neuron state that achieved the multi-objective functions will be categorized as 

superior final neuron state. The production of superior final neuron state will be done 

by the proposed Binary Clonal Selection Algorithm using several global and local 

search operators. Notably, each superior final neuron state form induced logic in the 

logic mining model. 

Despite this methodology can be an optimal approach to ensure the optimality 

of the retrieval phase of DHNN, there are several limitations to ensure the 

reproducibility of the objective in this thesis. Although multi-objective function 

commonly associated with Pareto optimality, this thesis will disregard this concept. 

This is because the main goal in the retrieval phase of DHNN is to obtain optimal final 
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neuron state. If there is any trade-offs between fitness, diversity, and dissimilarity, the 

attained final neuron state can only satisfy one or the other objective function which is 

the contrary to the aim of the thesis objective. Secondly, the fitness function does not 

considering local minimum solution because local minimum solution will distrupt the 

diversity of the final neuron state (Karim et al., 2021). Lastly, for the diversity 

function, the negativity in the final neuron states cannot be less than 50% of the total 

clauses because the impact of the negation cannot be seen (Karim et al., 2022). 

Methodology and Limitation 4 

The main weakness in most existing logic mining models is the lack of 

consideration for both negative and positive instances in a dataset. Hence, it is difficult 

for the existing models to achieve good classification results that corresponds to high 

accuracy. In this thesis, an improved RA namely Weighted Systematic 2 Satisfiability 

Reverse Analysis with Binary Clonal Selection Algorithm was proposed to address 

this issue. First, the proposed logic mining model will formalize a pre-processing phase 

to execute the data cleaning, data preparation, and attribute selection process. The data 

cleaning process involved two steps, which are data imputation for missing values and 

clustering method by k-mean clustering to handle datasets with non-categorical or 

continuous entries and transform into bipolar forms of {1, -1}. After that, data 

preparation process proceeds with train test splitting and k-fold cross validation of all 

entries by a predefined ratio that is compatible with the existing works. Then, the pre-

processing phase ends with random attribute selection. Secondly, the proposed logic 

mining model introduced a new method of entrenching the learning dataset into the 

proposed logical rule. Notably, the classification of binary confusion matrix are being 

evaluated based on the dependent attribute in the learning dataset to the outcome of 

the proposed logical rule after embedding learning dataset. Then, one selected 
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performance metric will be calculated based on the binary confusion matrix 

classification. The logical rule with the highest value of selected performance metric 

will be renamed as the best logic. The selected best logic will be learned by the learning 

and retrieval phase of DHNN. This approach was taken into consideration to ensure 

that the generated best logic is able to represent the majority patterns of the dataset. 

Subsequently, induced logic with the highest accuracy will be considered as the best 

induced logic. The proposed logic mining model will be measured and investigated 

with 20 repository datasets retrieved from reputable databases. The proposed logic 

mining model will be compared with several existing logic mining models based on 

accuracy, sensitivity, specificity, negative predictive value, and Matthew’s correlation 

coefficient metrics. 

While this methodology can be an optimal approach to extract information 

from real-life datasets, there are several limitations to ensure the reproducibility of the 

objective in this thesis. First and foremost, the use of k-mean clustering is not 

applicable when the data is categorical or discrete in nature. Direct transformation to 

bipolar forms will be executed. For fair comparison and reproducibility purposes, the 

similar train test splitting, k-fold cross validation ratio, and attribute selection are 

applied to all models and set as constants. Last but not least, repository datasets 

acquired for this thesis were mainly retrieved from University of California Irvine 

(UCI) and Kaggle Machine Learning Repository. Using these retrieved datasets, the 

proposed logic mining model can be compared with other existing logic mining models 

in the field of feature selection method. 

Methodology and Limitation 5 

Generally, the investigation of multiple best logic in the logic mining models 

is relatively new. Thus, it is important to appropriately formulate adaptive multiple 
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best logic that can optimally learn the behaviour of the dataset. In this thesis, multiple 

best logic was proposed in the learning phase of the logic mining model to produce 

multiple best induced logic. The new logic mining model is an improved logic mining 

model from Objective 4 namely Weighted Systematic 2 Satisfiability Modified 

Reverse Analysis. In this approach, multiple best logic are proposed whereby each best 

logic is correspond to different performance metrics. Notably, the proposed multiple 

best logic will correspond to distinguish CAM of DHNN. In this context, the proposed 

logic mining model possessed multi-units of CAM that proffers multi-units of local 

field computation which leads to multiple best induced logic (Alway et al., 2023). This 

approach will help the proposed logic mining model to widen the search space and 

locate non-overfitting induced logic. On the other hand, unsupervised attribute 

selection method known as topological data analysis was proposed in the pre-

processing phase of the logic mining model. The main goal of this proposed method 

is to filter the attributes that have dissimilar behaviour to the dataset. 

Despite this methodology can be an optimal approach to ensure the optimality 

of the logic mining model, there are several limitations to ensure the reproducibility of 

the objective in this thesis. Firstly, the selected performance metrics for respective best 

logic must be distinct and do not have the same insight. For instance, metric accuracy 

and F1 score share the same insight where both of the metrics represent the 

classification of true positive and negative outcome (Chicco & Jurman, 2020). Similar 

metrics will lead to redundant CAM, which is prone to repetitive production of final 

neuron states. Consequently, there will be no differences in the pattern of the induced 

logic (Alway et al., 2023). In relation to the discussed problem statements, objectives, 

and methodology, Figure 1.1 describes the overall methodologies discussed in this 

thesis.
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Figure 1.1 Flowchart of overall methodologies discussed in this thesis.




